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IDH1 mutations occur in about 20–30% of gliomas and are a promising target for the
treatment of cancer. In the present study, the performance of aIDH1R132H was verified via
glide-docking-based virtual screening. On the basis of the two crystal structures (5TQH
and 6B0Z) with the best discriminating ability to identify IDH1R132H inhibitors from a decoy
set, a docking-based virtual screening strategy was employed for identifying new
IDH1R132H inhibitors. In the end, 57 structurally diverse compounds were reserved and
evaluated through experimental tests, and 10 of them showed substantial activity in
targeting IDH1R132H (IC50 < 50 mM). Molecular docking technology showed that L806-
0255, V015-1671, and AQ-714/41674992 could bind to the binding pocket composed of
hydrophobic residues. These findings indicate that L806-0255, V015-1671, and AQ-714/
41674992 have the potential as lead compounds for the treatment of IDH1-mutated
gliomas through further optimization.

Keywords: IDH1, gliomas, molecular docking, virtual screening, docking-based virtual screening
INTRODUCTION

Isocitrate dehydrogenase 1 (IDH1) is a critical metabolic enzyme involved in the tricarboxylic acid
cycle. This enzyme catalyzes the oxidative decarboxylation of isocitrate acid to aketoglutaric (a-KG)
in an NADP+-dependent manner by using divalent magnesium ion (Jiao et al., 2016), which is
related to the progression of various tumors, including acute myeloid leukemia, gliomas, and other
solid tumors (Yan and Reitman, 2010; Yen et al., 2016).

Somatic mutations of IDH1 have been frequently identified in many types of cancer, including
approximately 80% of grade II-III gliomas, nearly 45% of secondary glioblastoma multiforme (GBM), and
33%-50% of adult primitive neuroectodermal tumors (Dang et al., 2009; Wang et al., 2013). IDH1
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FIGURE 1 | Chemical skeleton of nine representative IDH1R132H inhibitors.
FIGURE 2 | The workflow of docking-based virtual screening and bioassay for IDH1R132H inhibitor.
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mutations have also been discovered in other cancers, such as
colorectal cancer (Xu et al., 2011), acute myeloid leukemia (Parsons
et al., 2008), and prostate cancer (Hartmann et al., 2009). Key amino
acid residue Arg132 is the most commonmutation in IDH1, which is
located in the catalytic pocket (Dang et al., 2009). Specific mutations
belong to heterozygousmissensemutations and lead to a new form of
IDH1 catalytic activity, which convert a-KG into an oncometabolite
D2-hydroxyglutarate (Dang et al., 2009). The oncometabolite (D2-
HG) is associated with tumorigenesis, which impairs hematopoietic
differentiation and promotes leukemia by inducing the
hypermethylation of histone and chromatin and preventing cell
differentiation (Figueroa et al., 2010; Xu et al., 2011). Due to the
IDH1 mutation, high levels of D2-HG are created that promote the
occurrence and development of cancers, such as gliomas (Parsons
et al., 2008) and acute myeloid leukemia (Mardis et al., 2009).
Therefore, although the contribution of IDH1 mutants to
carcinogenic properties has yet to be elucidated, IDH1 mutants
have become therapeutic targets for cancer, especially AML.

Mutant IDH1 has become a very attractive therapeutic target in
the field of antitumor drug discovery, and several pharmaceutical
companies have attempted to develop novel small molecule
inhibitors against mutant IDH1. So far, several small molecule
inhibitors targeting mutant IDH1 enzymes have been developed
(see Figure 1) (Rohle et al., 2013; Davis et al., 2014; Deng et al., 2015;
Kim et al., 2015; Okoye-Okafor et al., 2015; Law et al., 2016;
Chaturvedi et al., 2017; Xie et al., 2017; Popovici-Muller et al.,
2018; Nakagawa et al., 2019; Caravella et al., 2020; Konteatis et al.,
2020). Some of these have been studied in various preclinical
models, and some are currently being evaluated in phase I/II
clinical studies for different tumor pathologies with IDH1 enzyme
mutations. AG-120 as the only mutant IDH1 inhibitor in clinic
approved by the FDA that has shown encouraging clinical benefits
with a total overall response rate of 42% for advanced hematological
malignancies (Foran et al., 2019). In light of these encouraging
finding, we employed docking-based virtual screening to identify
active hits with novel skeleton for targeting mutant IDH1.

Structure-based virtual screening is now widely used in early-
stage drug discovery (Sheisi et al., 2019), and has been applied to the
discovery of IDH1 inhibitors. To date, there have been several
attempts to identify potential IDH1 inhibitors by using structure-
based virtual screening in terms of the reported crystal structures of
the IDH1 complex (Zou et al., 2016; Zheng et al., 2017; Zou et al.,
2018). In 2016, by using a docking-based virtual screening strategy
(PDB: 4UMX), Zou et al. identified a series of IDH1 inhibitor FX-03
with IC50 values of 55.50 mM and 68.38 mM in HEK-293T cells
transfected with IDH1 R132H and IDH1 R132C, respectively (Zou
et al., 2016). Importantly, FX-03 exhibited significant selectivity
between the IDH1WT and IDH1R132H mutants. In 2017, Zheng et al.
discovered a natural product, clomifene, as an effective inhibitor
against the IDH1R132Hmutant with a Kd value of 18.45 mMby using
docking-based virtual screening (PDB: 4UMX) (Zheng et al., 2017).
They also proved that clomifene selectively inhibits mutant IDH1
activities in vitro and in vivo models. It should be noted that,
although these studies have identified several IDH1R132H inhibitors,
they used the same IDH1R132H crystal structure in structure-based
virtual screening. Considering the difference in binding mode after
Frontiers in Pharmacology | www.frontiersin.org 3
the binding of various ligands, comparing the virtual screening
capabilities of different IDH1R132H crystal structures based on
docking-based virtual screening appears to a more reasonable
strategy to discover potential IDH1R132H inhibitors.

In the present study, the performance of docking-based virtual
screening for nine crystal structures of IDH1R132H were compared
through a combination of docking power and screening power. Two
best performing IDH1R132H complexes were employed to identify
potential IDH1R132H inhibitors with diverse structures from
ChemDiv (http://www.chemdiv.com) and Specs (http://www.
specs.net) databases. Followed by further examination and
verification, a series of compounds with novel skeleton were
addressed and could be used as IDH1R132H inhibitors. The overall
workflow was shown in Figure 2.
MATERIALS AND METHODS

Preparation of Crystal Structures and
Data Sets
The crystal structures of the IDH1R132H in complex with an
inhibitor were downloaded from the PDB database (http://www.
rcsb.org), including 4UMX, 5L57, 5L58, 5LGE, 5SUN, 5SVF,
5TQH, 6ADG, and 6B0Z. For each complex, the Protein
Preparation Wizard module in Schrödinger 2015 (Schrödinger,
LLC, New York, NY, 2015) was applied to add hydrogen and
missing side chains, remove all water molecules, assign
protonation states and partial charges through OPLS2005 force
field (Jorgensen et al., 1996), and minimize all heavy atoms until
the root-mean-square deviation (RMSD) was reached ≤0.3 Å.

To evaluate the virtual screening capability of different crystal
structures, 423 actives were directly extracted from the PubChem
database and served as a validation data set (https://pubchem.ncbi.
nlm.nih.gov/bioassay/1344832#section=Top), and their decoys,
generated by DUD•E (Mysinger et al., 2012), were considered as
a decoy data set. In total, 23,900 decoys were generated.

Evaluate the Performance of
Each Structure
In order to discover the favorable crystal structure for virtual
screening, the docking performance of each IDH1R132H structure
TABLE 1 | The summary of the docking power of molecular docking in glide for
nine IDH1R132H crystal structures.

PDB Ligand SP XP

Docking score RMSD Docking score RMSD

4UMX VVS -7.13 2.16 -7.04 2.10
5L57 6N3 -8.50 2.32 -9.23 2.56
5L58 6MX -9.38 1.56 -9.97 1.59
5LGE 6VN -6.85 0.90 -7.18 1.79
5SUN 70Q -10.31 5.12 -10.57 5.11
5SVF 70P -9.74 1.06 -12.94 0.44
5TQH 7J2 -12.75 0.95 -16.12 0.60
6ADG 9UO -5.74 0.66 -5.61 1.39
6B0Z C81 -12.53 0.45 -15.52 1.07
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was systematically evaluated. All actives and decoys were
preprepared using the LigPrep (LigPrep, Schrödinger, LLC, New
York, NY, 2015) module in the Schrödinger package. The possible
ionized states of each compound were calculated by using Epik
Frontiers in Pharmacology | www.frontiersin.org 4
(Shelley et al., 2007) at pH= 7.0 ± 2.0. The chirality of the
IDH1R132H inhibitors with 3D structures were preserved, while
the chirality of the decoys was determined from 3D structures
based on the different combinations. The stereoisomers for each
FIGURE 3 | The distributions of Glide docking scores of validation sets for two IDH1R132H crystal structures with the best screening power.
TABLE 2 | The summary of the screening power of molecular docking in glide for nine IDH1R132H crystal structures for validation set.

PDB ID SP Precision XP Precision

p value AUC-ROC RIE EF1% EF2% EF5% EF10% EF20% p value AUC-ROC RIE EF1% EF2% EF5% EF10% EF20%

4UMX 3.51x10-100 0.53 0.37 0.47 0.35 0.33 0.33 0.43 1.16x10-45 0.88 7.5 13 14 9.3 6.2 3.9
5L57 1.84x10-6 0.7 1.06 0.95 0.95 0.95 0.97 1.4 6.15x10-8 0.76 2.15 0.71 1.3 2 2.5 2.4
5L58 5.20x10-21 0.76 2.21 0.94 2.4 2.6 1.9 2 1.81x10-15 0.82 4.52 6.8 7.3 5.3 4 2.9
5LGE 1.25x10-3 0.72 1.31 0.71 0.83 1 1.4 1.8 1.08x10-10 0.77 2.61 3.8 3.1 2.5 2.6 2.4
5SUM 5.67x10-17 0.77 1.86 0.71 1.4 1.6 1.9 2.2 2.50x10-16 0.84 3.48 0.71 1.5 3.5 4.2 3.6
5SVF 7.33x10-87 0.91 10.38 31 24 12 7.2 4 8.91x10-87 0.95 14.95 62 39 17 9 4.6
5TQH 3.14x10-106 0.92 11.82 50 30 13 7.1 4.1 6.09x10-102 0.96 15.76 74 43 18 9 4.6
6ADG 1.12x10-50 0.9 9.4 31 22 11 6.4 4 1.60x10-44 0.9 9.56 29 21 11 6.7 4
6B0Z 2.42x10-135 0.96 12.88 46 30 15 8.3 4.7 2.33x10-96 0.96 15.43 70 41 18 8.9 4.5
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ligand generated, at most, 32, and the other parameters were set to
default values. Subsequently, a grid box of each complex was
generated by using the Receptor Grid Generation module of
Schrödinger software, which was centered at the native ligand of
the complex and defined as a similar size to the native ligand space.
Finally, all chemicals in the validation set and decoy set were
docked into the binding site of each IDH1R132H complex in turn
and evaluated by using the standard precision (SP) and extra
precision (XP) scoring function of Glide. In order to choose the
best crystal structure of IDH1R132H for virtual screening, the
enrichment factor (EF) (Halgren et al., 2004) was used to
evaluate the virtual screening capability of each model, which
was defined as the following Equation:

EF
Hitsset
n

Hitsall
N

where Hitsset is the number of actives in the selected subset n of
the ranked database and Hitsall is the total number of actives in
the database. The model with the highest EF value was reserved
and used to screen potential IDH1R132H inhibitors.
Docking-Based Virtual Screening
All compounds in the ChemDiv and Specs database were first
preprocessed according to the method of the above step, and
then screened by docking-based virtual screening against two
IDH1R132H crystal structures (PDB ID: 5TQH and 6B0Z). After
the possible ionized states and tautomer were calculated at
pH=7.0 ± 2.0 by using Epik module, the chirality of each
compound was determined from 3D structures; the
stereoisomer for each ligand generated, at most, 32. The final
virtual screening library was generated to include approximately
2 million compounds, and then initially filtered by Lipinski’s
Rule, removing ligands with reactive functional groups. Finally,
docking-based virtual screening was employed by use of the high
throughput virtual screening (HTVS) scoring function, SP
scoring function, and XP scoring function of Glide in
sequence. In the screening process at each step, 10% of the
best compounds were reserved for further analysis.
Clustering Analysis
The reserved compounds after docking-based virtual screening
were structurally clustered into 30 clusters by using K-means
clustering on the MACCS structural keys in Canvas (Canvas,
Schrödinger, LLC, New York, NY, 2015), and the compound in
each cluster with the lowest docking score was selected. In the end,
60 chemicals were eventually submitted to purchase from
Topscience Co., Ltd (https://www.tsbiochem.com).
Enzymatic Assay
The primary assay was carried out in 10 mL of base buffer (10 mM
MgCl2, 20 mM Tris pH7.5, 150 mM NaCl, 0.05% (w/v) bovine
serum albumin) containing 2.5 mL of the test compound, 5 mL of
an enzyme solution (0.3 ng/mL mutant IDH1R132H), and 2.5 mL of
Frontiers in Pharmacology | www.frontiersin.org November 2020 | Volume 11 | Article 5797685
)

a substrate solution (4 mM a-KG, 16 mM NADPH). This assay
added into a 384-well blank plate and then incubated at room
temperature for 60 min. The secondary assay, with 5 mL of base
TABLE 3 | The molecular weight and docking score for putative hits.

ID MW Docking score (kcal/mol

6470-0047 473.524 -15.53
G420-0655 460.55 -15.30
C798-1008 456.561 -15.25
E894-1127 469.539 -15.21
V004-0504 488.618 -15.17
L710-2843 447.49 -14.94
G389-1098 464.495 -14.72
S383-0082 412.438 -14.47
D103-1045 473.545 -14.45
C647-0812 484.551 -14.43
D491-0852 435.524 -14.40
V015-1671 491.426 -14.39
S733-2152 475.51 -14.37
V016-3750 453.515 -14.25
L710-0317 419.479 -14.20
L970-0181 487.529 -14.12
5782-4343 407.465 -14.11
V020-6264 478.931 -14.10
F019-2828 374.485 -14.09
M506-0358 404.44 -14.00
G741-1212 466.898 -13.96
S631-0764 421.513 -13.96
V022-0932 414.503 -13.95
D217-0418 416.454 -13.88
D336-7545 441.544 -13.78
V020-8255 472.54 -13.77
AQ-714/41674992 429.536 -13.62
M136-0372 474.949 -13.47
K781-3358 464.338 -13.39
3601-0061 426.452 -13.01
AQ-149/42126332 488.536 -15.34
V010-1281 478.555 -15.23
E867-1033 462.522 -15.14
V028-6550 490.53 -15.13
G800-0501 488.53 -15.09
C798-1007 476.979 -14.92
E894-1218 469.539 -14.81
V013-4787 435.524 -14.67
V025-9252 467.951 -14.51
AK-778/43465022 494.341 -14.45
V025-7538 496.485 -14.38
V003-2610 458.488 -14.18
K297-1090 474.576 -14.17
M136-0633 474.949 -14.11
8019-1512 410.398 -14.09
V001-8209 458.909 -14.05
F521-0664 486.526 -13.83
L487-0168 459.476 -13.78
G798-0506 434.534 -13.74
C647-0805 454.524 -13.68
J108-0614 432.478 -13.63
D349-0203 442.473 -13.62
L806-0255 457.842 -13.53
F815-0210 440.494 -13.53
C769-0129 438.54 -13.46
V020-4317 465.351 -13.40
G568-0082 454.973 -13.32
E867-0977 452.957 -13.27
V005-6943 477.534 -13.08
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buffer containing 15 mM resazurin and 0.01 unit diaphorase, was
added to the entire plate and incubated at room temperature for
10 min. Florescence was read on a SYNERGYH1 microplate reader
(BioTek) at Ex 540 Em 590. Curve fitting for dose response IC50

was done using GraphPad Prism.
RESULTS AND DISCUSSION

Performance of the Nine IDH1R132H

Complex
As a significant indicator of the docking reliability, docking power
was used to reveal the binding pose of the experiment between
small molecules and proteins, which was mainly evaluated after
Frontiers in Pharmacology | www.frontiersin.org 6
redocking with the RMSD value of the docking pose and native
pose of the small molecule in the IDH1R132H complex. For each
IDH1R132H complex, after the native inhibitor was separated from
the corresponding complex and preprepared, it was redocked into
the original binding site. The RMSD value between the native
conformation of the inhibitor and the docked pose for each crystal
structure was respectively computed, and RMSD ≤ 2.0 Å served as
the evaluation standard to verify the docking reliability. It can be
seen from Table 1 that Glide docking could identify the near-
native pose of most inhibitors in IDH1R132H crystal structures by
using the XP or SP scoring function in Glide.

Next, screening power of glide docking was used to identify
the reported inhibitors from the decoys in nine IDH1R132H

complexes, and these were compared and calculated. In
FIGURE 4 | Inhibitory activity of the 57 candidates at 50mM. The bars indicate the inhibitory activity of chemicals targeting IDH1R132H. AG-120 at 100 nM was used
as the positive control.
TABLE 4 | The summary of the inhibition ratio of 10 candidate compounds by using virtual screening.

No. Database PDB Inhibition ratio
(%) 50 (mM)

Enzymatic

IC50 (mM)

C798-1007 ChemDiv 6B0Z 65.45±2.15 44.4±1.3
D491-0852 ChemDiv 5TQH 58.00±0.60 46.9±6.0
G568-0082 ChemDiv 6B0Z 54.30±4.30 41.9±8.0
G798-0506 ChemDiv 6B0Z 61.15±6.15 38.0±2.0
L806-0255 ChemDiv 6B0Z 66.25±3.25 28.3±2.5
V010-1281 ChemDiv 6B0Z 60.85±2.05 50.0±6.4
V015-1671 ChemDiv 5TQH 65.30±2.30 23.8±1.8
V016-3750 ChemDiv 5TQH 54.90±1.70 42.9±2.8
V025-9252 ChemDiv 6B0Z 59.15±3.75 45.5±3.1
AQ-714/41674992 Specs 5TQH 73.30±1.90 20.8±4.2
AG-120 – – 84.40±0.50 (nM) 16.7±1.7 (nM)
November 2020 | Volume 11 |
 Article 579768
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contrast with the docking power of glide docking, the screening
power of each crystal structure is a more important index for the
docking-based virtual screening process. Herein, we performed
student’s t test to evaluate the significant difference between the
Frontiers in Pharmacology | www.frontiersin.org 7
means of the two distributions of the Glide XP or SP scores for
the known actives and decoys. It can be seen from Table 2 that
molecular docking of Glide can efficiently discriminate the
IDH1R132H inhibitors from the decoys in nine complexes of
FIGURE 5 | Molecular structures of the 10 selected IDH1R132H inhibitors by using based-docking virtual screening.
November 2020 | Volume 11 | Article 579768
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IDH1R132H based on the relatively low p value. The area under
the receiver operating characteristic curve (AUC-ROC), EF, and
Robust Initial Enhancement (RIE) were also employed to
comprehensively evaluate the screening capabilities of each
crystal structure. As shown in Figure 3, the best screening
power (p value = 2.42x10-135, AUC-ROC=0.96, and RIE=
12.88) was acquired by using SP scoring function and 6B0Z
was reserved as the screening template. However, 5TQH
exhibited the best screening power (p value = 6.09x10-102,
AUC-ROC=0.96, and RIE= 15.76) in XP scoring function,
which was also retained as a screening complex. Our results
Frontiers in Pharmacology | www.frontiersin.org 8
suggest that that it is necessary to compare the performance of
different complexes in the process of virtual screening.

Structure-Based Virtual Screening
The overall workflow of structure-based virtual screening was
shown in Figure 2. The Specs and ChemDiv database, which
consisted of more than 2,100,000 compounds, have been used for
virtual screening of small molecule databases. Firstly, Lipinski’s
rules of five was employed to filter compounds that did not meet
the criteria, and then these compounds containing PAINS
substructures were also removed. A total of 1.46 million
FIGURE 6 | IDH1R132H enzymatic inhibition of 10 identified small molecule inhibitors.
November 2020 | Volume 11 | Article 579768
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compounds were retained. According to the MACCS structural
fingerprint, residual chemicals were structurally clustered in 30
clusters via K-means clustering in Canvas, and the chemical with
the lowest docking score in each cluster was retained was
retained (see Table 3). Finally, a total of 57 chemicals were
purchased and tested based on the docking-based virtual
screening on two IDH1 complex (5TQH and 6B0Z).

IDH1R132H Enzymatic Assay
To verify the inhibitory activity of screening compounds
targeting IDH1R132H, enzyme activity assay was performed. As
shown in Figure 4, we found that 12 compounds (7, 8, 14, 23, 25,
Frontiers in Pharmacology | www.frontiersin.org 9
33, 44, 46, 47, 52, 53, and 57) exhibited over 50% inhibition at 50
mM. These 12 ligands were submitted to determine the IC50. It
can be seen from Table 4 that 10 of them show IC50 ≤ 50 mM.
Molecular structures of the 10 selected compounds of IDH1R132H

are exhibited in Figure 5. The enzymatic curves and docking
score for these 10 compounds against IDH1R132H are depicted in
Figure 6. Tanimoto coefficient (Tc) (Willett and Winterman,
1986; Willett et al., 1986), in terms of the ECFP4 fingerprint, was
calculated to compare the structural similarity between 10
compounds and reported inhibitors. As shown in Figure S1,
we can find that putative hits have low similarity with reported
inhibitors (Tc < 0.2). Therefore, these compounds are
A B

C D

FIGURE 7 | Binding mode of identified IDH1R132H inhibitor and AG-120. (A) L806-0255. (B) V015-1671. (C) AQ-714/41674992. (D)AG-120.
November 2020 | Volume 11 | Article 579768
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structurally new and have the potential to be promising leads for
further optimizations.

Binding Mode Prediction
The binding pocket of IDH1 lies on the dimer interface and most
of the reported compounds have been shown to bind to this
allosteric site. In order to gain insight into the structural basis of
the identified IDH1R132H inhibitor, the binding mode of the three
compounds was compared with AG-120. As shown in Figure 7,
three molecules that could be docked into the binding pocket
consisted of hydrophobic residues in a similar manner to AG-
120, and formed intermolecular hydrogen bonds with key
residues, which stabilized the complex. L806-0255 and V015-
1671 form a key hydrogen bond with ILE128, which is consistent
with AG-120. In addition, V015-1671 and AQ-714/41674992
also form a key hydrogen bond with ALA111. Moreover, the
hydrophobic contacts formed between surrounded residues,
such as VAL276, SER278, SER287, ILE128, PRO118, and
compounds also contribute to enhanced binding of the small
molecule inhibitor to IDH1 R132H. Therefore, the above results
suggested that L806-0255, V015-1671, and AQ-714/41674992
could bind to IDH1R132H.
CONCLUSIONS

In the present work, we first verified the performance of
IDH1R132H by using glide-docking-based virtual screening and
discovered two crystal structures with the most credible screening
ability. Based on the best performing crystal structure, docking-
based virtual screening was performed to identify new IDH1R132H

inhibitors. A total of 57 potential hits were purchased and their
activity against IDH1R132H was addressed, and 10 of them
exhibited anti-IDH1R132H activity.
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