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Abstract: This study was focused on investigating the antiproliferative effects of chalcone hybrids in
melanoma cancer cells. Among seven chalcone hybrids, the chalcone-acridine hybrid 1C was the
most potent and was selected for further antiproliferative mechanism studies. This in vitro study
revealed the potent antiproliferative effect of 1C via cell cycle arrest and apoptosis induction. Cell
cycle arrest at the G2/M phase was associated with modulation of expression or phosphorylation
of specific cell cycle-associated proteins (cyclin B1, p21, and ChK1), tubulins, as well as with the
activation of the DNA damage response pathway. Chalcone 1C also induced apoptosis accompanied
by mitochondrial dysfunction evidenced by a decrease in mitochondrial membrane potential, increase
in Bax/Bcl-xL ratio and cytochrome c release followed by caspase 3/7 activation. In addition, in-
creased phosphorylation of MAP kinases (Erk1/2, p38 and JNK) was observed in chalcone 1C-treated
melanoma cells. The strong antiproliferative activities of this chalcone-acridine hybrid suggest that it
may be useful as an antimelanoma agent in humans.
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1. Introduction

The incidence of melanoma worldwide is increasing at a greater rate than other types
of cancer (1.7% of global cancer diagnoses) [1]. The prevalence of skin melanoma differs
among populations. The disease occurs mostly in white-skinned Caucasian populations
in Australia and New Zealand [2]. In Europe, melanoma annually claims more than
20,000 lives, and it is a significant public health burden [3]. The therapy of melanoma
depends on the stage of disease but generally includes surgical excision, treatment with
immune checkpoint inhibitors, targeted therapy, radiotherapy or chemotherapy [4]. Al-
though mortality rates have fallen over the past decade with the approval of new targeted
therapies such as BRAF and MEK inhibitors and immune checkpoint inhibitors, many of
the current anti-melanoma drugs are expensive and toxic [5–7]. Furthermore, despite the
substantial therapeutic outcome of modern therapy, some patients acquire drug resistance
and melanoma recurrence. For this reason, the development of novel, less toxic therapeutics
for patients with melanoma remains essential.

In the last few years, plant-derived natural compounds have been extensively studied
for their anti-proliferative and anti-cancer effects [8–13]. Phytochemicals are predominantly
attractive because of their availability, low toxicity and absence of serious adverse reac-
tions [14,15]. Furthermore, several clinical trials have reported that natural compounds
tested either as single agent or in combination with standard chemotherapeutic drugs
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improve sensitivity to chemotherapy and radiotherapy along with the survival of pa-
tients [16–20].

Chalcones, the precursors of flavonoids and isoflavonoids in plants, have been shown
to display a broad spectrum of biological actions including anti-inflammatory [21], antioxi-
dant [22], immunomodulatory [23], antidiabetic [24], antibacterial [25–27], antiviral, [28]
and antiparasitic [29] effects. Furthermore, the anticancer, chemopreventive and antiangio-
genic activities of chalcones have also been documented [30–33].

Due to the structural heterogeneity, chalcones are useful templates for the development
of novel active compounds with more convenient biological activities [34,35]. In the last
decade we documented the antiproliferative effect of several chalcone derivatives such as
acridine hybrids [36–38], indole hybrids [39–41] or cyclic chalcone analogues [42–44] using
different in vitro cancer models such as breast, colorectal or cervix cancers. Furthermore,
both the antiproliferative and anticancer effects of chalcones have also been documented
using melanoma cancer cells or melanoma xenografts [45–53].

In the present study, we investigated the mechanism of acridine chalcone 1C on
the induction of apoptosis in A2058 and BLM melanoma cells. Our results indicate that
the antiproliferative effect of chalcone 1C is associated with the induction of an intrinsic
pathway of apoptosis, G2/M cell cycle arrest, DNA damage and the modulation of selected
signaling pathways. To the best of our knowledge, this is the first study displaying the
antiproliferative activity of the chalcone-acridine hybrid against melanoma cancer cell lines.

2. Results
2.1. MTT Screening Assay

The effect of synthetic chalcone derivatives on the metabolic activity of selected
melanoma and healthy cell lines was determined using the MTT assay. Chalcone derivates
suppressed cell metabolism with IC50 values ranging from 7.96 to >100 µmol/L (Table 1).
For further experiments, the most potent acridine chalcone 1C was selected using a concen-
tration of 1C 10 µmol/L for A2058 and 20 µmol/L for the BLM melanoma cell line. DMSO
was used as negative control with no effect on melanoma cell growth.

Table 1. IC50 (µmol/L) of tested compounds in different cell lines after 72 h incubation.

Compound Cell Lines

A2058 BLM MCF-10A

1C 7.96 ± 0.38 17.93 ± 0.87 36.54 ± 0.87
ZKCH-11A 31.90 ± 0.95 35.27 ± 6.10 85.01 ± 2.19
ZKCH-11C 41.64 ± 0.73 38.55 ± 0.06 >100
ZKCH-11E 37.34 ± 2.28 33.75 ± 2.14 44.71 ± 4.96
ZKCH-11F 45.82 ± 2.54 47.69 ± 1.49 >100
ZKCH-11G 39.96 ± 1.37 39.45 ± 3.90 51.27 ± 3.94
ZKCH-11H 42.43 ± 2.98 40.85 ± 2.62 60.68 ± 3.09

Results are presented as the mean ± SD of three independent experiments.

2.2. BrdU Cell Proliferation Assay

The BrdU Cell Proliferation Assay is based on the detection of BrdU (5-bromo-2′-
deoxyuridine) incorporated into the newly synthesized DNA during the replication process
in proliferating cells. The results showed that chalcone 1C suppressed proliferation of
melanoma cells ranging from 5 to 20 µmol/L compared with DMSO control (Figure 1). The
IC50 values were 8.40 ± 0.05 µmol/L (A2058) and 16.51 ± 0.01 µmol/L (BLM) after 72 h of
incubation. The comparison of IC50 from MTT and BrdU assay is shown in Table 2.
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annexin V/PI staining and cell cycle analysis show that chalcone 1C induces the apoptotic 
cell death of melanoma cells. 

Figure 1. Effect of 1C on BrdU incorporation in A2058 (A) and BLM (B) cells. Melanoma cells were
exposed to chalcone 1C at concentrations ranging from 5 to 20 µmol/L for 72 h. The data show the
mean ± SD values of three independent experiments. Statistical significance: * p < 0.05, ** p < 0.01,
*** p < 0.001 vs. DMSO.

Table 2. Comparison of MTT and BrdU IC50 (µmol/L) of 1C on melanoma cell lines and noncancer
cell line MCF-10A.

Compound Assay Cell Lines

A2058 BLM MCF-10A

1C
MTT 7.96 ± 0.38 17.93 ± 0.87 36.54 ± 0.87
BrdU 8.40 ± 0.05 16.51 ± 0.01 32.86 ± 1.56

Selectivity index 4.6/3.9 2.0/1.99
Results are presented as the mean ± SD of three independent experiments. The selectivity index was calculated
on the basis of MTT or BrdU results.

2.3. AO/PI Apoptosis Analysis

Staining with acridine orange (AO) and propidium iodide (PI) is a method for dividing
cells into populations according to whether they are living, apoptotic or necrotic. AO is a
dye binding to living and dead cells while PI only stains cells with lost membrane integrity.
As shown in Figure 2, the chalcone 1C caused a significant decrease in proliferation and
viability of A2058 and BLM melanoma cells. The number of apoptotic (yellow and orange)
cells increased with a time-dependent trend simultaneously with the increased detachment
of cells as a result of lost adhesion. The results of AO/PI staining, annexin V/PI staining and
cell cycle analysis show that chalcone 1C induces the apoptotic cell death of melanoma cells.

2.4. Cell Cycle Analysis

To determine whether cell cycle arrest is related to the inhibition of cell proliferation by
chalcone 1C in A2058 and BLM melanoma cells, the cell cycle progression was examined by
flow cytometry analysis. As demonstrated in Table 3 and Figure 3, treatment with chalcone
1C increased the number of melanoma cells in the G2/M phase at all exposition times (24,
48 and 72 h). Furthermore, a significant increase in the subG0 population (the marker of
apoptosis) was observed in both melanoma cell lines with the highest peak after 72 h of
treatment with chalcone 1C. The results suggest that the antiproliferative effect of chalcone
1C in A2058 and BLM melanoma cells can be associated with G2/M cell cycle arrest and
the induction of apoptosis in a time-dependent pattern.
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= late apoptotic cells, red = dead/necrotic cells. A representative figure of three independent exper-
iments is presented. Magnification is 100×. 
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Figure 2. Fluorescence microscopy detection of apoptosis using AO/PI staining in A2058 (A) and
BLM (B) melanoma cells after treatment with chalcone 1C at a concentration of 10 µmol/L (A2058)
and 20 µmol/L (BLM) for 24, 48 and 72 h. Green = living cells, yellow = early apoptotic cells,
orange = late apoptotic cells, red = dead/necrotic cells. A representative figure of three independent
experiments is presented. Magnification is 100×.

Table 3. Cell cycle analysis of A2058 and BLM melanoma cells after treatment with chalcone 1C for
24, 48 and 72 h at a concentration of 10 µmol/L (A2058) and 20 µmol/L (BLM).

A2058

Time Treatment subG0 G1 S G2/M

24 h
DMSO 0.55 ± 0.05 50.75 ± 0.04 16.85 ± 0.61 31.85 ± 0.53

1C 1.30 ± 1.11 34.67 ± 4.92 ** 11.79 ± 1.51 * 52.23 ± 7.03 **

48 h
DMSO 0.54 ± 0.15 51.40 ± 0.33 17.15 ± 1.43 30.90 ± 1.63

1C 7.54 ± 3.73 * 24.60 ± 11.45 ** 8.12 ± 1.15 * 59.73 ± 12.23 **

72 h
DMSO 0.98 ± 0.02 54.20 ± 0.73 13.00 ± 0.65 31.80 ± 0.08

1C 12.12 ± 5.84 * 18.67 ± 8.56 ** 8.85 ± 2.70 * 60.37 ± 4.42 **

BLM

Time Treatment subG0 G1 S G2/M

24 h
DMSO 2.43 ± 0.24 56.70 ± 0.90 15.90 ± 0.33 25.00 ± 0.98

1C 8.22 ± 1.62 * 19.35 ± 1.43 ** 9.19 ± 0.28 * 63.25 ± 0.45 ***

48 h
DMSO 2.10 ± 0.08 61.60 ± 3.76 14.75 ± 1.18 21.55 ± 2.65

1C 17.05 ± 0.45 * 11.65 ± 0.69 ** 16.35 ± 0.20 54.95 ± 0.45 **

72 h
DMSO 1.87 ± 0.02 63.90 ± 2.45 16.40 ± 0.33 17.85 ± 2.08

1C 24.30 ± 3.84 ** 13.85 ± 1.18 *** 32.60 ± 2.69 * 29.25 ± 0.04 *
The data show the mean ± SD values of three independent experiments. Statistical significance: * p < 0.05,
** p < 0.01, *** p < 0.001 vs. DMSO (vehicle).
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Figure 3. Cell cycle analysis of A2058 (A) and BLM (B) melanoma cells after treatment with chalcone
1C for 24, 48 and 72 h at a concentration of 10 µmol/L (A2058) and 20 µmol/L (BLM). Representative
histograms from three independent experiments.
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2.5. Apoptosis Detection

Phosphatidylserine (PS) is an anionic phospholipid located on the cytoplasmic surface
of the plasma membrane in cells with intact membranes. The externalization of PS from the
inner to outer surface of the lipid bilayer of plasma membrane is a typical marker of apop-
tosis in the early stages. Annexin V/PI double staining is a method for dividing cells into
populations of living (An−/PI− Q3), early apoptotic (An+/PI− Q4), late apoptotic/necrotic
(An+/PI+ Q2) and dead (An−/PI+ Q1). The analysis showed the significant increase of
early apoptotic and late apoptotic/necrotic A2058 and BLM melanoma cells after 48 and
72 h of treatment with chalcone 1C. Furthermore, the concomitant decrease of living cells
and the increased number of dead cells were also observed in a time-dependent pattern
(Table 4, Figure 4).

Table 4. Apoptosis analysis of A2058 and BLM melanoma cells after treatment with chalcone 1C for
24, 48 and 72 h at a concentration of 10 µmol/L (A2058) and 20 µmol/L (BLM).

A2058

Time Treatment Live
An−/PI−

Early Apo
An+/PI−

Late Apo
An+/PI+

Dead
An−/PI+

24 h
DMSO 88.60 ± 3.67 5.83 ± 2.04 3.93 ± 1.25 1.65 ± 0.35

1C 84.80 ± 0.24 7.53 ± 1.17 4.22 ± 0.47 3.41 ± 0.46

48 h
DMSO 88.75 ± 0.94 4.69 ± 1.56 4.63 ± 0.61 1.96 ± 0.02

1C 68.70 ± 1.63 ** 11.52 ± 0.42 * 13.85 ± 2.57 * 5.94 ± 0.52

72 h
DMSO 84.20 ± 0.65 7.76 ± 0.00 6.88 ± 1.42 1.19 ± 0.06

1C 52.00 ± 5.23 ** 13.30 ± 1.71 * 23.05 ± 4.94 ** 11.65 ± 1.43 *

BLM

Time Treatment Live
An−/PI−

Early Apo
An+/PI−

Late Apo
An+/PI+

Dead
An−/PI+

24 h
DMSO 85.00 ± 1.39 8.60 ± 0.14 3.95 ± 0.60 2.42 ± 0.66

1C 73.90 ± 0.49 * 12.96 ± 0.77 * 6.90 ± 0.09 6.25 ± 0.20

48 h
DMSO 85.95 ± 4.04 7.37 ± 0.96 4.29 ± 1.88 2.41 ± 1.18

1C 61.50 ± 2.61 ** 20.25 ± 1.27 * 12.40 ± 0.49 * 5.81 ± 0.86

72 h
DMSO 83.70 ± 1.71 7.95 ± 0.21 6.17 ± 1.29 2.18 ± 0.24

1C 39.60 ± 0.90 ** 25.95 ± 3.80 ** 28.55 ± 3.23 ** 5.90 ± 1.47 *
The data show the mean ± SD values of three independent experiments. Statistical significance: * p < 0.05,
** p < 0.01 vs. DMSO (vehicle).

2.6. Effect of Chalcone 1C on Cell Cycle-Related Protein Expression
2.6.1. p53 Protein

The p53 is an important tumor suppressor protein activated when cells experience
stress stimuli such as DNA damage and other genetic alterations. Phosphorylation of p53
protein disrupts the binding with its negative regulator Mdm2, which results in either
cell cycle arrest, DNA repair or apoptosis. WB analysis showed significant increase in
the amount of total and phosphorylated (maximum at 72 h) form of p53 protein in A2058
melanoma cells after treatment with chalcone 1C (Figure 5, Supplement Figure S1A,B). In
BLM melanoma cells the total p53 was maintenanted on basic levels as DMSO treated con-
trols, with little decrease at 24 h. In comparison with A2058, in BLM cells phosphorylation
increased late on 72 h.

2.6.2. p21 Protein

The p21Waf1/Cip1 is a tumor suppressor protein involved in cell cycle regulation.
The inhibition of cyclin-CDK complexes by p21 protein leads to the blockade of cell cycle
progression in the G1/S and G2/M phase. The increased expression of p21 protein is
subsequently followed by phosphorylation of p53 protein as a response to DNA damage.
A western blot analysis revealed a significant increase in the expression of p21 protein in
A2058 melanoma cells after treatment with chalcone 1C at concentration 10 µmol/L after
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24 and 48 h. In contrast with A2058 cells, BLM melanoma cells showed an increase and
maintained a trend in the expression of p21 protein after treatment with tested chalcone at
concentrations of 20 µmol/L (Figure 6, Supplement Figure S2A,B).
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2.6.3. Chk1 Kinase

Chk1 is a serine/threonine kinase involved in cellular response to DNA damage and
activation of cell cycle checkpoints. Chk1 is phosphorylated by activated ATR kinase and
is restricted to S and G2 phases. Results showed that chalcone 1C significantly induced
the phosphorylation of Chk1 in A2058 melanoma cells after 24, 48 (maximum) and 72 h
of treatment. Analysis confirmed a consilient trend of Chk1 phosphorylation in BLM
melanoma cells (Figure 6, Supplement Figure S2C,D).
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2.6.4. Cyclin B1

Cyclin B1 is a regulatory protein expressed predominantly during the G2/M phase.
The activated cyclin B1-Cdk1 complex is involved in early events of mitosis, such as chro-
mosome condensation, breakdown of the nuclear envelope and the assembly of the spindle
apparatus. The analysis showed significant downregulation of phosphorylated cyclin B1
in A2058 and BLM melanoma cells after treatment with chalcone 1C with maximum after
72 h in both cell lines (Figure 6, Supplement Figure S2E,F).

2.6.5. Effect on Tubulins

Microtubules, key components of the cytoskeleton, are polymers of α- and β-tubulins
responsible for many cellular processes including cell division, cell migration and mainte-
nance of cell structure. The dysregulation of tubulins can lead to G2/M cell cycle arrest
or apoptosis. Western blot analysis revealed significant alterations in expression of α-,
α1C- and β-tubulin in A2058 and BLM melanoma cells after treatment with chalcone 1C.
As shown in Figure 6 and Supplement Figure S2G–L, the significant upregulation of α-,
α1C- and β-tubulin was observed in the A2058 cell line with a maximum after 48 and 72 h.
In the BLM cell line, results showed significant downregulation of α- and β-tubulin in a
time-dependent pattern and the upregulation of α1C- tubulin with a maximum after 72 h
of treatment.

2.7. Effect of Chalcone 1C on Mitochondrial Apoptosis Pathway Proteins
2.7.1. Effect on Bcl-2 Family Proteins

The Bcl-2 family proteins regulate the mitochondrial pathway of apoptosis. Some
members of the family are involved in the inhibition of cell death (Bcl-2 and Bcl-xL), while
others promote apoptosis (Bax and Bak). Proapoptotic proteins promote the permeabi-
lization of mitochondrial membrane, the release of cytochrome c and inhibit the function
of antiapoptotic proteins. As results showed, treatment with chalcone 1C significantly
increased amounts of proapoptotic protein Bax and Bad in A2058 and BLM melanoma cells
with maximums at 48 h (Figure 7, Supplement Figure S3). Moreover, the phosphorylation
of Bad increasing up to 48 h in both tested cell lines was observed. On the other hand,
decreased levels of antiapoptotic protein Bcl-xL was observed in both cell lines. The total
Bcl-2 protein was upregulated only in A2058 cells after 1C treatment up to 48 h, while in
BLM cells it was not. However, the phosphorylation of Bcl-2 increased in A2058 up to
48 h and decreased at 72 h, while in BLM it increased up to the 72 h time point after 1C
treatment (Figure 7, Supplement Figure S3).

2.7.2. Cytochrome c Release

Cytochrome c is essential for controlling the energy metabolism of cells and apoptosis.
As a result of apoptotic stimulus, cytochrome c is released from the mitochondria into
cytosol, which activates programmed cell death. Results showed the significant release of
cytochrome c in A2058 and BLM melanoma cells after 24, 48 and 72 h of treatment with
chalcone 1C (Figure 8).

2.7.3. Mitochondrial Membrane Potential (MMP)

The mitochondria play a crucial role in the regulation of cell survival and the induction
of apoptotic cell death. One of the key indicators of mitochondrial activity is mitochondrial
membrane potential (MMP). The loss of MMP due to mitochondrial dysfunction may lead
to apoptosis. As shown in Figure 9, the treatment of A2058 and BLM melanoma cells with
chalcone 1C caused a significant increase in the percentage of cells with reduced MMP at
all exposition times (24, 48 and 72 h).
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Figure 8. Flow cytometric analysis of released cytochrome c in A2058 (A) and BLM (B) melanoma
cells after 24, 48 and 72 h of treatment with chalcone 1C at concentrations of 10 µmol/L (A2058) and
20 µmol/L (BLM). The data show the mean± SD values of three independent experiments. Statistical
significance: * p < 0.05, ** p < 0.01 vs. DMSO (vehicle).
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2.7.4. Caspase 3/7 Activity

Caspases are enzymes with specific cysteine protease activity involved in programmed
cell death. As a result of mitochondrial dysfunction, cytochrome c is released into cytosol
with the subsequent formation of apoptosome and the activation of caspases. A flow
cytometric analysis showed that treatment of A2058 and BLM melanoma cells with chalcone
1C caused significant activity of executioner caspase-3/7 in apoptotic cells (death cells
excluded) after 24, 48 and 72 h (Figure 10).
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Figure 10. Flow cytometric analysis of caspase-3/7 activity in A2058 (A) and BLM (B) melanoma
cells after 24, 48 and 72 h of treatment with chalcone 1C at concentrations of 10 µmol/L (A2058) and
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2.7.5. Cleavage of PARP

Poly (ADP-ribose) polymerase (PARP) plays an important role in DNA repair and
programmed cell death. The activation of caspases leads to cleavage of PARP resulting
in DNA repair inhibition. As shown in Figure 11 and Supplement Figure S4, the levels
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of cleaved PARP (89 kDa) significantly increased in A2058 and BLM melanoma cells after
treatment with chalcone 1C at all exposition times (24, 48 and 72 h).
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2.8. DNA Damage Analysis
2.8.1. ATM Kinase

The ATM (ataxia-telangiectasia mutated) serine/threonine kinase phosphorylates
several key proteins that regulate DNA repair, cell cycle checkpoint control and apoptosis.
The phosphorylation of ATM is activated by DNA double-strand breaks. As demonstrated
in Figure 12A,B, chalcone 1C significantly induced phosphorylation of ATM in A2058 and
BLM melanoma cells in a time-dependent manner (24, 48 and 72 h).

2.8.2. SMC1 Protein

The SMC1 (structural maintenance of chromosomes 1) protein is a member of key
proteins regulating DNA repair and the cohesion of chromosomes during the cell cycle.
SMC1 activation is mediated by ATM as a response to DNA damage. Analysis showed the
significant phosphorylation of SMC1 in A2058 and BLM melanoma cells after 24, 48 and
72 h of treatment with chalcone 1C (Figure 12C,D).

2.8.3. Histone HA2.X

The Histone H2A.X is a histone variant essential for DNA repair. The phosphorylation
of H2A.X occurs due to double-strand DNA breaks induced by genotoxic stress resulting
in DNA repair, cell cycle arrest or apoptosis. Treatment of A2058 and BLM melanoma cells
with chalcone 1C significantly induced phosphorylation of H2A.X after 24, 48 and 72 h
(Figure 12E,F).

2.9. Chalcone 1C Modulates Signalling Pathways/Changes in Expression and Phosphorylation of
MAPK Proteins

Mitogen-activated protein kinases (MAPKs) are a family of proteins which modulate a
series of vital signalling pathways involved in the regulation of cell proliferation, differenti-
ation, survival and apoptosis. Each signalling pathway is initiated by external stimuli and
leads to the activation of particular MAPK. The mammalian MAPKs are grouped into three
families including extracellular signal-regulated kinases (ERKs), c-jun N-terminal kinases
(JNKs) and p38s. Results from a WB analysis revealed that treatment of A2058 melanoma
cells with chalcone 1C significantly increased the phosphorylation of ERK1/2 with a maxi-
mum after 48 h. Analysis also confirmed a consilient trend of ERK1/2 phosphorylation in
BLM melanoma cells. In both melanoma cell lines, chalcone 1C significantly increased the
phosphorylated form of p38 MAPK mainly after 48 h of incubation and phospho-JNK in all
tested timepoints (Figure 13, Supplement Figure S5).
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Figure 12. Flow cytometric analysis of DNA damage. Phosphorylation of ATM (A,B), SMC1 (C,D)
and H2A.X (E,F) in A2058 and BLM melanoma cells after 24, 48 and 72 h of treatment with chalcone 1C
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of three independent experiments. Statistical significance: ** p < 0.01, *** p < 0.001 vs. DMSO (vehicle).
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3. Discussion

As was mentioned above, numerous pharmacological activities (including antiprolif-
erative and anticancer) have effects that have been attributed to chalcones [54,55]. It is well
known that chalcone moiety is an effective template for the discovery of new anticancer
drugs and its hybridization with other anticancer agents represents a promising approach
to develop novel agents with high anticancer activity [56].

Acridine-based agents represent a family of heterocyclic compounds which are cur-
rently undergoing significant research because of their potential anticancer activity. The
pleiotropic mechanism of the antiproliferative effect of acridine derivatives, including
topoisomerase II inhibition [57], cell cycle arrest in S phase [58] and G2/M phase [59],
tubulin polymerization inhibition [60], DNA damage [61] and apoptosis induction [58]
have been documented.

On the other hand, the antiproliferative effect of chalcone-acridine hybrids has been
studied only minimally. Recently, we described the antiproliferative effect of the chalcone-
acridine hybrid in colorectal cancer cells [36]. At micromolar concentrations, this chalcone
inhibited cell proliferation associated with G2/M block, and dysregulated of tubulin expres-
sion, apoptosis induction as well as the modulation of several signalling pathways associ-
ated with cell life and death. We later showed that the antiproliferative effect of this acridine
chalcone is closely related to the generation of reactive oxygen species [37]. Moreover,
it may overcome drug resistance as we observed growth suppression in P-glycoprotein-
expressing cancer cells [62]. Furthermore, in the most recent study we documented the
proapoptotic effect of the novel chalcone-acridine hybrid in breast cancer cells. In addition
to the induction of mitochondrial apoptosis, DNA studies demonstrated that it interacts
with DNA through bimodal binding mode, i.e., intercalation and groove-binding [38].
Besides this, some in silico studies also suggest the anticancer potential of chalcone-acridine
hybrids [63,64].

In the present work, we studied possible mechanisms of action of either acridine or
indole chalcone derivatives in vitro using a melanoma cancer model. Among the tested
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chalcones, a chalcone-acridine hybrid (1C) showed the highest antiproliferative potency
and was selected for the next study.

In our recent article [41], we mentioned pleiotropic mechanisms of the antiproliferative
effect of chalcones in in vitro cancer models. Among others, chalcones caused cell cycle
arrest, mostly at the G2/M phase [36,65,66]. In the present paper, the exposure of melanoma
cells to chalcone 1C caused cell cycle arrest at the G2/M phase with simultaneous increase
in cell number with sub-G0/G1 DNA content. Moreover, chalcone 1C also affected the
expression as well as the phosphorylation of specific cell cycle-associated proteins including
cyclin B1, p21, and Chk1. Our results indicated that the suppression of cell proliferation
and arrest at the G2/M phase of cell cycle in chalcone 1C-treated melanoma cells may be
related to the modulation of cycle-associated protein activity.

Furthermore, cell cycle arrest at the G2/M phase is the consequence of DNA dam-
age and it is the last chance for cell repair prior to entering mitosis [67]. In response to
DNA damage, the DNA damage response (DDR) pathway is activated [68], and the main
components of DDR, ATM and ATR (ATM and Rad3-related) kinases subsequently phos-
phorylate several components involved in the cell cycle, DNA replication, DNA repair
or apoptosis [69]. Our results showed that chalcone 1C-induced a significant increase in
ATM phosphorylation followed by its downstream molecules phosphorylation including
histone H2A.X at Ser139 (γ-H2A.X), p53 and p21 proteins, SMC1, indicating that this
chalcone has DNA toxicity. Recently, different chalcone hybrids have been reported to
have an antiproliferative effect associated with DNA damage [48,70]. In addition, DDR is
also associated with the activation of PARP, an enzyme involved in DNA repair [71]. Our
experiments showed that chalcone 1C induced the cleavage of PARP. After cleavage, PARP
loses its function, resulting in the suppression of DNA repair [72].

Irreparable DNA damage is often associated with the induction of cell death, including
apoptosis [73]. As was mentioned above, chalcone 1C induced the increase in cell numbers
with sub-G0/G1 DNA content, which is the result of internucleosomal DNA fragmentation
and is considered a marker of apoptosis. This result prompted us to (i) confirm apoptosis,
and (ii) study molecular mechanisms of 1C-induced apoptosis in melanoma cells.

The translocation of PS from the cytoplasmic surface of the plasma membrane on
the outer leaflet of the plasma membrane is one of the first events of apoptosis. Once
externalized, PS can be visualised by annexin V staining [74]. In the present paper, we
observed the significant increase in the number of apoptotic cells after 48 and 72 h of
treatment in A2058 cells. In BLM melanoma cells, chalcone 1C increased the number of
apoptotic cells after 24–72 h of incubation. Furthermore, apoptosis has also been proven by
acridine orange and propidium iodide staining.

Today, the mechanisms of the apoptosis-inducing effect of 1C in melanoma cancer
cells is not known. In the present study, we tried to discover the mechanism by which this
chalcone induces apoptosis.

Mitochondria play a key role in cell life and death. Mitochondrial membrane potential
(∆Ψm, MMP) is critical for maintaining the mitochondrial physiological function and
its loss is often considered as an early event in apoptosis [75]. The decrease in MMP
is closely related to the permeabilization of the mitochondrial outer membrane with the
subsequent release of several proapoptotic proteins including cytochrome c, Smac/DIABLO
or apoptosis-inducing factor [76]. In our study, chalcone 1C significantly increased the
number of cells with dissipated MMP after 24, 48 and 72 h of incubation and, concurrently,
increased the cytosolic concentration of cytochrome c in both melanoma cell lines. Once
cytochrome c is released, it interacts with apoptosis protease-activating factor 1, forming
apoptosome, which mediates the activation of an initiator caspase-9 [77] followed by the
activation of its downstream executioner caspases-3/7 [78]. In this context, our results
showed the significant activation of caspases 3/7 in both melanoma cell lines after 24–72 h
of incubation.

In addition, the integrity of the mitochondrial membrane is strictly regulated by the
members of the Bcl-2 protein family [79]. The presented results showed the significant effect
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of chalcone 1C on different members of these proteins. We found that the exposition of both
melanoma cell lines to chalcone 1C led to upregulation of the proapoptotic Bax protein and
the downregulation of the antiapoptotic Bcl-xL protein. It has been documented that an
increased Bax/Bcl-xL ratio supports apoptosis due to cytochrome c release with subsequent
activation of caspases, as mentioned earlier [80]. Similar results were obtained with either
synthetic or natural chalcones in different cancer cells [41,81]. Furthermore, we observed
the increased phosphorylation of antiapoptotic Bcl-2 and proapoptotic Bad proteins. It
is well known that the phosphorylation of the Bcl-2 family proteins is a key regulator
of its function [82,83]. However, phosphorylation can be modulated by several factors,
such as kinases involved in phosphorylation or target sites on Bcl-2 proteins resulting to
either proapoptotic or antiapoptotic activity [84]. Several lines of evidence indicate that
Bcl-2 phosphorylation induced by microtubule damaging agents led to the inactivation of
its antiapoptotic function [85–87]. Furthermore, it has been documented that Bad phos-
phorylation is associated with the loss of its proapoptotic activity [88,89]. On the other
hand, several experimental works showed that microtubule damaging agents-induced Bad
phosphorylation promoted apoptosis [90,91]. As mentioned above, chalcone 1C induced
cell arrest at the G2/M phase of the cell cycle and simultaneously modulated tubulin ex-
pression, which indicated its potentially microtubule damaging activity. Recently, Liu and
co-workers [92] have reviewed the ability of several chemically different chalcones to inter-
fere with tubulin and to disturb the dynamic balance of microtubules. On the basis of the
above-mentioned facts, we suggest that the modulation of the expression/phosphorylation
of the Bcl-2 protein family is involved in 1C-induced apoptosis in melanoma cells.

It is known that several protein kinases are involved in cell survival and death. Among
them, MAPK is a key pathway related to apoptosis [93]. Of the main components of MAPK,
ERK1/2 is mostly involved in cell survival, while the phosphorylation of JNK and p38
promote apoptosis [94].

A large number of studies have demonstrated that JNK and p38 phosphorylation is
associated with apoptosis induced by various compounds such as taxanes [95], vinblas-
tine [96] or doxorubicin [97]. In the present study, we documented increased JNK and
p38 phosphorylation in both 1C-treated melanoma cells. Our results agreed with previ-
ous studies where the association between JNK and p38 phosphorylation and chalcone-
induced apoptosis was documented [40,41,98,99]. Surprisingly, we also found the activation
(i.e., phosphorylation) of Erk1/2 which, generally, prevents the apoptosis via either down-
regulation of proapoptotic or the upregulation of antiapoptotic proteins [93]. On the other
hand, the opposite activity has also been documented [100]. The activation of Erk1/2 may
lead to mitochondrial membrane disruption with subsequent cytochrome c release [101],
modulation of Bcl-2 family protein expression [102], or the suppression of the PI3K/Akt
pathway [103]. Furthermore, Erk phosophorylation in anticancer drug-induced apoptosis
has also been noted [104,105].

4. Materials and Methods
4.1. Tested Compounds

(2E)-3-(acridin-9-yl)-1-(2,6 dimethoxyphenyl)prop-2-en-1-one (1C, Figure 14), (2E)-1-(2-
fluorophenyl)-3-(1-methoxy-1H-indol-3-yl)prop-2-en-1-one (ZKCH-11A), (2E)-3-(2-ethoxy-
1H-indol-3-yl)-1-(2-fluorophenyl)prop-2-en-1-one (ZKCH-11C), (2E)-1-(2-fluorophenyl)-
3-[2-(propan-2-yloxy)-1H-indol-3-yl]prop-2-en-1-one (ZKCH-11E), (2E)-3-(2-butoxy-1H-
indol-3-yl)-1-(2-fluorophenyl)prop-2-en-1-one (ZKCH-11F), (2E)-1-(2-fluorophenyl)-3-[2-(2-
methylpropoxy)-1H-indol-3-yl]prop-2-en-1-one (ZKCH-11G) and (2E)-1-(2-fluorophenyl)-
3-(1H-indol-3-yl)prop-2-en-1-one (ZKCH-11H) were synthesized by Maria Vilkova (Faculty
of Science, P.J. Šafárik University, Košice) and Zuzana Kudlickova (NMR Laboratory, In-
stitute of Chemistry, Faculty of Science, P.J. Šafárik University, Košice). The structure
of compounds was confirmed by using 1H, 13C nuclear magnetic resonance (NMR), in-
frared (IR) spectroscopy and mass spectrometry (MS), with 97% purity based quantitative
NMR [106]. The studied compounds were dissolved in dimethyl sulfoxide (DMSO) with
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the final concentration of <0.2% in the culture medium. DMSO exhibited no cytotoxicity on
cultured cells.
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4.2. Cell Culture

Cell lines A2058 (human melanoma lymph node metastasis, cat. 91100402) from
ECACC (Public Health England, Salisbury, UK) and BLM (human melanoma lung metasta-
sis a gift from prof. K. Smetana, Institute of Anatomy, Charles University in Prague) were
cultured in a medium consisting of high glucose Dulbecco’s Modified Eagle’s Medium
(DMEM) and sodium pyruvate (GE Healthcare, Piscataway, NJ, USA). The growth medium
was supplemented with a 10% fetal bovine serum (FBS) and antibiotic/antimycotic solu-
tion 1 × HyClone™ (GE Healthcare, Chicago, IL, USA). The MCF-10A (human mammary
epithelial cells) cell line was cultured in a medium consisting of high glucose Dulbecco’s
Modified Eagle’s Medium F12 (DMEM/F12) (Biosera, Kansas City, MO, USA). The growth
medium was supplemented with a 10% FBS, antibiotic/antimycotic solution 1×HyClone™
(GE Healthcare, Chicago, IL, USA), epidermal growth factor (EGF) (20 ng/mL final), hydro-
cortisone (0.5 µg/mL final) and insulin (10 µg/mL final) (Sigma-Aldrich Chemie, Steinheim,
Germany). Cells were cultured in humidified air at 37 ◦C with atmosphere containing
5% CO2.

4.3. MTT Viability Assay

The half-maximal inhibitory concentration values (IC50) and metabolism inhibition of
tested synthetic chalcone derivatives were determined by MTT (3-(4,5-di-methylthiazol-2-
yl)2,5-diphenyltetrazolium bromide) colorimetric assay (Sigma-Aldrich Chemie, Steinheim,
Germany). Tested cell lines were seeded at a density of 5 × 103 cells/well in 96-well
culture plates. After 24 h, the tested chalcones in concentrations of 100, 50 and 10 µmol/L
were added and incubation proceeded for the next 72 h. In the next step, 10 µL of MTT
(5 mg/mL) was added to each well containing cells and incubated for another 4 h at 37 ◦C
during which MTT was metabolized to insoluble formazan in cells. After 4 h, 100 µL of a
10% sodium dodecyl sulphate (SDS) was added to each well and another 24 h were allowed
for the formazan crystals to dissolve. The metabolic activity of cells was evaluated by
measuring the absorbance at wavelength 540 nm using the automated Cytation™ 3 Cell
Imaging Multi-Mode Reader (Biotek, Winooski, VT, USA). Three independent analyses
were performed.
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4.4. BrdU (5-Bromo-2′-deoxyuridine) Cell Proliferation Assay

The A2058 (5 × 103/well) and BLM (5 × 103/well) melanoma cells were plated in
a 96-well culture plate in 80 µL suitable medium. Twenty-four hours after cell seeding,
different concentrations of the chalcone 1C were added ranging from 5–20 µmol/L. After
48 h of treatment, BrdU labelling solution was added to melanoma cells and incubated
for another 24 h at 37 ◦C followed by fixation and incubation with anti-BrdU peroxidase
conjugate solution for an additional 90 min in the dark at room temperature. Cells were
then washed 3× with washing solution and incubated with TMB (tetramethylbenzidine)
substrate solution (all Roche, Basel, Switzerland) for 5 to 30 min according to colour
intensity. Finally, the stop solution (25 µL 1 M H2SO4) was added, and the incorporated
BrdU was detected with an automated Cytation™ 3 Cell Imaging Multi-Mode Reader
(Biotek, Winooski, VT, USA) at 450 nm. Three independent analyses were performed.

4.5. AO/PI Viability Assay

The A2058 and BLM melanoma cells were seeded at a density of 5 × 104/well into
6-well culture plates. Twenty-four hours after seeding, A2058 cells were treated with
chalcone 1C at 10 µmol/L concentration, BLM cells at 20 µmol/L concentration and both
melanoma cell lines were treated with vehicle (DMSO) at the same concentrations. At 24,
48 and 72 h after treatment, the culture medium was removed, the cells were washed with
washing buffer (PBS) and fixed with 4% paraformaldehyde (pH 7.2) for 30 min. In the next
step, the paraformaldehyde was removed, the cells were washed with PBS and the staining
solution (10 µg/mL acridine orange and 10 µg/mL propidium iodide, Sigma-Aldrich) was
added to each well for 1 h incubation at room temperature in the dark. Finally, the staining
solution was removed, the cells were washed with PBS and apoptosis was observed using
an automated Cytation™ 3 Cell Imaging Multi-Mode Reader (Biotek, Winooski, VT, USA).

4.6. Cell Cycle Analysis

The A2058 and BLM melanoma cells were seeded at a density of 1 × 105/dish in a
Petri dish. Twenty-four hours after incubation, A2058 cells were treated with chalcone 1C
at 10 µmol/L concentration, BLM cells at 20 µmol/L concentration and both melanoma
cell lines were treated with DMSO as the negative control at the same concentrations.
For flow cytometric analysis of the cell cycle, adherent and floating A2058 and BLM
melanoma cells were harvested in three different times (24, 48 and 72 h) after treatment
with chalcone 1C and DMSO, washed in cold washing buffer (PBS), fixed in cold 70%
ethanol and stored at −20 ◦C at least overnight. Prior to analysis, cells were washed with
PBS, resuspended in staining solution (Triton X-100 final concentration 0.1%, ribonuclease
A final concentration 0.5 mg/mL and propidium iodide final concentration 0.025 mg/mL,
all Sigma), and incubated for 30 min in the dark at room temperature. Stained melanoma
cells were analysed using a BD FACSCaliburTM Flow Cytometer (Becton Dickinson, San
Jose, CA, USA). Three independent analyses were performed.

4.7. Apoptosis Detection

To perform apoptosis detection, A2058 and BLM melanoma cells were seeded in Petri
dishes at a density of 1× 105/dish and treated with chalcone 1C and DMSO as the negative
control at the same concentrations for 24, 48 and 72 h. In the next step, adherent and floating
melanoma cells were harvested, centrifuged and pellets were resuspended in washing
buffer (PBS). Resuspended melanoma cells were stained with Annexin V-Alexa Fluor®

647 antibody (Thermo Scientific, Rockford, IL, USA) in binding buffer for 20 min in the dark
at room temperature. Finally, melanoma cells were washed, stained with 1 µL of propidium
iodide (final concentration 25 µg/mL) for 5 min and analysed using a BD FACSCaliburTM

Flow Cytometer (Becton Dickinson, San Jose, CA, USA). Three independent analyses
were performed.
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4.8. Flow Cytometric Analyses

The A2058 and BLM melanoma cells were seeded 1× 106 in Petri dishes with complete
growth medium and cultivated for 24 h. After cell cultivation, the A2058 cells were treated
with chalcone 1C at 10 µmol/L concentration, BLM cells at 20 µmol/L concentration and
both melanoma cell lines were treated with DMSO as the negative control at the same
concentrations for 24, 48 and 72 h. Adherent and floating cells were harvested, pelleted by
centrifugation at 1200 rpm for 5 min. Pellets were resuspended in washing buffer (PBS)
and divided for a particular analysis. Afterwards, cells were prepared according to assay
kit protocols or fixed with cold 4% paraformaldehyde (15 min) and permeabilized with
90% methanol (10 min on ice) with washing steps (PBS) and stained prior to analysis
(Table 5) for 15 min in the dark at room temperature. Fluorescence was detected using a
BD FACSCaliburTM Flow Cytometer (Becton Dickinson, San Jose, CA, USA).

Table 5. Flow Cytometry Staining.

Analysis Staining Manufacturer

Caspase activation CellEvent™ Caspase-3/7 Green Flow Cytometry
Assay Kit Thermo Scientific, Rockford, IL, USA

Cytochrome c release Cytochrome c Antibody (6H2) FITC Conjugate Invitrogen, Carlsbad, CA, USA

Mitochondrial membrane potential TMRE (Tetramethylrhodamine ethyl ester
perchlorate) final concentration 0.1 µmol/L Sigma-Aldrich, St. Louis, MO, USA

DNA damage FlowCellect™ Multi-Color DNA Damage
Response Kit Millipore Corporation, Temecula, CA, USA

4.9. Western Blot Analyses

Melanoma cells (A2058 and BLM) were treated with the tested chalcone 1C (10 µM
and 20 µM) for 24, 48 and 72 h. Protein lysates from melanoma cells were prepared using
a Laemmle lysis buffer containing glycerol, 1M Tris/HCl (pH 6.8), 20% sodium dodecyl
sulfate (SDS), deionized H20, phosphatase and protease inhibitors (Sigma-Aldrich) and
a sonication process. The protein concentrations were determined by the Pierce® BCA
Protein Assay Kit (Thermo Scientific, Rockford, IL, USA) and measured by an automated
Cytation™ 3 Cell Imaging Multi-Mode Reader (Biotek) at a wavelength of 570 nm. Proteins
(25–40 µg of sample per well) were separated on SDS-PAA gel (12%) at 100 V for 3 h
and transferred to a polyvinylidene difluoride (PVDF) membrane using the iBlot™ 2 Dry
Blotting System (Invitrogen, Carlsbad, CA, USA). Membranes with transferred proteins
were blocked in 5% BSA (bovine serum albumin; SERVA, Heidelberg, Germany) or 5%
non-fat dry milk (Cell Signaling Technology®, Danvers, MA, USA) in TBS-Tween (pH 7.4)
for 1 h at room temperature to minimise non-specific binding. Blocking was followed by
incubation with primary antibodies (Table 6) overnight at 4 ◦C. The next day, membranes
were washed in TBS-Tween (3 × 5 min) and incubated with the corresponding horseradish
peroxidase (HRP)-conjugated anti-mouse or anti-rabbit secondary antibody for 1 h at room
temperature. After incubation, membranes were washed again in TBS-Tween (3 × 5 min)
and the expression of proteins was detected using the MF-ChemiBIS 2.0 Imaging System
(DNR BIO-Imaging Systems, Jerusalem, Israel) with chemiluminescent ECL substrate
(Thermo Scientific, Rockford, IL, USA). A densitometric analysis of Western Blot (WB)
results was performed using the Image Studio™ Lite Software (LI-COR Biosciences, Lincoln,
NE, USA). Equal loading was verified by using the β-actin antibody. Three independent
analyses were performed.

4.10. Statistical Analyses

Results are expressed as mean ± standard deviation (SD). Statistical analyses of
the data were performed using standard procedures with one-way analysis of variance
(ANOVA) followed by the Bonferroni multiple comparison test. Differences were con-
sidered significant when p < 0.05. Throughout this paper * indicates p < 0.05, ** p < 0.01,
*** p < 0.001 versus vehicle (DMSO).
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Table 6. List of Western blot antibodies.

Primary Antibodies Mr (kDa) Origin Dilution Manufacturer

Bad 22 Rabbit 1:1000 Abcam, Cambridge, UK

Phospho Bad 23 Rabbit 1:1000 Cell Signalling Technology®, Danvers,
MA, USA

Bcl-2 26 Mouse 1:1000 Abcam, Cambridge, UK

Phospho Bcl-2 28 Rabbit 1:1000 Cell Signalling Technology®, Danvers,
MA, USA

Bax 23 Mouse 1:1000

Santa Cruz Biotechnology, Inc. Dallas,
TX, USA

Bcl-xL 30 Rabbit 1:1000

α Tubulin 55 Rabbit 1:1000

α1C Tubulin 50 Mouse 1:1000

β Tubulin 55 Rabbit 1:1000

p21 21 Rabbit 1:1000

Cell Signalling Technology®, Danvers,
MA, USA

Phospho-Cyclin B1 55 Rabbit 1:1000

Phosho-Chk1 56 Rabbit 1:1000

p38 MAPK 43 Rabbit 1:1000

Phospho p38 MAPK 43 Rabbit 1:1000

p44/42 MAPK (Erk1/2) 42/44 Rabbit 1:1000

Phospho p44/42 MAPK
(Erk1/2) 42/44 Mouse 1:1000

JNK 48 Mouse 1:1000 Thermo Scientific, Rockford, IL, USA

Phospho SAPK/JNK 46/54 Mouse 1:1000

Cell Signalling Technology®, Danvers,
MA, USA

PARP 116/89 Rabbit 1:1000

p53 53 Rabbit 1:1000

Phospho p53 53 Rabbit 1:1000

β-actin 45 Mouse 1:2500

Secondary Antibodies

Anti-mouse IgG HRP - Goat 1:1000 Cell Signalling Technology®, Danvers,
MA, USAAnti-rabbit IgG HRP - Goat 1:1000

5. Conclusions

Overall, our results demonstrate that the chalcone-acridine hybrid 1C is a strong
suppressor of melanoma cell survival. It induced G2/M cell cycle arrest by modulation of
the p53, p21, cyclin B1, and ChK1 expression. Moreover, we also observed that chalcone 1C
promoted apoptosis by disruption of mitochondrial functions as proved by the decrease of
MMP, the modulation of the Bcl-2 protein family functions and cytochrome c release with
subsequent caspase activation. Furthermore, the activation of several MAP kinases may
also have an important role in the antiproliferative and pro-apoptotic effect of this chalcone.
Taken together, the presented results showed that this chalcone-acridine hybrid may be a
promising agent for melanoma treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232012266/s1.
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