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Objects that pass light through are considered
transparent, and we generally expect that the light
coming out will match the color of the object. However,
when the object is placed on a colored surface, the light
coming back to our eyes becomes a composite of
surface, illumination, and transparency properties.
Despite that, we can often perceive separate overlaid
and overlaying layers differing in colors. How neurons
separate the information to extract the transparent layer
remains unknown, but the physical characteristics of
transparent filters generate geometrical and color
features in retinal images, which could provide cues for
separating layers. We estimated the relative importance
of such cues in a perceptual scale for transparency, using
stimuli in which X- or T-junctions, different relative
motions, and consistent or inconsistent colors
cooperated or competed in forced-preference
psychophysics experiments. Maximum-likelihood
Thurstone scaling revealed that motion increased
transparency for X-junctions, but decreased
transparency for T-junctions by creating the percept of
an opaque patch. However, if the motion of a filter
uncovered a dynamically changing but stationary
pattern, sharing a common fate with the surround but
forming T-junctions, the probability of seeing
transparency was almost as high as for moving
X-junctions, despite the stimulus being physically
improbable. In addition, geometric cues overrode color
inconsistency to a great degree. Finally, a linear model of
transparency perception as a function of relative
motions between filter, overlay, and surround layers,
contour continuation, and color consistency, quantified
a hierarchy of latent influences on when the filter is seen
as a separate transparent layer.

Introduction

All objects modify the light that strikes them, but we
only become perceptually aware of that when the light

reflected onto a second surface matches the perceived
color and/or shape of the first object. Objects that
pass light through are considered transparent, and the
modification of light is more obvious. We expect that
the modified light coming out will match the perceived
color of the transparent object, but the situation is more
complicated if the object is placed on a colored opaque
surface so that the light coming back to an observer
is the result of modifications by both the transparent
object and the opaque surface. Perceptual scission
(Heider & Koffka, 1933; Metelli, 1974) occurs if the
shapes and colors of the underlying surface are seen
as separate from the shape and color of the overlaying
layer. The ability to disentangle the color of the surface
from the color of the medium is essential to the success
of vision. Among other functions, it enables us to judge
the color of transparent objects (Ennis & Doerschner,
2021) and infer surface colors behind fog (D’Zmura
et al., 2000). In conditions where a transparent layer
is lying on the top of the background surface, the
spectral distribution and intensity of light coming
from each point of the overlaid image is a composite
of illuminant spectrum passed through the spectrum
of an intervening medium, reflected from the surface
spectrum, and passed again through the spectrum of
the intervening medium and does not in itself contain
separable information about the characteristics of the
components. However, the physical characteristics of
transparency also create geometrical and color image
features that evoke scission, and sometimes there
is relative motion from movement of a transparent
liquid or vapor, or from changes of viewpoint if
the transparent layer has a volume or is in front of
the surface. In this article, we quantify the relative
importance of these features in giving the impression of
transparency.

The continuation of contours from exposed to
overlaid regions creates X-junctions in the image
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(Cavanagh, 1987; Kanizsa, 1979; Kersten, 1991; Metelli,
1974). X-junctions trigger transparency perception
when there are multiplicative changes in contrast
(Adelson & Anandan, 1990; Anderson, 1997; Beck et
al., 1984; Metelli, 1974; Robilotto et al., 2002; Robilotto
& Zaidi, 2004), and in achromatic stimuli, observers
match the degree of transmittance to perceived
contrast (Robilotto et al., 2002; Robilotto & Zaidi,
2004; Singh & Anderson, 2002, 2006). An opaque
patch lying on a background creates T-junctions at
the edge, which are generally considered to be cues
for occlusion between opaque objects, but can elicit
the impression of an illusory transparent layer under
conditions of illusory modal contours (Kanizsa,
1979). In addition, X-junctions are not necessary for
volumetric transparency (Fleming et al., 2011) or if
there is a continuation of pattern from exposed to
overlaid regions (Fuchs, 1923). We test the efficacy of
T-junctions versus X-junctions when other cues are also
present.

Relative motion has also been linked to transparency.
Informal observations suggest that motion seems to
enhance the impression of transparency in the presence
of X-junctions, and enhances the perception of opacity
in the presence of T-junctions (Khang & Zaidi, 2004),
similar to its role in distinguishing reflections from
paint (Doerschner et al., 2011), but this role has not
been critically tested. In addition, color change and
apparent motion can create an illusory transparent
layer (Cicerone et al., 1995). Further, dynamic image
deformation can lead observers to report transparent
water or vapor flowing above the background (Kawabe
& Nishida, 2018), and transparency is actually
enhanced by the presence of T-junctions at the edge of
the surface (Kawabe & Nishida, 2017). Motion is thus
likely to be a complex cue for transparency, and we test
its effect on the perceptual separation of layers.

When observers look at an overlaid surface through a
transparent layer, the spectra of lights from an exposed
background differ from lights from the portion overlaid
by a filter by a double pass through the transmission
spectrum of the filter, but, remarkably, when lights
from exposed surfaces are absorbed in L, M, and S
cone–photopigments, and plotted against lights from
identical surfaces overlaid by a filter, the change can
generally be defined by a multiplicative constant for
each cone class. Hence, changes in spectra of lights
transmitted through filters form a three-dimensional
diagonal transform in cone space or an affine transform
in cone-opponent space (Khang & Zaidi, 2002a, 2002b;
Westland & Ripamonti, 2000; Zaidi, 1998, 2001).
This transform provides a strong cue to the color of
the filter, showing that there is sufficient information
to estimate the color (not the spectrum) of the filter
and suggesting that veridical perception of the filter
color could be used as a measure of the degree of
scission.

To test this suggestion, Khang and Zaidi (2004)
estimated how accurately human observers separate
the image into overlay and background components
by placing moving transparent layers on chromatically
different sets of background materials. To measure
whether observers could tell whether the two filters are
identical despite the local colors of the two overlaid
regions being different, observers adjusted the color
of the filter on a gray-level background to match the
filter on a colored background. For six different colored
filters, placed on six different colored backgrounds,
the matched chromaticity was close to the actual
chromaticity of the test filter against a gray background
and differed significantly from the average chromaticity
of the overlaid segment, providing ostensibly strong
evidence for color scission. The same stimulus, with
the surround changed to black, gave an impression of
a spotlight on a dark surface, not a transparent filter;
in this case, when observers matched the spotlight by a
spotlight on a gray-level background, the light had the
average chromaticity of the overlaid segment, which
differed significantly from the actual chromaticity of
the spotlight filter. These results suggest that observers
can accurately scission colors of transparent layers in
geometric configurations that support the perception
of filters, but not if they support the perception of
spotlights against black surrounds. However, the
scission interpretation is limited by the fact that the
color of the filter creates color contrast from exposed to
overlaid areas, with an increase toward the filter color
on the overlaid area, irrespective of the background
colors, and observers could be matching the change
in color with or without a transparency percept; thus,
veridical filter color matching would not be a direct
estimate of the degree of color scission.

To counter this limitation, we used the transparency
cues we have described in cooperation or conflict
to evoke gradations of perceived transparency, and
asked observers to judge the probability of physical
transparency in Likert-type paired comparisons
(Spicker et al., 2017). From these comparisons, we
estimated a perceptual transparency scale for human
observers using a maximum likelihood variant of
classical Thurstone scaling (1927).

Methods

Stimuli

Materials
A 46° × 26° (1920 × 1080 pixels) monitor screen

was covered with a variegated background of randomly
oriented elliptical patches centered on randomly
chosen pixels on the monitor, with long axes randomly
ranging from 0.85° to 1.56°, and short axes randomly
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Figure 1. MacLeod–Boynton chromaticity of 280 reflectances of
natural and man-made materials under equal energy light, used
to simulate background surfaces. Background surfaces
consisted of four sets of 40 materials each from the single
quadrants of the color space designated with approximate color
names for convenience, whereas the fifth set was equally
balanced across all four quadrants, and the sixth set consisted
of 40 achromatic materials with a similar luminance
distribution.

ranging from 0.35° to 0.65°. The total number of
ellipses per image was 8192, which we had found
previously provided complete coverage in every
case, so no iterations were needed. Ten different sets
of ellipses were generated and one set was chosen
randomly on each trial. To simulate the colors of
background surfaces, we used 280 reflectance spectra
materials chosen from measurements of natural and
man-made objects that were previously used by Khang
and Zaidi (2004) and Smithson and Zaidi (2004).
From the MacLeod–Boynton chromaticity plot of
all 280 materials under equal energy light (Figure 1),
we selected 4 sets of 40 materials each from single
quadrants of the color space, while the fifth set was
equally balanced across all four quadrants, and the sixth
set consisted of 40 achromatic materials. On each trial,
reflectances from one set were randomly assigned to
ellipses, and a central disk covered by one of six Kodak
CC30 color filters (Khang & Zaidi, 2004), randomly
chosen on each trial. The six filters are shown on the six
background surfaces in Figure 2.

Geometric configurations
We constructed geometric and motion configurations

that required the transparent filter layer, the overlaid
background surface layer, and the exposed surround
surface layer to be oriented andmoved independently, so
each stimulus was constructed from the three simulated

layers (illustrated later in this article). By separately
manipulating the three layers, we simulated seven
geometric configurations that combined geometric,
motion cues to transparency, while maintaining colors
in the overlaid and exposed regions that were physically
consistent with transparency (Videos in Figure 3 top).

(i) Static X-junctions: stationary circular filter on the
background. The construction in terms of the three
layers is illustrated in Figure 4A, where the overlaid
surface is just cut out from the exposed surround, so
replacing it yields a surface with continuous ellipses.
(ii) Moving X-junctions: the simulated filter moving
back and forth horizontally over the surface. Both
configurations contain X-junctions on the boundaries
of the disks as realistic cues for transparency. By asking
observers to compare the first two configurations,
we can quantify if motion enhances the perception
of transparency. (iii) Static T-junctions: the circular
overlaid region is the mirror-reversed version of the
static X-junction case, thus creating T-junctions at the
boundary with the surround (Figure 4B) and allowing a
comparison of static X-junctions versus T-junctions in
transparency perception. (iv) Moving T-junctions: the
simulated filter and overlaid background move together
as if one layer, thus creating moving T-junctions
on the boundary. By asking observers to compare
the static and moving T-junction conditions, we can
quantify if motion also enhances the perception of
opacity. Figure 5 (left) presents a comparison of Moving
X and Moving T configurations and their separation
into the three layers. Note that the overlaid surface
changes on each frame of the Moving X configuration
as if cut out from the background surface on each
frame, which is physically equivalent to the filter moving
over a continuous stationary surface. The overlaid
surface in the Moving T configuration moves with the
filter, but is unchanging, which is physically equivalent
to an opaque patch moving over a surface. (v) Dynamic
T-junctions: the moving circular region on every frame
is the mirror-reversed version of the moving X-junction
condition, so the filtered region moves as if it is covering
a stationary but changing overlaid surface on each
frame, thus creating dynamically changing T-junctions
on the moving boundary as opposed to X-junctions.
In this critical condition, the moving filter seems to
uncover new areas of the background on every frame,
but these are different from what was on the exposed
surround in the same location. The main motivation
for this condition is that the overlaid and surround
layers share a motion-defined common fate, not shared
with the moving filter, thus this condition can reveal
whether this common fate overrides T-junctions in
transparency perception when compared with Moving
T-junctions where the filter and overlaid layers share a
common fate. Figure 5 (right) presents a comparison
of Moving X and Dynamic T configurations and their
separation into the three layers. On each frame, the
overlaid surface in the Dynamic T configuration is



Journal of Vision (2022) 22(6):6, 1–15 Huang & Zaidi 4

Figure 2. Six Kodak CC30 color filters (red, green, blue, cyan, magenta, and yellow) placed on six backgrounds: Quadrant Red–Blue,
Quadrant Red–Yellow, Quadrant Green–Yellow, Quadrant Green–Blue, All Quadrants, and Achromatic.

the mirror-reversed version of the overlaid surface in
the Moving X configuration, so it changes on each
frame unlike the Moving T configuration. (vi) Relative
Motion: the filter moves as in the Moving X-junction
condition, but the overlaid background moves at
one-half the speed in the same direction. This condition
also creates Dynamic T-junctions, but no pair of
layers share a common fate. (vii) Overlaid Motion:
the filter and surround are stationary, but the overlaid
background moves, as if the disk were an aperture. In
this condition, T-junctions are created at the filter’s
edge, but the overlaid layer does not share a common
fate with the filter or surround layers, which however do
so. This study aimed to estimate a scale for the degree
of perceptual transparency of the filter layer across
these seven combinations of geometric and motion
cues.

Physically inconsistent color configurations
In the configurations shown in the top row of Figure

3, the ellipses in the surround and overlaid circle
were chosen from the same color set, so we call these
conditions Color Consistent. For each configuration,
we also created physically Color Inconsistent conditions
by replacing the colors of the surrounding ellipses
with achromatic shades (Figures 4C, D), because no
filter with transmittance constant over time (no matter
how complex spatially) could turn the achromatic
ellipses into the dynamically varied colors seen under
the filters (especially the Moving X-junctions and
Dynamic T-junctions videos in Figure 3, bottom). It is
true that the same achromatic color can be an addition
of many different combinations of wavelengths, so
different patches of the same achromatic color could
possibly be seen as different colors when seen through
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Figure 3. Video: (Top) red filter on the All Quadrants background set with seven geometric configurations. (Bottom) red filter on the
All Quadrants set, but with an Achromatic surround, for physically inconsistent color configurations. The stimuli were presented on a
24-inch screen with the disks subtending 7° of visual angle, so the videos should be expanded to roughly the same size to replicate
observers’ percepts. Video is available on the journal website.

one color filter, but it would be physically impossible
to obtain the pairs of almost complementary colors
in the All Quadrants set by this process. The set of
achromatic ellipses maintained the average luminance,
but each individual color of the surround was
replaced by a randomly selected luminance so that the
luminance relations across the filter border were also
not physically compatible with transparency. Consistent
and inconsistent color configurations were compared
across all geometric configurations to test whether color
inconsistency vetoes perceived transparency or whether
other cues can overcome it.

Experimental procedure

For each trial, an observer was presented with one
stimulus each on the left and right halves of the screen
with two different configurations randomly chosen from
the 7 (geometric + motion) × 2 (color consistency) =
14 configurations. Thus, there were a total of (14 ×
13)/2 = 91 distinct pairs. For each forced-preference
paired comparison, one overlaid layer color set and one
filter color were randomly chosen for both sides, that is,
the same filter and overlaid layer colors on both sides,
so each pair was repeated 72 times for each observer
(6 filter colors × 6 overlaid color sets × two left–right
permutations). In the color consistent conditions, the
surround colors were from the same set as the overlaid
layer, whereas in the color inconsistent conditions the
surround was achromatic.

The videos in the top row of Figure 5 show
two example trials. The left column shows Moving
X-junctions on the left and Moving T-junctions on the

right, where the difference in perceived transparency is
large, and the right column shows Moving X-junctions
on the left and Dynamic T-junctions on the right,
where the difference in perceived transparency is
small despite there being T-junctions in the right
stimulus and X-junctions in the left. For each session,
the observer was given these instructions, “On
each trial of the experiment, a scene of oriented
ellipses will be displayed on the screen. There will
be two disks, moving or not, on the left half and
right half of the screen. Some of the disks will be
transparent and some will be not. Sometimes it
will be easy to tell and sometimes not. Your task
is to look at both disks and decide which has a
higher probability of being a transparent layer.”
Observers were instructed to use buttons to report
the judgment using a 5-point Likert scale: “Left
disk has much higher probability,” “Left disk has
slightly higher probability,” “Left and right disks
have equal probability,” “Right disk has slightly
higher probability,” and “Right disk has much higher
probability.”

Observers

Five observers participated in the experiment. All
of them had normal or corrected visual acuity and
normal color vision. One of the observers is the first
author of this article and was aware of the nature and
the purpose of the experiment; the other observers were
briefed about the experiment after the data had been
collected. Observers gave informed consent, and the
procedures were approved by the SUNY Optometry
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Figure 4. Stimuli were constructed by combining a transparent filter layer, an overlaid surface layer, and an exposed surround layer.
(A) Construction of a Static X-junctions geometric configuration. The overlaid layer is cut out from the background, thus creating a
continuous surface when replaced, and forming X-junctions on the boundary of the circular region when the filter is placed on the
overlaid section. (B) Construction of Static T-junctions geometric configuration is similar to the Static X-junctions, except that the
overlaid layer is mirror-reversed, so when it is placed inside the exposed background, and the filter laid on it, T-junctions form on the
filter boundary. (C) When the exposed surface in the Static X-junctions is replaced by an achromatic background, while the overlaid
layer remains the All Quadrants background, a color inconsistent condition is created. (D) A color inconsistent condition for the Static
T-junctions configuration is constructed similarly.



Journal of Vision (2022) 22(6):6, 1–15 Huang & Zaidi 7

Figure 5. Video. Two example trials. (Left) Moving X-junctions on the left and Moving T-junctions on the right. (Right) Moving
X-junctions on the left and Dynamic T-junctions on the right. The stimuli were presented on a 24-inch screen with the disks
subtending 7° of visual angle, so the videos should be expanded to roughly the same size to replicate observers’ percepts. Video is
available on the journal website.

Institutional Review Board Committee in accordance
with the Declaration of Helsinki.

Apparatus

Stimuli were shown on a VPixx LED monitor using
MATLAB and Psychtoolbox (Brainard, 1997; Kleiner
et al., 2007). The observers sat at a viewing distance of
63 cm. Stimuli were displayed at 16 bits per channel,

with a linear gamma. To compute screen RGB correctly
for rendering light spectra, spectral distributions of the
monitor primaries were measured with a SpectraScan
PR650 photo-spectroradiometer.

Thurstone scaling

To estimate a perceptual scale for transparency
we used a maximum likelihood variant of classical
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Thurstone scaling to analyze the paired forced-
preference results. In standard Thurstone (1927)
scaling, the results from paired comparisons between
m stimuli are stored in an m × m matrix C, where Cij
is the number of times that i is preferred over j, and
Cji is the number of times that j is preferred over i,
so that Cij + Cji = n the number of repeated choices.
Thurstone (1927) assumed that the subjective value of
each stimulus is a Gaussian random variable Si with
mean μi and variance σ 2

i , so the task is to estimate μ.
Forced preference between stimulus i and j, can be
modeled as judging whether Si > Sj, or equivalently
Si − Sj > 0. Based on the Gaussian assumption, Si −
Sj is also a Gaussian with mean μi − μj and variance
σ 2
i + σ 2

j , giving the probability of i being preferred
over j:

P
(
Si > Sj

) = P
(
Si − Sj > 0

) = �

(
μi − μ j

σ 2
i + σ 2

j

)
, (1)

where � is the Gaussian cumulative distribution. From
the empirical results, P(Si > Sj) can be estimated by the
proportion of times that i is preferred over j:

P
(
Si > Sj

) ≈ C i j

C i j +C ji
(2)

To simplify the model, all the subjective values
are assumed to have variance equal to 1√

2
; therefore,

σ 2
i + σ 2

j = 1, so μi − μj can be estimated by:

μi − μ j = �−1
(

C i j

C i j +C ji

)
, (3)

If μ is the vector of all scale value μ = [μ1,…, μm], then
the log-likelihood of μ given C (Tsukida & Gupta,
2011):

L(μ|C ) �= logP(C |μ) =
∑
i, j

C i j log�
(
μi − μ j

)
(4)

And the scale values can be estimated as:

argmax
μ

∑
i, j

C i j log�
(
μi − μ j

)
, subject to

∑
μi = 0 (5)

In pilot experiments, we realized that a two-
alternative judgment was not providing sufficient
nuance, so we used a 5-point Likert scale, adding
strong and weak preferences and a neutral option. We
used the Spicker et al. (2017) extension to Thurstone
scaling. S and W matrices record the number of times
that one stimulus is strongly or weakly preferred over

another, and N records the number of times that two
stimuli are judged equal in value. If δ0 is the subjective
boundary between neutral and weakly preferred, and δ1
be the subjective boundary between weak preferred and
strongly preferred, the boundaries between adjacent
options on the 5-point scale will be [ − δ1,−δ0, δ0,δ1].
Then the log likelihood of scale values μ conditional on
S, W and N is given by:

L(μ|S,W ,N ) �= logP(S,W ,N |μ), (6)

where

logP (S,W ,N |μ)
= ∑

i,j
Sij log

(
1 − �

(
μi − μj − δ1

))
+∑

i,j
Wij log

(
�

(
μi − μj − δ1

) − �
(
μi − μj − δ0

))
+∑

i,j
Nij log

(
�

(
μi − μj − δ0

) − �
(
μi − μj + δ0

))
+∑

i,j
Wji log

(
�

(
μi − μj + δ0

) − �
(
μi − μj + δ1

))
+∑

i,j
Sji log

(
�

(
μi − μ j + δ1

))
(7)

The best estimate of μ is obtained by using convex
optimization to solve:

argmax
μ,δ0,δ1

L(μ|S,W ,N ), subject to
∑

μi = 0, δ1 > δ0 > 0 (8)

The results of the optimization form an interval
scale, but not a ratio scale, so rank and differences are
meaningful, but zero is arbitrary. In our case, it was set
by assuming that �μi = 0 in Equation 8. The estimated
mean of each configuration μ was taken as an estimate
of the subjective scale value of transparency for each
observer.

Results

In the scaling analysis, we pooled preferences from
the 72 combinations (36 filter and overlaid color pairs
times 2 left–right permutations) for each of the 14
configurations, thus obtaining a scale that was based
on a wide range of similarities between the filter
and overlaid layer colors (S, W, and N matrices for
all observers are presented in Appendix Figure A1).
The analysis estimated the subjective scale value of
transparency of the 14 configurations for each of
the 5 observers. The scale values for the Combined
observer were estimated by pooling all 5 observer’s
preferences before the analysis, thus giving 5 times the
number of choices as each individual observer, hence
more reliable probability estimates. As Figure 6 shows
there is remarkable concordance between observers.
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Figure 6. Transparency scale value for the combined observer
and the five individual observers. Labels: MX = Moving
X-junctions, DT = Dynamic T-junctions, SX = Static X-junctions,
ST = Static T-junctions, RM = Relative Motion, OM = Overlaid
Motion, MT = Moving T-junctions, C = Consistent (Red), I =
Inconsistent (Blue).

Moving X-junctions, Static X-junctions, and Dynamic
T-junctions values are positive; Relative Motion
and Static T-junction values are approximately 0.0;
Overlaid Motion and Moving T-junctions values are
below negative, corresponding with impressions of
transparency for positive values and opacity for negative
values. Since the Thurstone scale is an interval scale,
we used Pearson’s correlation coefficient to examine
the correlation of observers’ scale value. The pairwise
Pearson’s correlations between observers range from
0.87 to 0.95 (Table 1), and the correlations with the
Combined observer range from 0.96 to 0.98; therefore,
we discuss the results of the Combined observer in
detail.

The results show that disk movement that continually
generates X-junctions looks more transparent than
its Static X-junction counterpart, in fact, Moving
X-junctions even overcome physically impossible color
inconsistency to have the third highest transparency
value for the Combined observer. Dynamic T-junctions
had the second highest scale value after Moving
X-junctions for the Combined observer and was rated
much more transparent than Relative Motion, even

though both configurations continuously generate
new T-junctions. This result indicates that common
fate could prevail over junctions in promoting
a percept of transparency. Moving T-junctions
configuration was consistently the least transparent
configuration, showing that common fate between
the filter and overlaid segment enhanced the effects
of T-junctions for evoking opacity. It was interesting
that the motion of just the overlaid layer inside
an aperture did not evoke the impression of a
colored transparent layer, possibly because observers
added the color of the filter to the background. All
Inconsistent Color conditions appeared to be a little less
transparent than their color-consistent counterparts,
but geometric configurations could overcome color
inconsistency in evoking transparency, despite it being
physically impossible for a transparent filter to create
variegated colors from all four quadrants of color
space when placed on an achromatic background.
Although the effects of many of these cues have
been examined in isolation, the cooperation and
conflict of these cues compared together reveal a
hierarchy of transparency enhancers and inhibitors,
with effects that are remarkably similar across
observers.

Latent factors

The perceptual scale is a function of stimulus
configurations, and this would be useful in many
applications, but we wanted to take advantage of
the concordance across observers to identify the
latent factors that influence transparency perception.
Phenomenologically, in the simplest case, transparency
perception requires seeing the transparent layer as
separate from the overlaid surface, and that could
be made easier by seeing surround and overlaid
surfaces as connected. The connection between
overlaid and surround surfaces is enhanced by contour
continuation in X-junctions, so the presence or
absence of contour continuation is likely to influence
transparency perception. Transparency layer separation

Obs 1 Obs 2 Obs 3 Obs 4 Obs 5 Combined

Obs 1 1
Obs 2 0.9135* 1
Obs 3 0.9464* 0.9313* 1
Obs 4 0.8810* 0.9543* 0.8730* 1
Obs 5 0.9339* 0.9525* 0.9521* 0.8725* 1
Combined 0.9609* 0.9829* 0.9580* 0.9644* 0.9550* 1

Table 1. Pearson’s correlation coefficient between observers’ scale values. Obs = observer.
*P < 0.001.
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Figure 7. Latent factor perceptual transparency model. The top layer contains the experimental conditions in rectangles. The middle
layer contains the latent factors in circles, and the color-coded solid and dashed arrows mean the latent variable is True (solid) or
False (dashed) for that condition. The last layer is the transparency scale in the diamond, and the black solid (Positive correlation) and
dashed (Negative correlation) arrows are labeled with the best fitting parameter values.

and connection between overlaid and surround surfaces
are both enhanced by systematic luminance and color
changes from exposed to overlaid regions that simulate
physical reality, as in the color consistent conditions.
However, achromatic surrounds in color inconsistent
conditions simulate physical impossibility but do not
veto transparency percepts, so we wanted to find out
what weight observers give to the inconsistency relative
to the other factors. Since all forced choices were
between pairs with the same filter and overlaid layer
colors, differences between stimulus color combinations
do not affect any choice, so are not reflected in the
perceptual scale. Since motion-created common
fate is a strong grouping enhancer (Wagemans et
al., 2012), the lack of relative motion between the
surround and overlaid surfaces in conjunction with
the motion of the transparent layer with respect to
the two surfaces would enhance the separation of the
transparent layer. We, thus, took contour continuation,
color consistency, and relative motion as the latent
factors underlying the perceptual transparency
choices that generate the quantitative perceptual
scale for our stimuli. We used a regression model to
quantify the relative weights of these factors, without
committing to a particular neural or behavioral decision
process.

In the latent factor stage of the model (Figure 7), the
pairwise relative motion was represented by three latent
factors: MS = MO, when the overlaid surface moved
with the same velocity (possibly zero) as the surround
surface, MF = MS when the filter layer moved with the
same velocity as the surround surface, and MF = MO
when the filter layer moved with the same velocity as
the overlaid surface. For each of the 14 experimental
conditions, every latent factor was coded as a binary
variable with +1 for True (solid arrows) and –1 for
False (dashed arrows). The contour continuation factor
K was +1 for X-junctions, and –1 for T-junctions, and
the color consistency factor C was +1 for physically
realistic consistency and –1 for physically impossible
inconsistency. T represents the transparency scale in
real numbers, and we fit T as an additive function of
the latent factors (Equation 9) using the MATLAB
function fitlm:

T = α1 + L.B + E (9)

In Equation 9, T is a 14 × 1 array of empirical scale
values, α is a constant parameter to be estimated, 1 is a
14 × 1 array of 1.0 s, and E is a 14 × 1 array of errors
ε. B is a 5 × 1 vector of β parameters to be estimated,
and L is the 14 × 5 matrix of the relation between
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stimulus conditions and latent variables given by
Equation 10:

MS = MO MF = MS MF = MO K C

L =

MX − C

DT − C

MX − I

DT − I

SX − C

SX − I

ST − C

RM − C

RM − I

ST − I

OM − C

OM − I

MT − C

MT − I

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 −1 −1 +1 +1

+1 −1 −1 −1 +1

+1 −1 −1 +1 −1

+1 −1 −1 −1 −1

+1 +1 +1 +1 +1

+1 +1 +1 +1 −1

+1 +1 +1 −1 +1

−1 −1 −1 −1 +1

−1 −1 −1 −1 −1

+1 +1 +1 −1 −1

−1 +1 −1 −1 +1

−1 +1 −1 −1 −1

−1 −1 +1 −1 +1

−1 −1 +1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

The regression model fits so well with just additive
binary latent factors (R2 = 0.976, F = 63.98, P <
0.001), that making the factors continuous or adding
interaction terms between them could not make the
fit significantly better. The predicted transparent scale
estimated from the best fitting model parameters
is plotted against the Combined empirical scale in
Figure 8, and the points lie close to the unit diagonal,
consistent with the high correlation between the scales
(R2 = 0.976). Note that other sets of latent factors are
unlikely to be sufficiently explanatory. For example,
motion per se would not work because, while motion
enhances the transparency effect of X-junctions, it also
enhances the opacity effect of T-junctions. Similarly,
even though pattern similarity between surround
and overlaid surfaces works for Fuchs’s transparency
(Fuchs, 1923; Masin, 1984, 1998, 1999), in our
stimuli, the Relative Motion and Dynamic T-junctions
conditions have the same pattern similarity, but evoke
different probabilities of transparency.

The coefficients for the latent factors for the
Combined observer are shown in Figure 7. The
constant term in the regression equation is equal to

Figure 8. Perceptual scale predicted from the regression model
versus the empirically derived perceptual scale for the
Combined observer (R2 = 0.976).

–0.09, so is much smaller than the other terms. The
largest positive effect on transparency is from the lack
of relative motion between surround and overlaid
surfaces, while the next largest effects show that relative
motion between the filter and surround or filter and
overlaid surface enhances transparency, corresponding
with the negative effect shown for a lack of relative
motion. Together, the relative motion latent factors
promote perceptually separating the filter layer from the
two surfaces. All three motion effects are larger than the
effect of contour continuation, while color consistency
has the smallest effect, in fact, motion-defined common
fate overcomes geometrical and color improbabilities
and even impossibilities to create transparency
percepts. Table 2 shows that the latent factors model
predicts each observer’s perceptual scale extremely
well (R2 ranging from 0.939 to 0.978). It shows that
different observers give different relative weights to
the latent factors, but the signs are the same for all
observers.

Observer

Combined Obs1 Obs2 Obs3 Obs4 Obs5

Factor Constant −0.085 −0.008 −0.120 0.006 −0.145 −0.004
MS = MO 0.718 0.693 0.703 0.674 0.665 0.576
MF = MS −0.267 −0.240 −0.300 −0.094 −0.321 −0.189
MF = MO −0.394 −0.222 −0.415 −0.311 −0.528 −0.271

K 0.261 0.404 0.194 0.373 0.166 0.337
C 0.195 0.099 0.294 0.234 0.114 0.341

Fit R2 0.976 0.969 0.978 0.939 0.950 0.975

Table 2. Weights of the latent factors for all observers and R2 measures of the fit of the model.



Journal of Vision (2022) 22(6):6, 1–15 Huang & Zaidi 12

Discussion

The main contribution of this study is the perceptual
scale for transparency estimated for cooperating or
competing cues. The values in the perceptual scale in
turn allowed us to infer weights of latent factors that
control transparency perception. The neural locus
and mechanisms of transparency perception are open
questions (Qiu & von der Heydt, 2007). To understand
the brain mechanisms that extract transparency from
retinal images, one possible strategy would be to
measure neuronal or voxel responses to the central disk
for all 14 of our stimulus conditions and correlate these
responses to the combined scale. A high correlation
would indicate that the cell or brain area is segmenting
the transparent layer from the background surface. One
caveat is that the human results are combined over all
combinations of filter and background colors, whereas
for each cell, the stimuli may need to be restricted to
the colors to which the cell responds reliably. Note that
cells or brain areas that respond only to color contrast
at the edge of the filter will respond just as strongly to
the Moving T-junctions configuration as to the Moving
X-junctions, so would not provide strong correlations
with the perceptual scale where these conditions are at
the opposite extremes. For a cell that shows evidence of
responding well to perceptual transparency, a fit of the
latent factors model to its responses will suggest how
it combines geometric, motion, and color cues from
earlier brain areas.

The perceptual scale shows that relative motion
enhanced both transparency and opacity, depending on
which layers were moving relative to each other, acting
more like a potentiating agent than a cue, similar to its
role in distinguishing reflections from paint (Doerschner
et al., 2011). One possibility is that motion could be
enhancing the effects of X-junctions and T-junctions
by increasing the displayed number or their salience.
Relative salience versus relative validity has been
studied in associative learning and navigation (Kahnt
et al., 2014; Leathers & Olson, 2012), but not yet in
visual cue combination. Decreasing the sizes of ellipses
in the displays would increase the number of X- or
T-junctions, whereas increasing the sizes would increase
the salience, but neither seems to have much effect on
verbal ratings of transparency perception (Falkenberg
& Faul, 2019). Instead, the Dynamic T-junctions
condition, which is a novel contribution of this study,
demonstrates that the main role of relative motion
is increasing the likelihood of perceiving separate
layers that do not share a common fate. In pointing
out the role of certain shape changes in promoting
impressions of transparency, particularly for shadows,
Metzger (1936) mentions in a footnote that the law of
common fate would add a contribution to transparency
perception in a movie, but without presenting details

of the conditions or evidence, and it is highly unlikely
that he was imagining a condition where common
fate conflicts with other cues that are voting against
transparency. The role we demonstrate for motion
defined common fate explains motion enhancing effects
in previous studies (D’Zmura et al., 2000; Falkenberg
& Faul, 2019; Gerardin et al., 2006; Khang & Zaidi,
2002a), but goes beyond them in showing that common
fate can override the information provided by junctions,
which are otherwise quite powerful factors (Anderson,
1997). In fact, by replacing ellipses with rectangles in
the overlaid surface (Figure 9), we demonstrate that,
because of common fate, transparency can still be seen
despite junction, color, and pattern information all
being otherwise incompatible with transparency.

The high perceived transparency scale values for
some color inconsistent stimuli, and the lowest weight
for color inconsistency in the latent factors model for
the Combined observer, point to another new result
of this study, that color inconsistency did not veto
transparency perception despite physical impossibility
and violations of perceptually derived rules for
luminance and color relations (Adelson & Anandan,
1990; Beck et al., 1984; D’Zmura et al., 2000; Metelli,
1974; Robilotto et al., 2002; Singh & Anderson, 2006).

Figure 9. Motion-defined common fate overrides geometric,
pattern and color incongruities in transparency perception. The
overlaid pattern is composed of rectangles while the surround
consists of ellipses in the Dynamic T-junction condition with
color inconsistency. Video is available on the journal website.
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The reasons why geometric and motion cues override
color inconsistency would be interesting to explore.

Our latent factor model is extremely successful
at explaining transparency-based choices with an
additive regression model, but that does not mean that
the decision process is restricted to a simple linear
combination. Instead, as shown by Einhorn et al.
(1979), the signs and weights in a regression equation
could reflect the ambiguities that the organism faces
regarding the substitutions and trade-offs between
cues in a redundant environment, even if the choices
arise from a much more complex process of cue search
and attention which includes multiple hierarchical and
conditional choice nodes. The regression weights could
also reflect reliability of the cues, if the underlying
process is optimal probabilistic cue combination
that treats transparency estimates as noisy and uses
a signal detection theoretic framework as in weak
fusion models (Landy et al., 1995), but that would
need to be investigated. The fact that certain latent
factors can override physical impossibility in other
factors is another new finding of this study. It may
suggest temporal priority in processing that sometimes
accumulates sufficient evidence for making a decision
(Beck et al., 2008; Drugowitsch et al., 2012) before the
lower ranking latent factors are considered, but that
too remains to be tested.

Conclusion

A perceptual scale for transparency evoked by
cooperation and competition between motion,
geometry, and color cues, shows that relative motion-
defined common fate leads to perceptual separation of
transparency layers despite conflicting geometrical and
color information, and that transparency can be seen
despite color and luminance inconsistency if other cues
dominate.

Keywords: transparency, perceptual scale, color
scission, layers, relative motion, image junctions, latent
factors
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