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ABSTRACT Objective: Blood circulation is an important indicator of wound healing. In this study, a tissue
oxygen saturation detecting (TOSD) system that is based on multispectral imaging (MSI) is proposed to
quantify the degree of tissue oxygen saturation (StO2) in cutaneous tissues. Methods: A wound segmentation
algorithm is used to segment automatically wound and skin areas, eliminating the need for manual labeling
and applying adaptive tissue optics. Animal experiments were conducted on six mice in which they were
observed seven times, once every two days. The TOSD system illuminated cutaneous tissues with two
wavelengths of light - red (λ = 660 nm) and near-infrared (λ = 880 nm), and StO2 levels were calculated
using images that were captured using a monochrome camera. The wound segmentation algorithm using
ResNet34-based U-Net was integrated with computer vision techniques to improve its performance. Results:
Animal experiments revealed that the wound segmentation algorithm achieved a Dice score of 93.49%. The
StO2 levels that were determined using the TOSD system varied significantly among the phases of wound
healing. Changes in StO2 levels were detected before laser speckle contrast imaging (LSCI) detected changes
in blood flux.Moreover, statistical features that were extracted from the TOSD system and LSCI were utilized
in principal component analysis (PCA) to visualize different wound healing phases. The average silhouette
coefficients of the TOSD system with segmentation (ResNet34-based U-Net) and LSCI were 0.2890 and
0.0194, respectively. Conclusion: By detecting the StO2 levels of cutaneous tissues using the TOSD system
with segmentation, the phases of wound healing were accurately distinguished. This method can support
medical personnel in conducting precise wound assessments.

INDEX TERMS Multispectral imaging, principal component analysis, tissue oxygen saturation, wound
healing, wound segmentation.
Clinical and Translational Impact Statement—This study supports efforts in monitoring StO2 levels, wound
segmentation, and wound healing phase classification to improve the efficiency and accuracy of preclinical
research in the field.

I. INTRODUCTION

WOUND care is a medical problem that affects quality
of life. During a period of wound healing, wound

infections can lead to cellulitis, septicemia, and even lower
limb amputation, increasing the burden of care on patients’
families and generating extra medical expenses [1], [2].
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Wounds have traditionally been assessed by visual inspec-
tion by trained medical personnel, which is subjective and
non-quantitative [3]. Therefore, wound assessment tools that
provide quantitative information are important in ensuring
the effectiveness of medical treatments and preventing the
deterioration of wounds.

To determine the status of a wound healing, the charac-
teristics of the wounds, such as blood flow and oxygenation,
can be utilized to assess the blood circulation of cutaneous
tissues [4]. Transcutaneous oximetry (TcPO2) [5], [6], [7]
was developed to determine the oxygen concentration of the
skin. TcPO2 is a contact method that uses electrodes to heat
a small region of skin and measure the partial pressure of
oxygen (PaO2) in the cutaneous tissue. The level of PaO2
can help to determine the quality of blood circulation near
a wound, helping medical personnel in conducting compre-
hensive wound assessments. Nevertheless, TcPO2 can only
be applied to healthy skin to evaluate wound healing indi-
rectly, and measuring a stable oxygen pressure requires half
of an hour. Therefore, along with the rapid development of
wearable technology [8], [9], [10], [11], [12], smart bandages
with flexible circuits and embedded oxygen sensors have
been developed to monitor directly the oxygen concentration
of wounds [13], [14], [15]. However, the use of smart ban-
dages with contact dressings on wounds can lead to patient
discomfort and infections, and so is unfavorable in clinical
practice.

Recently, various optical technologies that permit noncon-
tact measurement in a short time have been widely used in
wound imaging [16], [17], [18]. Laser doppler imaging (LDI)
[19], [20], [21] and laser speckle contrast imaging (LSCI)
[22], [23], [24] are two real-time methods for measuring
hemodynamic changes. In LDI and LSCI, the movement
of red blood cells within cutaneous tissues is illuminated
by a laser. Then, changes in the frequency and speckling
of the reflected laser light are captured to estimate blood
perfusion and flux, respectively. However, the clinical appli-
cation of LDI and LSCI is limited by the expense of the
procedures and their susceptibility to interference by ambient
light. Consequently, hyperspectral imaging (HSI) has been
developed as a technique that can provide reliable results even
in environments that are affected by ambient light [25], [26],
[27]. In HSI, a broadband light source and a hyperspectral
camera are used to capture images at a series of wavelengths.
Based on the difference in the optical properties of cuta-
neous tissues, the captured images are utilized to acquire
oxygenation parameters, such as oxyhemoglobin (HbO2),
deoxyhemoglobin (Hb), and tissue oxygen saturation (StO2).
However, HSI requires complex calculation processes and
high computational power to deal with a large number of
captured images that are required. Therefore, multispectral
imaging (MSI) has been developed; it uses simple hardware
structures to capture a few specific spectra, yielding the same
parameters as HSI [28], [29], [30]. MSI has a lower cost, uses
simpler hardware structures, and requires less computational

power than LDI, LSCI, and HSI. All of methods in the studies
that are cited above require the manual labeling of wound and
skin areas, which is time-consuming and subjective, yielding
results that vary among practitioners [31], [32]. Furthermore,
since the reflectance of incident light differs between the
wound and skin tissues when the epidermis is wounded, the
StO2 levels need to be calculated separately [35], [36], [37].
Thus, wound and skin tissues must be labeled to enhance the
accuracy of wound assessment using the MSI system. These
labels can also be utilized in applying the corresponding
reflectance of incident light in the calculation of the StO2
levels.

In this study, anMSI-based tissue oxygen saturation detect-
ing (TOSD) system with a wound segmentation algorithm
is proposed to measure the StO2 levels of cutaneous tissues
in vivo. The wound segmentation algorithm can be used to
annotate wound and skin tissues, which are used to determine
the size of the wound area and calculate the StO2 levels by
applying the corresponding reflectance of light. To evaluate
the performance of the TOSD system on cutaneous tissues,
animal experiments were conducted on six wild-type mice
of which seven observations were made every two days. The
Dice score of the wound segmentation algorithm is 93.49%.
A comparison of statistical results, including analysis of
variance (ANOVA) and principal component analysis (PCA),
with those concerning blood flux that are obtained using a
commercially available LSCI (Moor FLPI-2, Moor Instru-
ments, UK) reveals that the TOSD system is more effective
than LSCI in identifying phases of wound healing.

II. MATERIALS AND METHODS
A. ANIMAL PREPARATION AND PROCEDURE
All animal experiments were approved by the Institu-
tional Animal Care and Use Committee at the National
Cheng Kung University, Taiwan (Approval No. 110089).
Eight-week-old (n = 6) C57BL/6 male mice that weighed
approximately 20 g each were used. All mice were housed
in an environment-controlled room (temperature: 18-25 ◦C,
humidity: 55% ± 5%, light: 12-hour light/dark cycle, light
cycle starting at 07:00) at the National Laboratory Ani-
mal Center (Tainan, Taiwan) with sufficient food and water.
To observe the changes in StO2 levels throughout the wound
healing period, a full-thickness wound was made on the dor-
sum of each mouse by experienced doctors. During surgery,
mice were anesthetized with isoflurane that was mixed with
0.2 L/min oxygen and 0.8 L/min air through a face mask.
To make wounds of the same size in all mice, a biopsy
punch was utilized to punch a 6 mm diameter circular hole
in the dorsum of each mouse after the mouse fur had been
removed. To avoid wound contraction, a 1 mm thick silicone
splint was applied with internal and external diameters of
8 and 12 mm, respectively. The splint was placed around the
perimeter of each wound and secured with six interrupted
5-0 nylon sutures. In the animal experiments, wounds were
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FIGURE 1. Hardware architecture of proposed TOSD system. USB:
universal serial bus; GUI: graphical user interface.

FIGURE 2. System setup of the animal experiments.

observed using the TOSD system every two days from Day 0
(the day of surgery) to Day 12.

To identify transitions among wound healing phases, the
Enzyme-Linked Immunosorbent Assay (ELISA) kit was uti-
lized as the clinical ground truth. Secretions and mucus from
a wound site were collected on Day 2, Day 6, and Day 12 and
homogenized with RIPA Lysis and Extraction Buffer (Cat.
#89900 and 89901, Thermo Fisher Scientific®, Waltham,
MA, USA), containing a protease inhibitor cocktail (Cata-
log No. C0001, TargetMol). The protein concentration was
determined using a PierceTM BCA Protein Assay Kit (Cat.
#23225, Thermo Fisher Scientific®, Waltham, MA, USA)
and subjected to analysis on a RayBio® C-Series Mouse
Angiogenesis Antibody Array C1, using the manufacturer’s
reagents and protocols. The density of each spot was visual-
ized using a Touch Imager (e-BLOT; Shanghai, China) and
determined using ImageJ software (Version 1.53e).

B. IMAGING SYSTEMS AND EXPERIMENTAL SETUP
Fig. 1 shows the hardware architecture of the proposed TOSD
system for StO2 level detection and wound segmentation,
including a light-emitting diode (LED) light module, a signal-
acquisition module, a camera, an experimental chamber, and
a laptop. The LED light module consists of LEDs of three
types (660 nm for red light, 880 nm for near-infrared light,
and white light) and so has different light sources for illu-
minating cutaneous tissues. The red and near-infrared light
can penetrate the superficial skin to produce reflected and

FIGURE 3. Block diagram of image data processing.

scattered light, which can be utilized to calculate the StO2
levels [17]. White light is used to obtain images for wound
segmentation. The signal-acquisition module is designed to
drive the LED light module and switch among the light
sources. The camera module consists of a monochrome cam-
era (MB152USB, OMRONSENTECH, Japan) and an optical
lens (M0814-MP2, COMPUTAR, USA), and is utilized to
image wound and skin tissues. The images that are cap-
tured by the camera module are stored on the laptop using
the universal serial bus (USB) protocol. The 3D printed
experimental chamber is designed to fix the imaging dis-
tance between the monochrome camera and the mice for
consistency in the animal experiments. For the convenience of
users who are controlling the TOSD system, a graphical user
interface is developed using the C# programming language.

To compare imaging results of the proposed TOSD sys-
tem, the LSCI equipment (moorFLPI-2, Moor Instruments,
UK.) was utilized. The resolution of this camera is 2064 ×
1544, and the distance between the camera and the mea-
sured object is 25 cm, fixed using two aiming lasers. The
light source that illuminates the measured object comprises
infrared laser diodes with a center wavelength of 785 nm.
Fig. 2 presents the system setup of the animal experiments,
including the proposed TOSD system, LSCI, and a laptop
for recording experimental data. These imaging data from
the animal experiments are processed and analyzed to obtain
wound segmentation results and wound healing phases of
mice, as shown in Fig. 3.

C. WOUND SEGMENTATION ALGORITHM AND TRAINING
SETUP
To determine the StO2 levels in cutaneous tissues, a wound
segmentation algorithm is proposed to segment wound and
skin areas, as shown in Fig. 3. The algorithm has the fol-
lowing four stages: 1) pre-processing (pre-pr.), 2) splint
detection (SD), 3) wound segmentation (WS), and 4) post-
processing (post-pr.). The pre-pr. technique is often used
in data processing to improve the quality of signals and
images [38], [39], [40]. Thus, in the pre-pr. stage, the original
image (with pixel dimensions of 800× 800) is processed by
histogram equalization to expand the grayscale range of the
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Algorithm 1 The hole-filling technique.
Input: The segmentation result of prediction is denoted as n× n matrix S,

S[i, j] ∈ { wound label; background label }, where 1 ≤ i, j ≤ n
A set of borders BS ={
B1,B2, . . . ,BN | Area

(
Bk−1

)
< Area (Bk ) , 1 < k ≤ N

}
,

where Bk is the outer border of the wound mask, N is the number of wound
masks, and Area (Bk ) denotes the number of S[i, j] inside Bk

Output: The segmentation result after hole-filling is denoted as n× n matrix S ′,
S ′[i, j] ∈ { wound label; background label }, where 1 ≤ i, j ≤ n

1: S ′ ← S
2: for all Bk of BS do
3: if (Area (Bk ) < 10) then
4: for all S[i, j]inBk do
5: S ′[i, j]← background label
6: end for
7: else
8: for all S[i, j]inBk do
9: S ′[i, j]← wound label
10: end for
11: end if
12: end for
13: return S ′

original image, improving the performance of the wound
segmentation algorithm [41]. Next, in the SD stage, the
Hough Transform technique is utilized to find the silicone
splint, which is in the shape of an annulus, and the original
image is cropped to 160 × 160 pixels based on the detected
annulus [42]. Then, in the WS stage, the cropped image is
imported into a U-Net for wound segmentation. To improve
the accuracy and reduce the training time of U-Net, the tech-
nique of transfer learning (TL) is implemented [43]. Finally,
in the post-pr. stage, the noise of the segmentation masks was
eliminated using the hole-filling technique in Algorithm 1.
The segmentation masks include labels of three types:
1) wound labels, 2) skin labels, and 3) background labels.
The skin labels are determined based on the SD process;
specifically, the pixels inside the area of the silicone splint,
which are not segmented as wound labels, are regarded as
skin labels. For U-Net training, the Adam optimizer is used to
optimize the weights of U-Net. The training hyperparameters
of learning rate and the mini-batch size of U-Net are set to
0.0001 and 4, respectively. The number of training epochs is
200. The ground truth of segmentation masks were provided
by an experienced plastic surgeon at National Cheng Kung
University Hospital, Tainan, Taiwan.

Five animal experiments were conducted in this study;
each involved collecting images of wound in mice utilizing
the proposed tissue oxygen saturation detecting (TOSD) sys-
tem with illumination by white light. However, only the 5th
experiment was conductedwith both TOSD and LSCI. There-
fore, the results of the first four experiments were only used
in wound segmentation and not in the wound healing phase
classification. The data were randomly assigned to either a
training set or a testing set, with 90% of the images used for
training (208 images) and 10% used for testing (23 images).

D. EVALUATION METRICS
Four indices [44], [45] were used to evaluate segmentation
performance, they are precision, recall, the Dice similarity

coefficient, and intersection-over-union (IoU), calculated as
follows:

Precision = TP/(TP+ FP) (1)

Recall = TP/(TP+ FN ) (2)

Dice = 2TP/(2TP+ FP+ FN ) (3)

IoU = TP/(TP+ FP+ FN ) (4)

where TP, TN, FP, and FN are true positive, true negative,
false positive and false negative pixel numbers of wound
images, respectively.

E. FUNDAMENTAL THEORY OF CUTANEOUS TISSUE
OPTICS
To obtain the StO2 levels from images that are captured
by the TOSD system, the optics in cutaneous tissues must
be considered. When light is applied to cutaneous tissues,
the surface reflects some of it, and the remaining light is
absorbed and scattered by chromophores, which are the main
elements in cutaneous tissues that affect light propagation.
Thus, two wavelengths of light (660 nm and 880 nm) at
which the optical properties of oxyhemoglobin (HbO2) and
deoxyhemoglobin (Hb)maximally differ are used to calculate
the StO2 levels [46]. To determine the propagation of light in
cutaneous tissues, the modified Beer-Lambert law (MBLL)
[47], which describes the relationship between light and chro-
mophores, is used:

ODλ = ln(Ii − Ir )/(Is − Ir ) = εCdλ (5)

where λ is the wavelength of the light source;ODλ is the opti-
cal density, which is the sum of the absorbances in cutaneous
tissues; Ii is the intensity of incident light; Ir is the intensity
of reflected light, and Is is the intensity of the diffuse light. ε
and C are the absorption coefficient and the concentration
of chromophores, respectively. dλ is the maximum depth of
penetration of the light in cutaneous tissues [48].

The optical properties of mouse skin in the visible and
near-infrared spectrum [49], and the relationship between the
optical reflectances of wound and skin tissues [33] are such
that the intensity of the reflected light Ir can be expressed as
follows:

Ir = Rλ I i, Rλ =

{
RW

λ
, for wound tissues

RS
λ
, for skin tissues

(6)

where Rλ is the reflectance of cutaneous tissues, which
depends on the results that are generated by the wound
segmentation algorithm, and RW

λ
and RS

λ
represent the

reflectances of wound and skin tissues, respectively. In this
study, the RW

660 and RS
660 of red light (λ = 660 nm) are

set to 0.15 and 0.2, respectively, and the RW
880 and RS

880 of
near-infrared light (λ = 880 nm) are set to 0.11 and 0.15,
respectively. Therefore, by calculating the intensity of light
captured by the TOSD system, the value of OD660 and OD880
are obtained; these are used to compute the concentration
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of chromophores in (5). The cutaneous tissues contain the
following four chromophores: 1) water, 2) other, 3) HbO2,
and 4) Hb. Based on the additivity of light absorbance, the
ODλ of cutaneous tissues can be obtained by summing the
ODλ values of all chromophores [50], as follows:

ODλ = (εwaterCwater+εotherCother+εHbO2CHbO2+εHbCHb)dλ

(7)

In (7), CHb and CHbO2 are the only two unknown values,
and the other values are constants or calculated. Therefore,
two wavelengths suffice to obtain CHb and CHbO2 , and calcu-
late the StO2 levels of cutaneous tissues as follows:

cHb =
ε

λ2
HbO2

(ODλ1/dλ1 )− ε
λ1
HbO2

(ODλ2/dλ2 )

ε
λ1
Hbε

λ2
HbO2
− ε

λ2
Hbε

λ1
HbO2

(8)

cHbO2 =
ε

λ1
Hb(OD

λ2/dλ2 )− ε
λ2
Hb(OD

λ1/dλ1 )

ε
λ1
Hbε

λ2
HbO2
− ε

λ2
Hbε

λ1
HbO2

(9)

StO2 = CHbO2/(CHb + CHbO2 )× 100% (10)

where StO2 represents the level of tissue oxygenation in
wound and skin tissues.

F. WOUND HEALING PHASES ANALYSIS
To classify the phases of wound healing in mice, statistical
features of wound and skin tissues, including wound size,
average (AVG) of blood flux and StO2, and standard devi-
ation (STD) of blood flux and StO2, were extracted from the
imaging results obtained using LSCI and the TOSD system,
as given in Table 1. In the animal experiments, all observa-
tions were categorized into four wound healing phases based
on the number of days after wounding and the results of the
ELISA kit, as follows. 1) Day 0 for hemostasis, 2) Day 2 for
inflammation, 3) Day 4-10 for proliferation, and 4) Day 12
for remodeling [51]. Principal component analysis (PCA) is
utilized as the clustering method to visualize the distribution
of data concerning wound healing phases [52]. Five features
identified using both the TOSD system and LSCI are mapped
into a two-dimensional space for PCA. The silhouette coef-
ficient SC is adapted for each data point to quantify the
clustering performance of PCA [53]; it is defined as follows:

SC(i) = (b(i)− a(i))/max(a(i),b(i)) (11)

a(i) =
1

Nx − 1

∑
j∈Nx ,i̸=j

d(i, j) (12)

where a(i) represents the cohesiveness of data points and is
the average distance between i and other points in the same
cluster. Let Nx be the number of points cluster x and d(i, j) be
the distance between points i and j in N . The calculation of
b(i) is similar to that of a(i) and yields the average distance
from point i to all points in another most adjacent cluster.

b(i) = min
j̸=1

1
Nx

∑
j∈Nx

d(i, j) (13)

TABLE 1. Statistical features extracted from LSCI and proposed TOSD
system.

The SC value ranges from −1 to 1. An SC value clos-
ing to 1 represents an excellent clustering performance.
An SC value closing to−1 represents an unreliable clustering
performance.

III. RESULTS
A. WOUND SEGMENTATION ALGORITHM
Fig. 4 displays the segmentation results that were obtained
using different wound segmentation algorithms. To validate
the robustness of wound segmentation using the algorithm,
images with varying sizes of wounds are used. The sizes of
the wounds are determined by calculating the dimensions of
the fixed silicone splints with consistent diameters. The seg-
mentation masks that are generated by the algorithm can be
utilized to evaluate visually the performance of each method.
The method that uses only U-Net may incompletely segment
wounds, as demonstrated in sample 4 of Fig. 4. Therefore,
the SD process is applied to refine the training images. The
SD+U-Net method can generate rough wound masks with
some inaccurate outlines, which may not be sufficiently pre-
cise to separate wound and skin areas. Thus, the technique
of TL is implemented to improve the performance of U-Net.
Although the masks of the SD+U-Net+TL method were
highly consistent with the ground truths, the noise can be
clearly observed in the segmentation masks (black dotted
circles in Fig. 4), including holes and small pixels outside the
mask outline. Hence, the post-pr. process is utilized, and its
results reveal that the noise of segmentation masks was com-
pletely removed. Therefore, the SD+U-Net+TL+post-pr.
method can provide accurate segmentation masks of wound
and skin areas for the calculation of StO2 levels.

Table 2 lists the values of the evaluation metrics for dif-
ferent methods and the method in a previous work [32].
The mean Dice and IoU scores of the SD+U-Net method
were 85.52% and 75.67%, respectively, higher than those,
70.84% and 59.06%, of the U-Net method. Applying the TL
technique increased the mean Precision and IoU score of the
SD+U-Net+TL method by 7.94% and 12.16%, respectively.
Ultimately, the proposed method (SD+U-Net+TL+post-pr.)
outperformed othermethods (with Precision: 94.47%, Recall:
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FIGURE 4. Wound segmentation results obtained using different
methods. Wound, skin, and background labels are shown in red, yellow,
and green, respectively. All scale bars represent 2 mm.

92.90%, Dice score: 93.49%, and IoU score: 87.88%). Addi-
tionally, the mean Dice and IoU scores of the proposed
method were 6.84% and 6.24%, better than those achieved in
the previous work, respectively [32]. Moreover, in the con-
text of using particular pre-processing and post-processing
methods, Table 3 displays the performance of the proposed
U-Net model (ResNet34-based) and other segmentationmod-
els. The mean Dice and IoU scores of the proposed model
were 93.49% and 87.88%, respectively, higher than those,
77.86% and 65.07%, of the MobileNetV2. Despite the pro-
posedmodel’s being the largest, its mean Dice and IoU scores
were 0.66% and 1.09% better, respectively, than those of the
second largest model (EfficientNetB3). These results of the
animal experiments demonstrated that the proposed model
(ResNet34-based) can accurately segment wound and skin
areas.

B. StO2 AND BLOOD FLUX EVALUATION IN ANIMAL
EXPERIMENTS
Fig. 5 presents the imaging results of the animal experiments.
A full-thickness wound was created on the dorsal skin of
each mouse to observe the StO2 levels throughout the wound
healing period. LSCI was utilized to measure blood flux for
comparison with the StO2 levels that were obtained from
the TOSD system. Monochrome images and heatmaps of
blood flux and StO2 were recorded every two days from
Day 0 to Day 12, showing only the area inside silicone
splints. Fig. 5(a) displays the monochrome images that were
acquired from the TOSD system. The outward appearance
of wounds during the wound healing period is provided.

TABLE 2. Performance of wound segmentation algorithms.

TABLE 3. Performance of different segmentation models.

Fig. 5(b) provides blood flux heatmaps that were captured
by LSCI. The center of the wound can be clearly observed
in a high blood flux. However, water and other materials in
wounds can invalidate blood flux imaging by LSCI (gray pix-
els in Fig. 5(b)). Fig. 5(c) displays StO2 heatmaps that were
obtained from the TOSD system. In the wound area, StO2
levels initially increased and then decreased. Specifically, the
StO2 levels in the wound area on Day 4 were higher than
those on Day 2. Subsequently, the StO2 levels remained high,
before declining to the baseline level (Day 0) on Day 12.
The skin area near the wound exhibited a similar trend (black
dotted areas in Fig. 5 (c)). The red dotted areas in Fig. 5
have low StO2 levels and invalid blood flux results, both of
which are caused by the mouse fur. This phenomenon can
be observed on other days, but does not affect the wound
assessment.

Table 4 compare StO2 levels and blood flux in wound and
skin tissues on different days, respectively. The collected data
on blood flux and StO2 levels from six mice were analyzed
using one-way ANOVA, with a significance level of 0.05.
The StO2 levels in wound tissues increased significantly from
Day 0 (85.11 ± 1.12%) to Day 2 (88.59 ± 1.22%) and
remained at an average of over 88% from Day 2 to Day
10. On Day 12, the StO2 levels in wound tissues (86.84 ±
0.68%) dropped significantly to close to the baseline level
(Day 0). The StO2 levels in skin tissues exhibited a similar
trend to those in wound tissues. However, the blood flux
in wound tissues did not significantly differ between Day 0
(339.47 ± 110.48 PU) and Day 2 (313.30 ± 54.05 PU) but it
had increased significantly by Day 4 (587.03 ± 149.75 PU).
The blood flux in the wound tissues remained elevated from
Day 4 to Day 12, averaging above 500 PU. The blood flux in
the skin tissues exhibited a similar trend to that observed in
the wound tissues. These results demonstrate that the TOSD
system detected changes in both wound and skin tissues
earlier than did LSCI.
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FIGURE 5. Imaging results of animal experiments (a) monochrome images, (b) blood flux heatmaps, and (c) StO2
heatmaps.

TABLE 4. Mean and standard deviation of StO2 level and blood flux in animal experiments.

FIGURE 6. Analyzed results of ELISA kit (a) GCSF (b) GM-CSF. n.s. means
no significant differences.

C. WOUND HEALING PHASES ANALYSIS
To identify transitions among wound healing phases,
an angiogenesis ELISA kit was utilized following the
manufacturer’s instructions. Two key factors that have sig-
nificant changes during the wound healing process were

selected [54]. In Fig. 6 (a), the level of signature cytokine
of the proliferation phase, the Granulocyte-Colony Stimulat-
ing Factor (GCSF), increased significantly from Day 2 to
Day 6 (with the p-value = 0.0478), indicating a transition
from the inflammatory phase (Day 2) to the proliferation
phase (Day 6) in the wound healing process. In Fig. 6
(b), the Granulocyte–macrophage colony-stimulating factor
(GM-CSF), which is capable of regulating inflammatory
response and promoting collagen proliferation, had increased
significantly on Day 12 (with p-values = 0.0112 and
0.0086 compared to Day 2 and Day 6, respectively) [54].
These results indicate that the wound on Day 12 might
have been entering the remodeling phase. Therefore, the
wound healing phases of mice were identified as the hemosta-
sis phase (Day 0) the inflammatory phase (Day 2), the
proliferation phase (Day 4 to Day 10), and the tissue remod-
eling phase (Day 12).

Fig. 7 presents the clustering results of PCA that are
obtained using LSCI and the TOSD system. Table 5 quan-
tifies the clustering performance of PCA associated with
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FIGURE 7. PCA scatter plots of all observations of animal experiments in
different wound healing phases (a) LSCI, (b) proposed TOSD system
without segmentation, (c) proposed TOSD system with ResNet34
(proposed U-Net model).

each wound healing phase and the average value of four
wound healing phases. Figs. 7 (a), (b), and (c) display PCA
scatter plots of all observations that were made in the animal
experiments using LSCI, the TOSD system without segmen-
tation, and the TOSD systemwith ResNet34 (proposedU-Net
model), respectively. Each wound healing phase is presented
with the average value of all data points and an elliptical area
of 95% confidence, enabling visualization of the distribution
of data among wound healing phases. In Fig. 7, the TOSD
system yielded a stronger clustering result than LSCI. The
clustering results of the TOSD system with ResNet34 show
an improvement in separating different phases compared
to the results without segmentation. Moreover, as given in
Table 5, the silhouette coefficients of the TOSD system with
ResNet34 generally exceeded those of other methods, except
in the proliferation phase. The average silhouette coefficient
of the TOSD system with ResNet34 was 0.2890, greater than
that of EfficientNetB3. These results indicate that the pro-
posed TOSD system outperforms LSCI in classifying wound

TABLE 5. Silhouette coefficients of wound healing phases of LSCI and
proposed TOSD system.

healing phases, and the performance of wound segmentation
can significantly impact the classification of wound healing
phases.

IV. DISCUSSION
Several approaches evaluating wound healing have been
used in clinical practice, and these compared with the pro-
posed TOSD system in Table 6. Smart bandages are a
contact method that carries the risk of infection. Optoacoustic
imaging (OAI) is an imaging modality that combines the
advantages of optical and acoustic imaging techniques [55].
It is particularly well-suited for imaging vascular structures.
Therefore, OAI is a promising and effective imaging method
in the future. However, current OAI often uses high-power
lasers that carry the risk of eye and skin injury. Moreover,
the complex hardware architecture and excessive cost of
OAI are two of the bottlenecks in its clinical translation
applications [56]. Noncontact optical techniques for provid-
ing valuable information about wound characteristics, such
as blood flux and StO2 levels during the wound healing
period, have been rapidly developed; they include LDI, LSCI,
HIS, and MSI, [16], [17], [18]. Among these, MSI offers
a short measurement time (less than 3 seconds) and a suf-
ficient imaging depth (3 mm). Therefore, MSI stands out
as a relatively simple hardware structure and cost-effective
method with the potential to accurately measure StO2 levels
for the assessment of wounds in clinical practice [28], [29],
[30]. Importantly, however, wound and skin areas must be
labeled after performing MSI to obtain the distribution of
StO2 levels within a wound.While most relevant studies have
focused on measuring wound characteristics, the labeling of
wounds is crucial for in-depth wound analysis [31], [32].
Hence, a wound characteristic imaging must be combined
with segmentation to enhance the efficiency and accuracy
of wound diagnosis. In this study, the TOSD system based
on MSI is integrated with a wound segmentation algorithm
to investigate in vivo the changes in StO2 levels during the
healing period of wounds in mice. The algorithm provides
objective segmentation masks of wounds for calculating StO2
levels, which are used to evaluate blood circulation in wound
and skin tissues. Changes in blood flux that are obtained by
LSCI are compared to the results of the TOSD system, and
the transitions of wound healing phases with and without
segmentation are discussed.
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TABLE 6. Comparison of proposed TOSD system and other works.

From the results in Fig. 4 and Table 2, the U-Net method
yielded overly fragmented segmentation masks of wounds
compared to the ground truths; perhaps due to the oversizing
of training images (with dimensions of 800 × 800 pix-
els), which contain large areas of unnecessary pixels that
may reduce the performance of the feature extraction layers
in U-Net. Thus, the process of SD is applied in a man-
ner similar to its application in a previous work in which
YOLOv3 was used to detect wounds and crop original wound
images for U-Net training. Therefore, the SD+U-Net method
yields much better Dice and IoU scores than the U-Net
method, yielding similar values of the evaluation metrics
to those reported elsewhere [32]. However, some inaccura-
cies are presented in the edges of the wound masks and
the ground truths, perhaps owing to the use of insufficient
training images, which might have caused underfitting by
U-Net. Notably, the scarcity of training data is a common
challenge in deep learning networks for biomedical applica-
tions [58]. Therefore, the technique of TL that can converge
the weights of U-Net faster and better is utilized. The results
showed that the segmentation masks generated by the SD+
U-Net+TL method have more precise outlines compared to
the SD+U-Net method. In most segmentation tasks, there is
a possibility of encountering issues related to noise, which
refers to irrelevant or erroneous information in the segmen-
tation results that needs to be eliminated [31]. For example,
holes and small pixels that appear outside wound outlines
(black dotted circles in Fig. 4) could affect wound assessment.
Moreover, the performances of lightweight models and the
proposed model were compared in Table 3. In this study, the
primary consideration is the accuracy of wound segmentation
models. Lightweight models, such asMobileNetV2, lose per-
formance due to the lightweight and efficient design of the
network architecture to increase inference speed and reduce
computational burden [31], [33]. Therefore, the U-Net model
that is based on ResNet34 with a deeper and more complex

architecture than that ofMobileNetV2was utilized in the pro-
posed TOSD system. However, in the near future, the portable
version of the proposed TOSD system might be implemented
with lightweight models to reduce computational power and
reduce inference time.

The observed wound healing phases in the animal exper-
iments are identified as the hemostasis phase (Day 0) the
inflammatory phase (Day 2), the proliferation phase (Day
4 to Day 10), and the tissue remodeling phase (Day 12) [51].
On day 0, following the formation of a wound, inflammatory
cells migrate to the wounded area to prevent infection and
secrete angiogenic factors [57]. Subsequently, new blood
vessels begin to sprout from the wound edge towards the
center of the wound, and the StO2 levels increase [59].
Thus, StO2 levels in both wound and skin tissues on
Day 2 were significantly higher than those on Day 0 (with
p-values = 0.0035 and 0.0030, respectively). However, the
blood flux that was measured by LSCI in wound and skin
tissues on Day 2 was not significantly higher than that of
Day 0 (with both p-values > 0.05), perhaps because of the
difference in penetration depths between MSI and LSCI.
The TOSD system has the potential to penetrate to a depth
of 3 mm, based on the wavelengths that were used in this
study [60]. In contrast, the penetration depth of LSI is less
than 1 mm [61], [62], [63]. On Day 2, new blood vessels
had not yet grown to the surface of the wound, so LSCI was
unable to observe changes in deeper wound tissues, resulting
in similar blood flux measurements as on Day 0. Thus, fol-
lowing the growth of blood vessels, the blood flux in wound
and skin tissues on Day 4 was significantly higher than that
on Day 0 (with p-values = 0.0104 and 0.0006, respectively).
Next, during the proliferation phase, new blood vessels pro-
liferated continuously to form a mature vascular network,
which provided wound tissues with sufficient oxygen supple-
ments to heal. Therefore, the high values of StO2 levels and
blood flux in wound tissues from Day 4 to Day 10 indicated
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that the wound area had a favorable healing status (with all
p-values< 0.05, except for the blood flux onDay 10). Finally,
during the tissue remodeling phase, microvessels started to
regress and the oxygenation level gradually returned to the
baseline level (Day 0). Thus, StO2 levels in wound and
skin tissues on Day 12 had dramatically dropped and were
not significantly different from those on Day 0 (with both
p-values > 0.05). However, the blood flux in wound and skin
tissues differed significantly (with p-values = 0.0340 and
0.0265, respectively), indicating that the blood flow remained
elevated. The high StO2 at skin tissues adjacent to the wound
tissues in Fig. 5 during the healing process are also consistent
with those in other studies [64], [65], [66]. The StO2 levels on
different days indicated that the TOSD system can be used
to identify wound healing phases. Moreover, the changes in
wound and skin tissues can be visualized to assess wound
healing progress.

Fig. 7 compares the clustering results of PCA in wound
healing phases for LSCI and the TOSD system. In the PCA
scatter plot for the TOSD system with ResNet34 (proposed
U-Net model), minor overlaps between phases of wound
healing are observed as expected, as they are consistent
with the transitional nature of wound healing [67]. However,
in the PCA scatter plot of LSCI, major overlaps are evident
between the hemostasis phase and the inflammation phase,
as well as between the proliferation phase and the remodeling
phase. Moreover, the PCA clustering results with ResNet34
exhibited greater separability, compared to those without
segmentation. Notably, in Fig. 7 (b), the inflammation, pro-
liferation, and remodeling phases are strongly overlapped,
indicating that the method without segmentation cannot iden-
tify the wound healing phases accurately. These clustering
performances of PCA are quantified, with the TOSD system
using ResNet34 showing average silhouette coefficients of
0.2696 and 0.2456 greater than those of LSCI and without
segmentation, respectively. Therefore, the proposed TOSD
system with ResNet34 demonstrates superior performance in
classifying wound healing phases using statistical features
of wound and skin tissues compared to LSCI and without
segmentation.

LSCI has been commonly used for imaging blood flux
in cutaneous tissues to evaluate blood circulation. However,
LSCI can only target the surface of wounds due to its lim-
ited penetration depth. Therefore, MSI-based systems with
deeper penetration are more suitable than LSCI for assessing
wound healing status. Currently, the TOSD system pro-
vides only StO2 levels in wound and skin tissues. However,
future research, particularly that concerning human chronic
wounds, must expand the analysis to consider the presence
of different types of wound tissue, including granulation,
slough, and necrosis. These tissue types have different out-
ward appearances and significant roles in the wound healing
process [2]. Incorporating additional wavelengths of light
into the TOSD system enables other important wound charac-
teristics, such aswater content andmetabolism, to be captured

and analyzed [4]. This expanded analysis has the potential
to provide a comprehensive understanding of wound status,
facilitating improved diagnosis and treatment strategies for
chronic wounds.

V. CONCLUSION
In this study, an MSI-based TOSD system is proposed to
determine the StO2 levels of cutaneous tissues in vivo.
The implemented wound segmentation algorithm effectively
distinguishes between wound and skin areas, generating
objective segmentation masks that can be used to calculate
accurate StO2 levels by applying adaptive tissue optics. The
mean Dice and IoU scores of the proposed wound seg-
mentation algorithm are 93.49% and 87.88%, respectively.
A comparison of animal experimental results with blood flux
measurements that are obtained using LSCI demonstrates
that the TOSD system yields a stronger correlation between
determined StO2 levels and wound healing dynamics. The
variations in StO2 levels at different wound healing phases
were significant. Moreover, the TOSD system can be utilized
to observe changes in wound healing phases before LSCI can
be used, and it exhibits a higher average silhouette coefficient
(0.2890) than that of LSCI (0.0194). Therefore, the TOSD
system with segmentation algorithm is a promising prototype
method for assessing wound healing status and blood circu-
lation in human tissues, supporting wound care.
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