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Genetic retinal diseases such as age-related macular degeneration and monogenic diseases such as retinitis pigmentosa account for
some of the commonest causes of blindness in the developed world. Diverse genetic abnormalities and environmental causes have
been implicated in triggering multiple pathological mechanisms such as oxidative stress, lipofuscin deposits, neovascularisation,
and programmed cell death. In recent years, inflammation has also been highlighted although whether inflammatory mediators
play a central role in pathogenesis or a more minor secondary role has yet to be established. Despite this, numerous interventional
studies, particularly targeting the complement system, are underway with the promise of novel therapeutic strategies for these
important blinding conditions.

1. Introduction

Inherited retinal diseases include some of the commonest
causes of blindness in the developed world [1, 2]. Prominent
examples included age-relatedmacular degeneration (AMD),
diabetic retinopathy, and the numerous monogenic condi-
tions such as retinitis pigmentosa (RP), Stargardt’s disease,
and X-linked retinoschisis. As well as causative/predisposing
genetic abnormalities [3], in some cases (such as AMD),
environmental factors such as smoking and diet have been
highlighted [4, 5]. These aetiological factors have been
associated with diverse abnormal biochemical pathways in
the degenerating retina, for instance, oxidative stress [6];
lipofuscin accumulation in the retinal pigment epithelium
[7]; abnormalities of the extracellular matrix [8]; mitochon-
drial abnormalities [9]; ischaemia with neovascularisation
[10]; programmed cell death [11]. In particular in AMD and
RP, inflammation has recently become a prominent member
of this list of abnormal pathological pathways triggered by
genetic retinal disease [12, 13].

2. Established Links between Inflammation
and Genetic Retinal Disease

Early studies showed that autoantibodies can be detected
in blood of AMD patients [14, 15] and that macrophages
also accumulate in the choroid [16] which suggested that
immune-mediated processes were involved in the pathogen-
esis of AMD. Renewed interest in inflammation in genetic
retinal disease was, however, more recently triggered by the
discovery of elements of the immune system and multiple
proteins of the complement pathway within the drusen
seen in AMD [17]. Although the exact pathophysiology of
AMD remains largely unknown, accumulation of drusen is
acknowledged as an early and major pathological hallmark
of the disease, preempting damage in the retinal pigment
epithelium, photoreceptors, and choroid leading to atrophic
or neovascular complications.

Immunohistochemical studies of human retina high-
lighted that amongst other components, AMD drusen
contained inflammatory mediators such as vitronectin,
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immunoglobulin light chains, factor X, and complement
proteins (C5 and C5b-9 complex). Importantly, it was
also demonstrated that drusen displays intense HLA-DR
immunoreactivity [17, 18]. This later finding complements
other independent work suggesting and association between
AMD andHLA-genotype [19]. It is, however, now recognised
that the composition of drusen deposits is extremely het-
erogeneous amongst different patients and that many other
components are also found in addition to inflammatory
mediators. For instance, other studies have highlighted the
appearance of oxidative protein modifications within AMD
drusen including cross-linked species of tissue metallopro-
teinase inhibitor 3, vitronectin, and carboxyethyl pyrrole
protein adducts suggesting oxidative stress as an etiological
factor in AMD drusen formation [20].

The feasibility of linking immunity to AMD pathophysi-
ology has also been suggested by the central role the retinal
pigment epithelium (RPE) plays in both AMD pathogenesis
[21] and ocular immunemodulation [22]. Both in vivo and in
vitro experiments have demonstrated that the RPE expresses
both innate and adaptive immune receptors [22, 23]. In
addition, RPE cells are known to secrete numerous cytokines,
chemokines, and adhesive molecules including interleukin-
6, interleukin-8, and immunosuppressive factors including
tissue-necrosis factor-𝛽, interleukin-11, and interferon-𝛽 [22].

Evidence suggesting a role for inflammation in AMDhas,
however, been strongly supported by molecular genetic stud-
ies. In particular, genes encoding components of the com-
plement pathways have been associated with AMD. Strong
associations have been demonstrated for alleles of genes
encoding complement factor H (CFH) [24–26] which is a
regulator of the alternate complement pathway, complement
component C2/complement factor B (C2/CFB) [27], and
CFH-related genes CFHR1 and CFHR3 [28]. Weaker associ-
ations have been linked to complement factor 1; complement
C3 and complement component 1 inhibitor (SERPING1), a
regulator of the classic complement pathway; chemokine
C-X3-C receptor 1 (CX3Cr1); and toll-like receptor genes
TLR3 and TLR4 (with a role in the innate immune system)
[29, 30]. It should be noted, however, that strong genetic
associations between loci andAMDalso exist, for example, to
the PLEKHA1/ARMS2/HTRA1 region of chromosome 10q26
[29].

Most recently, however, there has been remarkable work
linking nucleotide-binding domain and leucine-rich-repeat-
protein 3 (NLRP3) and the “inflammasome” with the aeti-
ology of ARMD [31–33]. The inflammasome is a term used
to identify a collection of proteins that work together within
cells with a common purpose, more specifically, a caspase-
1 dependant multiprotein complex that has a key role in
innate immunity. The inflammasome can be triggered by a
number of stimuli including microbial pathogen-associated
molecular patterns, bacterial toxins and most relevant to
genetic retinal disease “damage-associated molecular pat-
terns” (denatured nuclear or cytosolic proteins released from
dying cells). This results in the upregulation of proinflamma-
tory cytokines interleukin-1𝛽 and interleukin-18 [34, 35].The
inflammasome can be activated by three classes of immune
sensors including the toll-like receptors, RIG-I-like helicases,

and NLR proteins [36]. Currently, four inflammasomes
based on NLRP3 have been characterised: NLRP1/NLRP1b
[37]; NLRC4/IPAF [38]; NLRP3/NALP3 [39]; AIM2 [40].
Activation of the NLRP3 inflammasome has recently been
reported in dry AMD drusen, by complement component
C1Q or by carboxyethylpyrrole (during oxidative stress) [31].
In wet ARMD, activation of the NLRP3 inflammasome has
been seen triggered by Alu RNA molecules (short chains
RNA) [32]. Intriguingly, reflecting the diversity of immune
responses, the most recent in vivo and in vitro studies
have suggested that the NLRP3 inflammasomes may have a
beneficial role in wet ARMD but a harmful effect leading to
RPE cell death in dry AMD [31, 32].

Linking inflammatory mediators to the choroidal neo-
vascularization seen in complicated AMD is also firmly
established. In both preclinical and clinical studies, cellular
components of immunity including macrophages, lympho-
cytes and neutrophils have been found to be significant
components of choroidal neovascular complexes [16, 41, 42].
Additionally, inflammatory cytokines such as interleukin-6
and interleukin-8 have also been identified in the aqueous
humor of AMD patients suffering from choroidal neovascu-
larization [43].

While the term “retinitis pigmentosa” as coined by
Donders in 1857 is generally considered a misnomer, a
role for inflammation and immunity in the pathogenesis
of the disease has significant merit. The earliest studies to
suggest this showed elevated IgM in six out of ten RP
patients [44]. Other early studies also suggested that retinal
(probably photoreceptor) autoantibodies could be found in
the systemic circulation of RP patients [45–48]. Immune
reactivity in RPwas also established by exposing lymphoctyes
and leuckocytes from blood samples of RP patients to human
and bovine retinal antigens [49]. However, results have been
complicated by the fact that immune reactivity appears to
vary amongst RP patients possibly reflecting the genetic het-
erogeneity of the disease. Studies suggested that circulating
immune complexes could be detected in less than 50% of
RP patients [50]. This was, however, reported as significant
since it correlated with statistically significant reductions of
circulating complement factors C3 and C4 and a significant
reduction in time taken for RP patient sera to achieve 50%
hemolysis of sheep red blood cells [50]. A link with HLA
status has also been reported in RP patients [51], and vitreous
samples from RP patients have been shown to contain many
immune system cells such as various types of lymphocytes
[52].

More recent studies have highlighted the activation of
microglia in RP retina preceding photoreceptor cell death.
Activation of microglia results in many biochemical events
including the release of cytokines and chemokines [53]. In
rd mice (a homozygous nonsense phosphodiesterase-beta
subunit gene mutant), it has been shown that prior to peak
photoreceptor cell death, there is an upregulation of mRNA
of proinflammatory factors: monocyte chemoattractant pro-
teins 1 and 3; macrophage inflammatory proteins 1alpha
and 1beta; regulated on activation normal T-cell expressed
and secreted (RANTES); tumor necrosis factor-alpha [54].
Microglia activation and upregulation of proinflammatory
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markers has also been demonstrated to precede peak pho-
toreceptor cell death in rd10 mice (homozygous missense
phosphodiesterase beta subunit mutant) [55].

Although direct biochemical assessment of retina from
human RP patients is difficult, more detailed recent studies
have searched for signs of inflammatory cells and humoral
inflammatory factors in aqueous and vitreous humor from
RP patients [13]. Slit lamp examination revealed that cells
could be visualised in the anterior chamber 37% (190) and
the vitreous of 61% (313) of 509 RP eyes (up to 30 cells
identified in a 1 × 9mm vertical slit-lamp field). It was not
explained however how it was concluded that these were
inflammatory cells (and not for instance, pigmentary cells).
The study did, however, also report multiplex ELISA data
suggesting significantly increased protein levels of cytokines
(interleukin 6) and chemokines (interleukin-8, monocyte
chemoattractant protein 1, and thymus activation-regulated
chemokine) in the aqueous. Much more notably, in the
vitreous of these RP patients, significantly elevated levels of
cytokines (interleukin 1𝛼, 1𝛽, 2, 4, 6, and 10, interferon-𝛾
and tissue necrosis factor-𝛼) along with chemokines (such
as interleukin-8, monocyte chemoattractant proteins 1 and
2, interferon-𝛾 inducible protein-10, and thymus activation-
regulated chemokine) were found [13].

3. Therapeutic Targets

Numerous therapeutic strategies are emerging in the treat-
ment of genetic retinal disease.These include cell-based ther-
apies [56]; gene therapy [57]; electronic retinal replacements
[58]; molecular-based approaches such as neuroprotection
[59] and antiangiogenesis [60]. With an established role
for inflammatory mediators in the pathogenesis of both
AMD and RP, it would therefore be rational to investigate
anti-inflammatory approaches. However, despite numerous
animal models for RP [61], no universally recognised ani-
mal model for AMD yet exists, and only approximations
modeling aspects of the disease are available [62]. This has
limited preclinical research into AMD treatment. In addition,
it is as yet unclear what role relative to other pathogenic
mechanisms inflammation plays in disease pathogenesis.
Anti-inflammatory approaches, for example, might have little
impact on disease if inflammation is a secondary effect
or a minor contributor to pathogenesis. To some extent,
therefore, the importance of inflammation in AMD and RP
can be validated through quantification of the effect of anti-
inflammatory therapeutics.

There are currently 846 listed clinical trials (http://www
.clinicaltrials.gov/) focused on AMD of which 51 are specifi-
cally targeting inflammation. There are also 78 clinical trials
listed forRP, althoughnone are focused on anti-inflammatory
therapeutics. Studies targeting inflammation in AMD and RP
may be subdivided into broad approaches targeting multiple
components of inflammation or more specific targeting of
complement activation, for instance.

3.1. Broad-Based Anti-Inflammatory Studies in AMD. Corti-
costeroids have been used in retinal disease for many years

because of their general anti-inflammatory effect, generally
up-regulating the expression of anti-inflammatory proteins
and suppressing the expression of proinflammatory factors
[63, 64]. Although their use in uveitis and retinitis is well
established, corticosteroids are now being considered in
AMD. Many studies have looked at the use of intravitreal
dexamethasone in the treatment of neovascular complica-
tions of AMD, mostly as an adjuvant therapy in combination
with photodynamic therapy, intravitreal anti-VEGF therapy,
or in multitherapy approaches [65, 66]. A sustained release
dexamethasone (such as Ozurdex, Allergan, Inc., Irvine, CA)
would seem to be the logical option in such an adjuvant
approach. One single-masked, randomized control study in
243 eyes reported work comparing intravitreal ranibizumab
plus sustained release dexamethasone with ranibizumab plus
sham. Results suggested a reduction in the need for multiple
ranibizumab injections and an increasing interval between
injections although combination therapy was associated with
raised intraocular pressure requiring treatment in 16% [67,
68]. A number of other clinical trials are now assessing
dexamethasone as an adjunct in the treatment of wet AMD,
and full reports are awaited (http://www.clinicaltrials.gov/,
NCT01162746; NCT00793923; NCT00390208).

Other approaches include Iluvien, an intravitreal
implant containing fluocinolone acetonide packed in a
nonbiodegradable polyamide tube [69]. An ongoing phase
2 clinical trial is currently recruiting patients to look at the
efficacy of this intravitreal implant in inhibiting geographic
atrophy progression in AMD (http://www.clinicaltrials.gov/,
NCT00695318).

Rapamycin, a drug originally designed as an antifungal
agent, has recently been shown to be a potent immuno-
suppressive, anti-inflammatory, and antiangiogenesis agent
by inhibiting the mammalian target of rapamycin (mTOR),
a serine/threonine protein kinase. Recent work in the
senescence-accelerated OXYS rat has shown some inhibi-
tion of the spontaneous retinopathy phenotype seen which
models age-related macular degeneration in some respects
[70]. A phase 2 study has been launched by National
Eye Institute to determine whether repeated intravitreal
rapamycin can slow progression of geographic atrophy
(http://www.clinicaltrials.gov/, NCT01445548). Glatiramer
acetate is another broad immunomodulatory agent that
upregulates specific suppressor T-cells and suppresses inflam-
matory cytokines. Intravenous glatiramer acetate in dry
AMD patients has been shown to reduce drusen load on
optical coherence tomography imaging [71]. In the “wet”
form of AMD, anti-inflammatory agents have been found to
be moderately successful in controlling choroidal neovascu-
larization. For example, intravitreal triamcinolone acetonide
and infliximab, an antibody of tumor necrosis factor 𝛼 (TNF-
𝛼), have shown positive effects in treating CNV in patients
and animal models [72, 73].

3.2. Focused Targeting of the Complement System in AMD.
The area in which inflammatory mediators in genetic reti-
nal disease is being most intensively investigated, however,
is in inhibiting activation of the complement system in
AMD patients [74]. These studies have focused on both
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antibody dependent and independent complement inhibition
trials.

FCFD4514S is a recombinant, humanized monoclonal
antibody Fab fragment antibody targeted to block the com-
plement factor D, an early rate-limiting enzyme in the activa-
tion of the alternative complement pathway. Current phase
2 clinical trials are assessing its use in geographic atrophy
(http://www.clinicaltrials.gov/, NCT01602120). Eculizumab
(Soliris) is a humanized complement factor 5 monoclonal
antibody that binds to complement factor 5 to block subse-
quent downstream anaphylatoxin activation and the forma-
tion of membrane attack complexes. It is considered by some
to be the most likely approach since it preserves production
of C3a anaphylatoxin and C3b production required for
opsonisation and clearing of harmful immune complexes
[64]. Intravenous eculizumab is currently under trial for dry
AMD (http://www.clinicaltrials.gov/, NCT00935883).

An example of studies focusing on nonantibody
approaches to modify complement activation is POT-4,
the first complement inhibitor to be assessed in AMD.
This molecule is a cyclic peptide that reversibly binds to
C3 preventing its activation to C3a and C3b, thus blocking
the classic pathway and the lecithin pathway as well as
the alternative complement pathway. Intravitreal depot
injections are being assessed in patients with wet and dry
AMD (http://www.clinicaltrials.gov/, NCT00473928).

Other nonantibody approaches include small molecule
peptidomimetic C5a receptor antagonists currently being
considered for AMD [75]. An alternative approach that may
avoid the general consequences of inhibiting complement
activation is studies focusing on replacing abnormal comple-
ment factor H alleles. TT30 is a recombinant fusion protein
being used to replace defective complement factor H [76] and
is being considered for use in AMD trials. Modification of
complement activation may also be of benefit in wet AMD.
In a laser-inducedmousemodel of choroidal neovasculariza-
tion, intravenous administration of “CR2-fH,” a recombinant
form of complement factor H linked to complement receptor
2, inhibited neovascular growth [77].

3.3. Broad-Based Anti-Inflammatory Studies in RP. Corticos-
teroids have been routinely used to treat the macular edema
seen in late RP with mixed success [78]. Most recently, how-
ever, a sustained-release dexamethasone implant (Ozurdex)
has been used in a small cohort of RP patients with macular
oedema, suggesting some structural and functional benefits
[79]. Also recently, N-acetylcysteine, an orally bioavailable
antioxidant, has been used in rd10 mice [55]. It was shown
by TUNEL staining that a reduction in photoreceptor cell
death was associated with a strong suppression of expres-
sion of cytokines interleukin 1𝛽 and tissue necrosis factor-
𝛼 and chemokines monocyte chemoattractant proteins 1
and thymus activation-regulated chemokine [55]. In another
study, fluocinolone acetonide has been conjugated with den-
drimer particles (a hydroxyl-terminated polyamidoamine
dendrimer-drug conjugate nanodevice) to target outer retina
activated microglia [80]. They showed that after intravitreal
administration in the Royal College of Surgeons rat model of
RP (homozygous Mertk mutant), four weeks later, there had

been significant preservation of outer nuclear layer thickness
(indicative of photoreceptor survival) and in electroretino-
gram b-wave response. In addition, it was shown that this
was associated with a reduction of activated microglia in the
retina [80].

4. Conclusion

Considerable evidence now exists linking inflammatory
mediators to genetic retinal diseases such as AMD and RP.
It is, however, still unclear whether this is a central or pivotal
role [81]. Preclinical and clinical trials suggest that inhibiting
inflammatory mediators can have some therapeutic benefit,
but further ongoing trials are needed to demonstrate the
true impact of this approach. The benefits of inhibiting
inflammation in genetic retinal disease might, for instance
not be so clear-cut. In recent clinical trials, ciliary-derived
neurotrophic factor (CNTF, a neuroprotective growth factor)
has been shown to provide some inhibition of degeneration
in both dry AMD [82] and RP [83]. Studies in mouse retina,
however, have suggested that CNTF induces expression of
proinflammatory genes in retinal Müller cells [84]. This
would seem counterintuitive, and its clinical relevance has
yet to be determined. A role for anti-inflammatory agents,
as stand-alone monotherapies or as adjuvants (for instance,
in combination with neuroprotective strategies or anti-VEGF
therapies), is certain to be prominent feature of future
research into the treatment of retinal disease.
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