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A B S T R A C T   

In continuous pharmaceutical manufacturing processes, it is crucial to control the powder flow rate. The feeding 
process is characterized by the amount of powder delivered per screw rotation, referred to as the feed factor. This 
study aims to develop models for predicting the feed factor profiles (FFPs) of two-component mixed powders 
with various formulations, while most previous studies have focused on single-component powders. It further 
aims to identify the suitable model type and to determine the significance of material properties in enhancing 
prediction accuracy by using several FFP prediction models with different input variables. Four datasets from the 
experiment were generated with different ranges of the mass fraction of active pharmaceutical ingredients (API) 
and the powder weight in the hopper. The candidates for the model inputs are (a) the mass fraction of API, (b) 
process parameters, and (c) material properties. It is desirable to construct a high-performance prediction model 
without the material properties because their measurement is laborious. The results show that using (c) as input 
variables did not improve the prediction accuracy as much, thus there is no need to use them.   

1. Introduction 

In the pharmaceutical industry, maintaining high product quality 
and reducing the cost of R&D and manufacturing are essential. Since the 
2000s, there has been an increasing interest in product quality predic-
tion models and continuous manufacturing to satisfy these needs (Ier-
apetritou et al., 2016). Continuous manufacturing has several 
advantages over batch manufacturing, such as smaller equipment size, 
elimination of scale-up, and reduced operator numbers (Lee et al., 
2015). In the continuous manufacturing processes of pharmaceutical 
products, it is essential to control the feed rate of the raw materials at its 
set point to produce uniform products since the fluctuation of the feed 
flow rate can be propagated to downstream processes and can deterio-
rate product quality (Blackshields and Crean, 2018; Suzuki et al., 2021). 

In the powder feeding processes, screw feeders are commonly used 
(Blackshields and Crean, 2018; Engisch and Muzzio, 2015b). A screw 
feeder has a hopper and one or two screws by which the powder in the 
hopper is extruded. The screw feeder is set on the weighing scale and has 
a controller to keep the flow rate at its set point. This type of feeder is 
called a loss-in-weight (LIW) feeder. The flow rate is calculated from the 

change in powder weight in the hopper. Then, the screw rotation speed 
is manipulated so that the calculated flow rate follows the set point. 
When the flow rate cannot be calculated accurately, such as when 
refilling the hopper with powder, the screw is usually operated at a 
constant rotational speed (Blackshields and Crean, 2018). 

Many studies on LIW feeders were conducted for experimental and 
modeling aspects. The methods of measuring the feeding performance at 
steady state (Engisch and Muzzio, 2012) and during hopper refill 
(Engisch and Muzzio, 2015a) were presented and demonstrated. The 
feeding performance of components of a formulation for continuous 
direct compression was examined, and the challenges were resolved 
(Engisch and Muzzio, 2015b). In addition to experimental studies, 
various modeling studies were conducted. Particle scale simulations 
were carried out using the discrete element method (DEM) (Hou et al., 
2014; Bhalode and Ierapetritou, 2020). The mixing behaviors in the 
feeder were modeled by residence time distribution modeling (Van 
Snick et al., 2019; Waeytens et al., 2022). Physical models with lumped 
parameters were developed based on the pressure exerted by the powder 
in the hopper and powder extrusion by the screw (Wang et al., 2017b; 
Bascone et al., 2020). The parameters have to be determined by 
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experimental data for each powder. Chen and Ierapetritou (2020); Shier 
et al. (2022) developed gray-box models based on Heckel's equation 
(Heckel, 1961) based physical model proposed by (Wang et al., 2017b). 
The statistical models were developed to link the feeding performance 
with material properties, process parameters, and feeder configurations 
(Jia et al., 2009; Pordesimo et al., 2009; Wang et al., 2017a; Santos et al., 
2018; Escotet-Espinoza et al., 2018; Wang et al., 2019; Bostijn et al., 
2019; Stauffer et al., 2019; Yadav et al., 2019; Tahir et al., 2020; Bekaert 
et al., 2021). 

The feeding performance can suffer from challenges such as a low 
flow rate set point, powder cohesiveness, refilling the hopper with 
powder, and changing the set point. Mixed powder has advantages over 
single-component powder as feed in three situations (Oka et al., 2017). 
The first is when the flow rate set point is low. For example, if the mass 
fraction of API is small, the flow rate would be small. The performance of 
the screw feeder often degrades at a low flow rate. In this case, feeding 
mixed powder enables a larger set point for the flow rate and reduces 
flow rate fluctuations (Kerins and Crean, 2022). The second is when the 
number of components in a product is large. In this case, the number of 
feeders can be reduced by using mixed powder. The third is when a 
component is highly cohesive such as acetaminophen. In this case, 
feeding mixed powder may improve flowability. 

For a long-term operation, refilling the hopper with powder is 
needed. The set point of flow rate can be changed to control API con-
centration (Hanson, 2018; Kirchengast et al., 2019), the flow rate from 
the mixer (Singh et al., 2013), or the powder level in the hopper before 
the tablet press (Kirchengast et al., 2019). During the refill or at the set 
point change, the screw rotational speed has to be appropriately 
manipulated to keep the flow rate at the set point. Feed factor profile 
(FFP) prediction models are useful for achieving this objective. A feed 
factor f [g] is the amount of powder fed per screw rotation (Shier et al., 
2022). The relationship between the feed factor and the powder weight 
in the hopper is called the feed factor profile (Shier et al., 2022). 

We surveyed literature that built feed factor prediction models for 
various powders, and summarized in Table 1. While most past research 
focused on feeding single-component powder, this study focuses on 
feeding mixed powder. Moreover, in this study, the formulation of 
mixed powder was changed, and thus the models can use the formula-
tion as input variables. This makes it possible to use the models for 
optimizing the number of feeders and formulation of the mixture in each 
feeder. This study aims to predict FFP rather than a single feed factor, e. 
g., a feed factor at only one condition such as when the hopper is fully 
occupied with powder. Modeling FFP is more complex but can help to 
ensure the stable operation for a wider range of the powder weight in the 
hopper. 

In other studies working on the prediction of FFP, many experiments 
using various kinds of powder materials were conducted for model 
development. For example, Tahir et al. (2020) conducted 224 experi-
ments. They also assume large databases of material properties. This 
approach applies to the prediction of FFP for a wide range of materials 
but is not realistic for small companies due to their small budgets. Our 
study takes another approach focusing on how to develop FFP prediction 
models for mixed powder composed of specific materials. In some cases, 

this approach is less expensive because it requires neither large pre-
liminary experiments nor databases. 

The modeling process in this study is thorough. This study compares 
seven models because the prediction of FFP of the multi-component 
mixture should be more difficult than the prediction of FFP of single- 
component powders or a single feed factor of single-component pow-
ders. The abbreviations for the model names used in this paper are as 
follows: partial least squares (PLS), random forest (RF), gaussian process 
regression (GPR), physical model (PM), simple linear regression (SLR), 
multiple linear regression (MLR), and support vector regression (SVR). A 
two-step approach is adopted when using either PM or SLR. For 
example, PM + PLS is the denotion of the model which combines PM and 
PLS. 

Material properties may help to predict FFP or FF, but the sample 
preparation and measurement are laborious. If a model incorporating 
material properties into its input variable set only shows marginal 
improvement in prediction accuracy, then the measurement of these 
properties can be deemed unnecessary. As such, this study compares two 
input variable sets: the first comprises formulation parameters and 
process parameters, while the second includes formulation parameters, 
process parameters, and material properties of mixed powder. 

The contributions of this work are that we have developed models for 
predicting FFP of mixed powders for the first time, we investigated the 
difference of prediction accuracy of the models, and that the material 
properties of mixed powders are not necessarily required for accurate 
FFP prediction. To achieve this, the feeding experiments of mixed 
powder were conducted by changing the mass fractions of API and the 
powder weight in the hopper. After the experiments, seven FFP pre-
diction models were built and compared with four model building 
datasets in which the ranges of input variables are different. 

The structure of this paper is as follows. Section 2 describes the 
experimental and model building method. Section 3 describes the 
experimental and model building results. Section 4 presents the 
conclusions. 

Table 1 
Literature survey results on FF/FFP prediction models.  

Literature Feeding mixture Changing formulation Predicting FFP Model Investigating the necessity of material properties 

Pordesimo et al. (2009)    MLR  
Yadav et al. (2019)    PLS  
Bostijn et al. (2019)    PLS  
Stauffer et al. (2019) ✓   PLS  
Tahir et al. (2020)   ✓ PLS  
Bekaert et al. (2021)    PLS  
Shier et al. (2022)   ✓ PM + SVR  
This study ✓ ✓ ✓ 7 models ✓ 

The 7 models in this study include PLS, RF, GPR, PM + PLS, PM + RF, SLR + PLS, and SLR + RF. 

Table 2 
Experimental conditions: experiment number (#Exp), mass fraction of 
ethenzamide (XAPI), and screw rotation speed (ω).  

#Exp XAPI [− ] ω [rpm] 

1–1 0.01 18.8 
1–2 0.01 37.8 
1–3 0.01 37.8 
2–1 0.02 19.1 
2–2 0.02 38.2 
2–3 0.02 38.2 
3–1 0.03 18.0 
3–2 0.03 36.2 
4–1 0.05 17.8 
4–2 0.05 35.9 
5–1 0.07 17.6 
5–2 0.07 35.6 
6–1 0.10 17.6 
6–2 0.10 35.5  
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2. Materials and methods 

2.1. Experiments 

In the experiments, twin screw feeder (TSF), LIW-300-P (Ishida, 
Japan), was used. Ethenzamide (Iwaki Seiyaku, Japan) was used as an 
API, and spray-dried lactose (DFE Pharma, Germany) was used as an 
excipient. Ethenzamide was selected as the model drug because it is safe 
and popular. 

Six types of powder mixtures in Table 2 were prepared. Each mixture 
was fed into the hopper of the feeder. The feeder was operated at the 
screw rotation speed in Table 2 until no powder came out of the feeder 
outlet, and operating data of process parameters such as powder weight 
in the hopper and flow rate were obtained. The material properties of 
the six mixtures in Table 3 were measured. 

The particle size distribution was measured and the representative 
values of the distribution, D10, D50, and D90, were calculated by Particle 
Viewer (Powrex, Japan). The diameters of 10, 50, and 90% of the par-
ticles are below these values, respectively. Other material properties 
were measured using the Powder Tester PT-S (Hosokawa micron, 
Japan). PT-S was used according to the procedure indicated by the 
accompanying software. Aerated bulk density ρA and tapped bulk den-
sity ρP were measured using a 100 mL cylinder. The compressibility C 
was calculated from ρA and ρP using Eq. (1). 

C =
ρP − ρA

ρP
(1) 

Angle of repose is the angle formed between the table and the slope 
of the mountain formed when the sample was placed on a sieve with an 
aperture of 710 μm, the sieve was vibrated, and the sample was dropped 
from a roto set under the sieve onto a table. After the measurement of 
angle of repose, angle of rupture was measured as the angle formed by 
the slope and the table after the mountain ruptured due to the impact on 
the table on which the powder was placed. Angle of difference was the 
difference between the angle of repose and the angle of rupture. Angle of 
spatula is the average of the angle formed by the slope and the flat plate 
when the powder is piled on a horizontal flat plate and the flat plate is 
moved directly up, and the angle formed by the slope and the flat plate 
after an impact is applied to the flat plate. Measurements were taken 
three times and averaged. Degree of agglomeration was determined 
from the amount of powder remaining on the 250, 150, and 75 μm 
sieves. Degree of dispersion was determined by weighing the powder 
weight remaining in a dish placed at the drop point when 10 g of powder 
was dropped, and the percentage of the powder dispersed was calcu-
lated. Measurements were taken three times and averaged. The flow-
ability index and floodability index are indices proposed by Carr (1965) 
and determined using the proposed tables. 

2.2. Modeling 

2.2.1. Feed factor calculation 
The feed factor f [g] was calculated using the flow rate F [g/min] and 

the screw rotation speed ω [rpm] (Tahir et al., 2020). F is the instan-
taneous flow rate and calculated every second. 

f =
F
ω (2)  

2.2.2. Model descriptions 
PLS (Geladi and Kowalski, 1986), RF (Breiman, 2001), GPR (Ras-

mussen and Williams, 2005), PM, and SLR are used in this study. PLS is a 
linear regression method that can handle multi-collinearity, and it is 
widely used in spectroscopic analysis to construct calibration models. RF 
and GPR can handle nonlinearities in the relationship between output 
and input variables; RF uses bagging (bootstrap aggregating) and 
decision-trees, while GPR uses kernel functions. They have the advan-
tage of being able to handle complex nonlinearities, but optimizing 
hyper-parameters is difficult and time-consuming. These methods, i.e., 
PLS, RF, and GPR, are data-driven. On the other hand, the physical 
model is derived from the first principles on the target process and 
materials. It can describe the nonlinear relationship between the feed 
factor and the powder weight in the hopper. However, it is difficult to 
accurately represent complex phenomena using only physical models, 
and it is often necessary to combine them with statistical models. Such 
combined models are called gray-box models (Ahmad et al., 2014). SLR 
assumes that the relationship between the feed factor and the powder 
weight in the hopper is linear, and it can be combined with nonlinear 
models representing the relationship between the parameters of SLR and 
input variables other than the powder weight in the hopper. 

Eq. (3) was used for the kernel function composed of constant kernel, 
RBF kernel, and white kernel (Rasmussen and Williams, 2005). 

k(xn, xn′) = cexp

(

−
d(xn, xn′)

2

2l2

)

+w(xn, xn′) (3)  

where xn is the input variable vector of the nth sample, d(xn, xn′) is the 
Euclidean distance between xn and xn′, w(xn, xn′) is the white kernel, 
which returns σ when n = n′ and 0 otherwise, and c [− ], l [− ] and σ [− ] 
are constants. 

The physical model is Eq. (4) (Wang et al., 2017b), which is based on 
Heckel's equation (Heckel, 1961). 

f (W) = α − (α − β)exp( − γW) (4)  

where W [g] is the powder weight in the hopper, α [g], β [g], and γ
[
g− 1]

are the maximum, minimum, and rate of decay in f , respectively. 
The SLR model is Eq. (5). 

f (W) = aW + b (5)  

where a [− ] and b [g] are the regression coefficients. 

2.2.3. Model building methods 
As will be discussed later, it was anticipated from the experimental 

results that the appropriate model would differ depending on the range 
of the ethenzamide mass fraction and the range of the powder weight in 

Table 3 
Measured material properties.  

Material property Unit 

D10, D50, D90 μm 
Tapped bulk density g/cm3 

Aerated bulk density g/cm3 

Compressibility – 
Hausner ratio – 
Angle of repose degree 
Angle of rupture degree 
Angle of difference degree 
Angle of spatula degree 
Degree of agglomeration % 
Degree of dispersion % 
Flowability index – 
Floodability index –  

Table 4 
Model building datasets with different ranges of the powder weight in the 
hopper (W) and the ethenzamide mass fraction (XAPI).  

Dataset W [kg] XAPI [− ] 

1 1.0–3.0 0.03–0.10 
2 0.5–3.5 0.03–0.10 
3 1.0–3.0 0.01–0.10 
4 0.5–3.5 0.01–0.10  
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the hopper. Therefore, four model-building datasets in Table 4 were 
defined and seven models were constructed for each dataset. As shown 
in Table 2, two or three experiments were conducted for each mass 
fraction of ethenzamide. In the model building, experimental data with 
the same ethenzamide mass fraction are treated as one group. As a 
result, there are six groups. 

The root mean squared error (RMSE), the maximum error (ME), and 
the mean absolute percentage error (MAPE) were used as the criterion 
for model evaluation. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

n=1
(yn − ŷn)

2

√
√
√
√ (6)  

ME = max(|y1 − ŷ1|,…, |yN − ŷN |) (7)  

MAPE =
100
N
∑N

n=1

⃒
⃒
⃒
⃒
yn − ŷn

yn

⃒
⃒
⃒
⃒ (8)  

where yn is the nth measured value, ŷn is the its predicted value, and N is 
the number of samples. ME is used as well as RMSE because it is 
necessary to consider not only the average error but also the maximum 
error. 

The procedure to build PLS, RF, and GPR models is as follows:  

(1) Select a model from PLS, RF, and GPR.  
(2) Select whether to use the material properties or not. 
(3) Put variables into the input variable set S. If the material prop-

erties are used, put variables in VG1 in Table 5 into S. Otherwise, 
put variables in VG2 into S.  

(4) Build a model using leave one-group out cross-validation 
(LOGOCV).  

(5) Calculate the mean of RMSEs and the means of MEs in the cross- 
validation, which are referred to as RMSECV and MECV.  

(6) Calculate the mean of permutation importance (PI) (Altmann 
et al., 2010) in the cross-validation, which is referred to as PICV.  

(7) Exclude the input variable with the smallest PICV from S.  
(8) Perform steps (4) through (7) until S becomes empty.  
(9) Select S of the model with the smallest RMSECV.  

(10) Perform steps (2) through (9), changing the selection in step (2).  
(11) Perform steps (1) through (10), changing the selection in step (1). 

In step (4), hyperparameters were optimized. In PLS, the number of 
latent variables was determined by nested LOGOCV. In RF, the number 
of trees was determined by nested LOGOCV. In GPR, the parameters of 
the kernel function were determined by non-nested LOGOCV and 
maximum likelihood estimation. The dataset was standardized before 
the regression in PLS and GPR. 

The procedure to build PM + PLS, PM + RF, SLR + PLS, and SLR +
RF models is as follows:  

(i) Calculate the parameters in Eqs. (4) or (5) so that the sum of 
squared errors between the actual and predicted feed factors is 
minimized.  

(ii) Build a PLS or RF model whose output variable is the calculated 
parameters with the same steps (1) through (11) except for steps 

(1) and (3). In step (1), select a model from PLS and RF. In step 
(3), put variables in VG3 in Table 5 into S if the material prop-
erties are used, and put variables in VG4 in Table 5 into S the 
material properties are not used. 

Table 5 
Four variable groups (VGs) including variables initially putted into the input 
variable set S: powder weight in the hopper (W), screw rotation speed (ω), 
ethenzamide mass fraction (XAPI), and material properties (Props).  

VG W ω XAPI Props 

1 ✓ ✓ ✓ ✓ 
1 ✓ ✓ ✓  
3  ✓ ✓ ✓ 
4  ✓ ✓   

Fig. 1. Relationship between feed factor and powder weight in the hopper, 
when the screw rotation speed is below 20 rpm (top) and above 30 
rpm (bottom). 

Fig. 2. Relationship between feed factor and mass fraction of ethenzamide 
when the screw rotaton speed is below 20 rpm. 
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3. Results and discussions 

3.1. Experimental results 

Fig. 1 illustrates the relationship between the powder weight in the 
hopper and the feed factor, i.e. FFP, under different conditions of screw 
rotation speed and mass fraction of ethenzamide. Fig. 1 (top) shows FFP 
when the screw rotation speed is below 20 rpm, while Fig. 1 (bottom) 
presents FFP when the screw rotation speed is above 30 rpm. The feed 
factor almost linearly decreases with powder weight in the hopper for 

the range of the powder weight in the hopper of 1.0–3.0 kg, but more 
nonlinearity is observed when this range expands to 0.5–3.5 kg. As the 
powder weight in the hopper decreases, the pressure at the bottom of the 
hopper decreases and the density of the powder decreases. The possible 
reasons for this nonlinearity are that the rate at which the density de-
creases depends on the powder weight in the hopper, or the ease of 
powder flow into the screw section depends on the amount of powder in 
the hopper. Fig. 2 shows the relationship between the mass fraction of 
ethenzamide and the feed factor when the powder weight in the hopper 
is 1, 2, or 3 kg. The feed factor almost linearly decreases with the mass 

Table 6 
RMSECVs of seven models, with or without material properties as input variables, for four datasets in Table 4.  

Model With material properties Without material properties 

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 1 Dataset 2 Dataset 3 Dataset 4 

PLS 0.071 0.118 0.224 0.259 0.105 0.142 0.279 0.307 
RF 0.115 0.120 0.188 0.224 0.115 0.122 0.273 0.290 
GPR 0.226 0.220 0.202 0.408 0.098 0.123 0.485 0.495 
PM + PLS 0.149 0.144 0.332 0.221 0.212 0.140 0.303 0.305 
PM + RF 0.167 0.177 0.224 0.207 0.136 0.187 0.250 0.288 
SLR + PLS 0.093 0.124 0.216 0.307 0.098 0.137 0.284 0.327 
SLR + RF 0.147 0.138 0.186 0.205 0.136 0.153 0.237 0.268 

The bolded number is the smallest RMSECV for each dataset. 

(a) PLS model with material properties for dataset 1 (b) SR+PLS model without material properties for dataset 1

(c) PLS model with material properties for dataset 2 (d) RF model without material properties for dataset 2

Fig. 3. Prediction results of feed factors using the models with the smallest RMSECVs for four datasets, with or without material properties.  
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fraction of ethenzamide when the mass fraction of ethenzamide is in the 
range of 0.03–0.10, but the nonlinearity increases when it is expanded to 
0.01–0.10. The results suggest that linear models predicting feed factor 
are appropriate when the range of powder weight in the hopper is 
1.0–3.0 kg, and that of ethenzamide mass fraction is 0.3–1.0. To check 
this hypothesis, we created four datasets in Table 4. 

3.2. Modeling results 

RMSECVs of all models are summarized in Table 6. For each dataset 
(1, 2, 3, or 4), the difference in the smallest RMSECVs achieved by the 
models with and without material properties was less than 0.1 g, which 
is a small improvement considering the cost of measuring the material 

(e) SLR+RF model with material properties for dataset 3 (f) SLR+RF without material properties for dataset 3

(g) SLR+RF model with material properties for dataset 4 (h) SLR+RF model without material properties for dataset 4

Fig. 3. (continued). 

Fig. 4. MAPEs for the test data in cross-validation for four datasets, with or without material properties (Props). All MAPEs are below 5%.  
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properties. Focusing on dataset 2, for example, the PLS model achieved 
the smallest RMSECV of 0.118 g using material properties, and the RF 
model achieved the smallest RMSECV of 0.122 g not using material 
properties. The difference is only 0.004 g. It is not worth the measure-
ment cost to use the material properties as input variables of the pre-
diction model. Fig. 3 shows the actual and predicted feed factors using 
the models with the smallest RMSECVs for four datasets with or without 
material properties. Fig. 3 (a)-(h) shows that the plots of actual and 
predicted feed factors are generally on the diagonal, which indicates 
that the prediction is successful. 

Fig. 4 shows MAPEs for the test data in the cross-validation, with or 
without material properties. All MAPEs are below 5%. Shier et al. (2022) 

reported that the median of MAPEs of feed factors was below 10%, 
which demonstrated the model's good predictive capability. Chen and 
Ierapetritou (2020) predicted flow rates by multiplying the feed factor 
by the screw rotation speed and reported that MAPEs were reduced from 
17.78% with the white-box model to 9% with the gray-box model. In the 
present study, the screw rotation speed was constant during each 
experiment; thus, MAPEs of feed factors are the same as those of the 
flowrate according to Eq. (8). MAPEs in this study are not directly 
comparable to these results because the datasets are different; however, 
the models constructed in this study, whose MAPEs are below 5%, are 
considered to have good predictive capability regardless of using ma-
terial properties. 

(a) With material properties for dataset 1 (b) Without material properties for dataset 1

(c) With material properties for dataset 2 (d) Without material properties for dataset 2

(e) With material properties for dataset 3 (f) Without material properties for dataset 3

(g) With material properties for dataset 4 (h) Without material properties for dataset 4

Fig. 5. Comparison of prediction accuracy of seven models using RMSE, ME, RMSECV, and MECV.  
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In discussing absolute rather than relative errors, Shier et al. (2022) 
stated that the goal was ideally to achieve prediction errors of feed 
factors within 0.1 g. Tahir et al. (2020) considered prediction errors of 
feed factors of 0.25–0.43 g high and successfully reduced the predictive 
errors to 0.10–0.17 g by constructing models for clusters of powders 
with similar material properties. However, the absolute values of feed 
factors in the present study are significantly larger than those of other 
studies, and the acceptable absolute errors become larger. In practice, 
the acceptable prediction error depends on the influence of the predic-
tion error on the final product quality. Thus, the assessment with 
downstream unit operations should be conducted as flow sheet models 
(Galbraith et al., 2020, 2019; Tian et al., 2019; García-Muñoz et al., 
2018) or experiments (Karttunen et al., 2020). 

In this study, the PLS models achieved small RMSECVs for datasets 1 
and 2, both with and without material properties. This result suggests 
that PLS was enough for datasets with a narrow range of ethenzamide 
mass fractions. The SLR + RF models achieved the smallest RMSECV for 
datasets 3 and 4, both with and without material properties, which in-
dicates that considering the nonlinearity between ethenzamide mass 
fraction and the parameters of SLR improved the prediction accuracy. 
MAPE of 10% corresponds to just under 1 g of RMSECV in this study. As 
shown in Table 6, RMSECVs are generally around 0.2 g, indicating that a 
sufficiently high prediction accuracy was achieved. Fig. 5 displays 
RMSEs and MEs for each model for each test data in the cross-validation. 
For example, in dataset 4, where the model has a wider range of 
applicability, although the SLR + RF model achieved the smallest 
RMSECV, it is difficult to conclude it is the best model because the dif-
ference in RMSECV for each model is not significant enough for the 
range of its variability. 

4. Conclusions 

Models were constructed to predict the feed factor profile (FFP) of 
the mixed powders. Multiple models were evaluated across four data-
sets, each with different ranges of ethenzamide mass fractions and 
powder weight in the hopper. Although the difference in RMSECV 
among models was not significant, the SLR + RF model achieved the best 
prediction performance for the dataset with wide ranges of the mass 
fraction of ethenzamide and the powder weight in the hopper. To the 
extent examined in this study, compared to models whose inputs are 
only the mass fraction of ethenzamide, powder weight in the hopper, 
and screw rotation speed, models which additionally included material 
properties such as bulk density and angle of repose did not improve 
prediction accuracy as much. Thus, incorporating material properties as 
input variables is not deemed essential to predict FFP. In the future, the 
raw materials will be changed to confirm the generality of the conclu-
sions. In addition, we plan to examine mixtures with three or more 
components. 
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