
RESEARCH ARTICLE

CStone: A de novo transcriptome assembler

for short-read data that identifies non-

chimeric contigs based on underlying graph

structure

Raquel Linheiro, John ArcherID*

CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto,
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Abstract

With the exponential growth of sequence information stored over the last decade, including

that of de novo assembled contigs from RNA-Seq experiments, quantification of chimeric

sequences has become essential when assembling read data. In transcriptomics, de novo

assembled chimeras can closely resemble underlying transcripts, but patterns such as

those seen between co-evolving sites, or mapped read counts, become obscured. We have

created a de Bruijn based de novo assembler for RNA-Seq data that utilizes a classification

system to describe the complexity of underlying graphs from which contigs are created.

Each contig is labelled with one of three levels, indicating whether or not ambiguous paths

exist. A by-product of this is information on the range of complexity of the underlying gene

families present. As a demonstration of CStones ability to assemble high-quality contigs,

and to label them in this manner, both simulated and real data were used. For simulated

data, ten million read pairs were generated from cDNA libraries representing four species,

Drosophila melanogaster, Panthera pardus, Rattus norvegicus and Serinus canaria. These

were assembled using CStone, Trinity and rnaSPAdes; the latter two being high-quality,

well established, de novo assembers. For real data, two RNA-Seq datasets, each consisting

of�30 million read pairs, representing two adult D. melanogaster whole-body samples were

used. The contigs that CStone produced were comparable in quality to those of Trinity and

rnaSPAdes in terms of length, sequence identity of aligned regions and the range of cDNA

transcripts represented, whilst providing additional information on chimerism. Here we

describe the details of CStones assembly and classification process, and propose that simi-

lar classification systems can be incorporated into other de novo assembly tools. Within a

related side study, we explore the effects that chimera’s within reference sets have on the

identification of differentially expression genes. CStone is available at: https://sourceforge.

net/projects/cstone/.
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Author summary

Within transcriptome reference sets, non-chimeric sequences are representations of tran-

scribed genes, while artificially generated chimeric ones are mosaics of two or more pieces

of DNA incorrectly pieced together. One area where such sets are utilized is in the quanti-

fication of gene expression patterns; where RNA-Seq reads are mapped to the sequences

within, and subsequent count values reflect expression levels. Artificial chimeras can have

a negative impact on count values by erroneously increasing variation in relation to the

reads being mapped. Reference sets can be created from de novo assembled contigs, but

chimeras can be introduced during the assembly process via the required traversal of

graphs, representing gene families, constructed from the RNA-Seq data. Graph complex-

ity determines how likely chimeras will arise. We have created CStone, a de novo assem-

bler that utilizes a classification system to describe such complexity. Contigs created by

CStone are labelled in a manner that indicates whether or not they are non-chimeric. This

encourages contig dependent results to be presented with increased objectivity by main-

taining the context of ambiguity associated with the assembly process. CStone has been

tested extensively. Additionally, we have quantified the relationship between chimeras

within reference sets and the identification of differentially expressed genes.

Introduction

In the field of transcriptomics, awareness of chimeric sequences has been present for many

years [1,2], but with the expansion of short-read sequencing technologies [3], and the associ-

ated exponential growth of sequence information stored [4], chimera quantification has

become essential. Within transcriptome reference sets, such as the cDNA databases available

from Ensembl representing various species [5], or those that are de novo assembled from

short-read RNA-Seq data, non-chimeric sequences are direct representations of transcribed

genes, while artificially generated chimeric ones are mosaics of two or more pieces of DNA

incorrectly pieced together. The latter occurring during library preparation [6,7], or during

the de novo assembly process [8,9], where there is a requirement to traverse paths across graphs

constructed from read data that ranges in complexity depending on the nature of the gene

families being represented [10–12]. Chimeras also occur at a genomic level during de novo
assembly, such as when inferring haplotypes [13,14], but the causes, and consequences, at a

genomic level are different [15–17]. In genomic assembly the aim is to reconstruct fewer large

contigs that represent chromosomes [18,19]. Contigs produced by genomic assemblers are

often utilized within the scope of population studies, in conjunction with mapping of whole

genome read data, in order quantify and compare nucleotide variation or to annotate coding

regions [20,21]. In transcriptomics, the goal is to quantify tens of thousands of expressed

genes, and gene isoforms, that differ in length and expression pattern [12,22]. Differences such

as these have lead to a distinction in how algorithms, and data structures, are optimized for

either genomic or transcriptomic level assembly. In the absence of an available transcriptome

reference, there are many RNA-Seq short-read assemblers available including, ABySS [23],

Trinity [24], BinPacker [25] and rnaSPAdes [26]. Approaches, such as that implemented

within the more recent Stringtie2 [27], that combine short-reads with the longer ones pro-

duced by single-molecule mRNA sequencing techniques [28], developed by companies includ-

ing Pacific Biosciences and Oxford Nanopore Technology, have demonstrated high reliability;

and are likely to greatly reduce chimera content once such data becomes routine [29–31]. In

addition to de novo approaches, pipelines that combine genomic references with usage of
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splice aligners, such as Tophat2 [32], HISAT2 [33] and SOAPsplice [34], in order to map

RNA-Seq reads, estimate exons, splice-sites and subsequent transcripts, are also available

[35,36]. The fundamental role that these tools play in RNA-Seq data analyse is reflected in the

range of approaches developed as well as in the many reviews and benchmarking studies pub-

lished [17,37–41].

Chimeric contigs can closely resemble expressed transcripts, but patterns such as those

between co-evolving sites [42], remapped read counts [43,44] and polymorphisms [45,46]

become obscured, and chimera presence has a poorly quantified impact on data analysis

[41,47,48]. In relation to transcriptomics, included within data analysis is at times the charac-

terization of gene differential expression patterns, where the primary signal utilized are the dif-

ferences in mapped read counts, across datasets allocated to differing conditions, relative to

sequences within a reference [49]. Increasing levels of variation between reference sequences

and the reads being mapped decreases mapping accuracy [50], and artificially generated chi-

meras created during de novo assembly increase such variation by: (i) erroneously swapping

parts of expressed transcripts with others, (ii) introducing sequencing variation at breakpoints

within chimeric paths and (iii) over extension of contigs. It is therefore advantageous to know

whether or not de novo assembled reference contigs have the possibility of being chimeric, so

that care can be taken when finalizing conclusions following data analysis. A crucial part of de
novo transcriptome assembly of short-read data is the arrangement of information present

within reads into structures that represent full or partial gene families. These take the form of

graphs, mostly de Bruijn [9,24], but may also be created from overlap consensus approaches

[9,51]. In the de Bruijn based approach millions of fragments of specified length, termed

kmers, are extracted from reads and used as nodes. Edges are placed where kmers match with

the exception of one over-hanging nucleotide. The sought after outcome is a one-to-one rela-

tionship between gene families and graphs created [52]. Despite kmer efficiency at represent-

ing sequence data [53–56], the graphs ability to represent complete biological complexity has

not been fully determined [57,58], but to date, the approach is state-of-the-art in dealing with

the vast quantities of short-read RNA-Seq data produced. Complexity and size of the transcrip-

tome [59], read coverage [60], gene expression levels [57] and sequencing error [61] are some

of the factors that influence the number and nature of the graphs produced. It is the complex-

ity of individual graphs, as represented by the number of possible start and end nodes, along

with the number of internal junctions and cycles, that determine the extent of path choice dur-

ing contig construction. Based on this we have developed a short-read RNA-Seq de novo
assembler, CStone, that labels each contig created in accordance to one of three levels of com-

plexity reflecting the nature of the graph from which it was derived: (i) a single start node and

a single end node along with no internal junctions, (ii) a single start node and multiple end

nodes along with internal junctions but no cycles, and (iii) a single, or multiple, start node(s)

and a single, or multiple, end node(s) with or without internal cycles, i.e. everything else. Our

classifications are no more than a description of the pre-existing structure of the de Bruijn

based graphs. Paths from the first two cannot be chimeric, the first being a graph possessing a

single path, while the second being one where each path has a unique end point and no alter-

native routes. For graphs of the third type, CStone, similar to other graph-based assemblers,

uses the metric of read coverage to aid in path selection, but this does not guarantee complete

non-chimerism, although high-quality representations of underlying transcripts are achieved.

Reference contigs labelled in this manner encourage dependent results to be presented with

increased objectivity by maintaining the context of complexity, and ambiguity, present during

construction. For example, the identification of a differentially expressed gene associated with

a level (iii) contig can be considered more speculatively, whilst for a level (i) contig, more cer-

tainty can be assumed. Our approach is not solving the problem of de novo assembled
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chimeras, but it is improving the interface between assembly software and result interpreta-

tion. Additionally, the approach, or similar ones, is readily implementable within any graph-

based assembler. As a demonstration of CStones ability to assemble data we compare contigs

produced by CStone to those produced by two well-established assemblers, Trinity [24], and

rnaSPAdes [26], using both simulated data from four species, Drosophila melanogaster (fruit

fly), Panthera pardus (leopard), Rattus norvegicus (brown rat) and Serinus canaria (canary), as

well as real data obtained from a study on alternative splicing in D. melanogaster [62]. Our

results indicate that all three assemblers perform well, and that the increased information that

CStone adds on chimerism can be of value. Finally, to further highlight the poorly quantified

issue of chimeric contigs, we demonstrate the effects of chimeric content within reference sets

on the detection of differentially expressed genes using DESeq2 [49]; thus further highlighting

the need for current assemblers to incorporate information on graph complexity into their

outputs.

Design and implementation

(1) De novo assembly

(1.1) Graph construction. Kmers of length 40 nt, along with frequency of occurrence, are

extracted from reads and stored in descending order, Those of low complexity, where a single

nucleotide type makes up more than 80%, are removed. Each remaining kmer is placed into a

node data structure. Nodes whose kmers overlap by 39 identical nucleotides are merged into a

composite node, the kmer of higher frequency being maintained. A default kmer length of 40

nt was chosen to minimize kmers being identical by chance, S1 Fig, and because 40 falls

between the default kmer lengths of the already established graph based assemblers that we

tested CStone against. This value can be altered by using the–k parameter. Edges are placed

between nodes were kmers are identical with the exception of up to 5 overhanging nucleotides.

Unconnected graphs, i.e. groups of connected nodes, are then extracted and stored (S2 Fig).

For each graph, local cycles between adjacent nodes are removed, while non-localized paths

between junctions are maintained. This is done by merging pairs of siblings that have a valid

connecting edge between them. During the merge process, all incoming and outgoing edges,

as well as the kmer of higher frequency, are maintained. Edge validity is checked because as

merges proceed some edges may begin to reflect distances that were larger than the initial edge

connecting criteria. Following refinement, for a given graph (Fig 1), all nodes with a single

connecting edge, i.e. those on the periphery, belong to set E; these either initiate or terminate

paths. Nodes with more than two connecting edges, i.e. junctions, belong to set J. All other

nodes belong to set I. The sum of the contents of E, J and I is equal to the total number of

nodes on the network.

(1.2) Graph classification and Contig creation. For each graph, in order to orientate

paths, the node from set I with the highest kmer frequency, and no circumventing paths is

selected. Two sets, E1 and E2, are then populated with nodes that represent the starts and ends

of potential paths. To achieve this, nodes within set I are sorted in descending order of kmer

frequency. This ensures that nodes on the top of the list are those through which the highest

numbers, or the most expressed, transcripts pass; kmer frequency being derived from read

coverage that reflects both expression and regions of shared identity between transcripts. Start-

ing at the top, nodes are selected in turn (Fig 2, step i) and temporarily removed from the

graph (Fig 2, step ii), along with all connecting edges. If two unconnected sub-graphs do not

result, i.e. paths exist around the removed node, then the node, along with all its previous con-

necting edges, are placed back into the graph and the next node in the list is tested (Fig 2, step

iii). If two unconnected sub-graphs do result, all external nodes from one of these are placed
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into one set, and those of the other into a second (Fig 2, step iv). The smaller of these is labelled

E1 and the larger E2. If they are the same size the choice of E1 and E2 labels is arbitrary. The

removed node, along with its previous edges, is then put back and it is considered the corner-

stone node of the graph, Fig 2, step v. CStone got its title based on this node.

Using paths that start in E1, end in E2, and that traverse the cornerstone node, we have

defined three levels of classification, one of which will be associated with each graph: (i) no

internal cycles, sets E1 and E2 each contain one node, resulting in a single non-chimeric path

between E1 and E2 (Fig 3A), (ii) no internal cycles, set E1 contains one node, set E2 contains

two or more nodes, resulting in a number of distinct paths equal to that of the number of

nodes within E2, each of which is non-chimeric as no alternatives routes exist (Fig 3B) and (iii)

all other cases, i.e. set E1 contains one or more nodes, set E2 contains one or more nodes and

the graph may or may not contain internal cycles (Fig 3C). Cycles are identified within graphs

by tracing all paths starting at E1 and identifying whether or not they can eventually double

Fig 1. An illustrative example of a single graph (of many) identified following edge connection. Circular keys, top right, indicate node type,

while black lines represent edges. The contents of each set, E, J and I, are shown.

https://doi.org/10.1371/journal.pcbi.1009631.g001

Fig 2. Identification of the cornerstone node and population of sets E1 and E2. Node indicators are the same as those used in Fig 1. Steps (i) to (v) outline

the procedure to select the cornerstone node and subsequently to populate sets E1 and E2.

https://doi.org/10.1371/journal.pcbi.1009631.g002
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back on themselves. Contigs are created in a manner that depends on the associated classifica-

tion level. For level (i), a reconstruction of the kmers contained within each connected node

on the single path is outputted as the contig. For levels (ii) and (iii), the first ten paths from

each E1 starting node, level (ii) only having one node within E1, are sorted by mean read cov-

erage and the top three are used to construct contigs in a similar manner to that done for level

(i). The default value of three can be altered to a maximum value of five. All contigs produced

are titled with a unique integer id as well as the graph classification level from which they were

created. The latter is selected from LVL_1_NO_CYCLES_ONE_TO_ONE, LVL_2_NO_

CYCLES_ONE_TO_MANY or LVL_3_COMPLEX.

Specifying the number of contigs per graph is necessary as it is not feasible to output all

“possibly viable” paths from every graph. For some graphs there could be tens to hundreds of

paths. We opted for outputting the top three best paths (by default), based on maximized cov-

erage, in order to provide a reliable representation of gene families; in a way that could provide

insight to contig non-chimerism. This strategy covers areas of analysis where obtaining refer-

ence sequences maintaining exact evolutionary relationships between sites is important, for

example, when looking at co-evolving sites, geno-to-pheno altering polymorphisms or

Fig 3. Three levels of graph classification implemented within CStone. Panels A to C display examples of graphs identified with classification levels 1 to 3

in order. The largest node indicates the cornerstone node whilst the number inside this indicates the number of possible paths passing through. In panel C

one path (inset), of the possible 12, is shown. In the absence of read coverage information, as in this example, the path is most likely chimeric as it turns away

from the nearest exit node and follows a more winding route. However, within real graphs coverage information could provide a justification for such a route.

Panels D and (e) highlight two additional examples of graphs within classification level (iii). For the latter the four paths traversing the graph containing two

cycles in sequence are shown, only two of which are required to reconstruct the original graph (paths 1 and 3) or (paths 2 and 4), leaving two possible

chimeric ones.

https://doi.org/10.1371/journal.pcbi.1009631.g003
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recombinant-breakpoints. It also applies to differential experiments where the reliability of

read counts at a gene family level out-weighs that of identifying ambiguous isoforms, many of

which are artefacts of the short-read assembly graph traversal process. Limiting paths is less

optimal if attempting to characterize all “true” isoforms from complex families; although given

the advent of long-read sequencing technologies, the sole use of short-read data in conjunction

with heuristic short-read de novo assemblers should be avoided. It should be noted here that

the default top three paths per graph outputted by CStone are relative to each individual graph

created. The manner in which graphs representing gene families are constructed is indepen-

dent of read cover. As long as a gene family is represented by reads, a graph can be constructed.

If on that graph there are many paths, it is the top thee, based on coverage, that are used.

Importantly, this means that gene families associated with low expression will still be repre-

sented within the output.

(2) Demonstration

(2.1) Simulated data. cDNA libraries from fruit fly, leopard, rat and canary, Table 1, were

downloaded from Ensembl [5]. For each�10 million read pairs, of length 200 nt, insert size

300 nt and containing no read error, were generated from transcripts that ranged in length

from 300 to 5000 nt using CSReadGen [63]. These datasets are available on the open-access

repository Zendo and are associated with the url https://doi.org/10.5281/zenodo.5589533 [64].

The minor variation in final counts is due to reads being simulated in a manner that distributes

them evenly over the reference transcripts, reflecting uniform coverage. Use of simulated data

allows for the comparison of the assembled contigs to the sequences from which the reads

were derived, while excluding the effects of unknown variation; including that of sequencing

error and poor coverage. Additionally, with uniform coverage, for correctly assembled contigs

the numbers of reads mapping back to them would be expected to correlate with length;

reflecting that seen in S3 Fig.

For each species reads were assembled using CStone, Trinity (v2.12.0, kmer length of 25),

and rnaSPAdes (v3.11.1, kmer length of 55). To assess assembly quality: (i) contig lengths were

compared to cDNA reference transcripts. (ii) Bowtie2 [65] was used to map reads to each set

of assembled contigs, after which read counts, obtained using the pileup.sh script of the bbmap

package [66], were plotted against contig lengths. (iii) The megablast option [67], of the

BLAST+ package [68], was used to identify how many of cDNA reference transcripts matched

contigs produced by each assembler, as well as to assess the quality and the length of the

matched regions. For each species-specific reference transcript the top 20 hits, within the con-

tig file produced by each assembler, were examined. In each case, the matches producing the

longest aligned regions were used to create plots of transcript length versus contig length, as

well as contig length versus aligned region length. Plots were created using the R package [69].

A summary table of the percentage identities associated with the longest-match alignments,

Table 1. Summary of simulated datasets. The cDNA reference sequences (release-100) used as templates for simulation were downloaded from: https://www.ensembl.

org/info/data/ftp/index.html.

Species Common name No. of transcripts > = 300 && < = 5000

nt

Combined length of transcripts

(nt)

No. of read

pairs

Expected per site

cover

Drosophila
melanogaster

Fruit Fly 26,680 56,006,763 9,986,804 71.33

Panthera pardus Leopard 27,419 48,768,807 9,986,261 81.91

Rattus norvegicus Rat 28,634 52,945,917 9,985,618 75.44

Serinus canaria Canary 21,626 43,305,533 9,989,219 92.27

https://doi.org/10.1371/journal.pcbi.1009631.t001
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along with the number of unique reference transcripts finding a match, was also prepared. For

CStone, species-specific bar charts were produced displaying the number of contigs generated

from each of the three graph classification levels.

(2.2) Real data. Two adult fruit fly whole-body samples, from the Pang et al. (2021) study

on alternative splicing [62], were downloaded from NCBI SRA, study no. SRP297872; run

number SRR13251053 for adult 1 and run no. SRR13251054 for adult 2. Reads were 100 nt in

length, and had been sequenced on Illumina’s Hi-Seq 2000 sequencer. Following quality filter-

ing, using Trimmomatic (LEADING:10 TRAILING:10 SLIDINGWINDOW:4:15 MINLEN:36

ILLUMINACLIP:TruSeq3-PE.fa:2:30:10) [70], they consisted of 31,543,384 and 29,812,987

read pairs. These were assembled using CStone, Trinity and rnaSPAdes, following which con-

tig length distributions were summarized. Although these data were not generated directly

from the fruit fly cDNA reference transcripts used in the previous section, it would be expected

that, being representatives of the same species, the latter should align to many of the contigs

assembled. For this reason megablast was used in a similar manner to that described for the

simulated datasets.

(3) Effects of chimerism on differential expression

To demonstrate the effects of chimerism within reference sets on downstream analysis, a dif-

ferential expression experiment was repeated iteratively, on ten input read datasets, divided

into two conditions, where during each iteration the proportion of chimeric reference

sequences was increased (S1 Methods). All reference sets and corresponding datasets are avail-

able on the Zendo repository and are associated with the url https://doi.org/10.5281/zenodo.

5589427 [71].

Results

(1) The software

CStone is written in Java and runs on operating systems with installed Java Runtime Environ-

ment 8.0 or higher. It is licensed under the GNU General Public License v3.0. At the time of

writing, with under 2,000 lines of code, organized into 23 class files that result in an executable

jar file of 72kb, it is minimalistic, clearly implemented and, if necessary, reproducible in a lan-

guage of choice; for example within a learning environment. No external packages are required

making setup or incorporation into other software projects, through inclusion of the jar file,

relatively effortless. Table 2 indicates the assembly times required to assemble the datasets used

within this manuscript.

Table 2. Running times. Times, in hours, minutes and seconds, taken by CStone to assemble datasets used in this study on Windows 10 running on 32 cores (AMD

Ryzen Threadripper 2990WX @ 3.00GHz) and 128GB of ram, as well as on Ubuntu 20.04 running on 24 cores (Intel Xeon(R) CPU E5-2697 v2 @ 2.70GHz) and 64GB of

ram. For simulated datasets “Effective transcriptome size” refers to the cDNA reference transcripts from which the reads were simulated, whilst for real data it is the

(unknown) number of expressed genes within the adults that were sequenced.

Data Type Effective Transcriptome Size No Of Read Pairs Windows 10 Ubuntu 20.04

Fruit Fly simulated 26,680 9,986,804 00:36:18 00:30:09

Leopard simulated 27,419 9,986,261 01:01:34 00:51:02

Rat simulated 28,634 9,985,618 01:05:14 00:19:07

Canary simulated 21,626 9,989,219 00:37:57 00:31:36

Whole Adult 1 real N/A 31,543,384 02:22:25 02:07:29

Whole Adult 2 real N/A 29,812,987 02:14:19 01:52:03

https://doi.org/10.1371/journal.pcbi.1009631.t002
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Table 3. Summary of the lengths of assembled contigs relative to the cDNA reference transcripts based on simulated data.

Species Source No. of contigs / transcripts� Min. length Median length Mean length Max. length Outliers Above 5000 nt

Fruit Fly Refs� 26680 301 1871 2099 5000 0 0

CStone 20939 200 1138 1339 6658 581 6

rnaSPAdes 19174 100 1034 1375 9126 729 126

Trinity 24947 201 1574 1877 10806 341 464

Leopard Refs� 27419 303 1494 1779 4999 235 0

CStone 29778 200 1000 1218 6775 836 2

rnaSPAdes 26603 100 970 1355 7467 587 21

Trinity 33709 201 1285 1575 7918 627 113

Rat Refs� 28634 301 1609 1849 5000 6 0

CStone 26703 200 1188 1383 5276 572 3

rnaSPAdes 25712 100 1272 1583 9036 117 72

Trinity 36327 201 1204 1513 8844 843 219

Canary Refs� 21626 303 1795 2002 4999 0 0

CStone 21811 200 1067 1270 6638 556 2

rnaSPAdes 24811 100 707 1104 8296 939 19

Trinity 29399 201 1633 1889 8296 58 211

https://doi.org/10.1371/journal.pcbi.1009631.t003

Fig 4. Overall length of contigs and the cDNA reference transcripts from which the reads were simulated. Dataset source along, with the species, is indicated along the

x-axis. The numbers on the top indicate the total number of sequences present. Boxes represent the lengths falling within the inter quartile ranges. The median is shown

within each box. Whiskers extend to the furthest data point that is within 1.5 times the inter quartile range and points beyond this are outliers (black circles). Outlier

numbers are indicated in Table 3.

https://doi.org/10.1371/journal.pcbi.1009631.g004
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(2) Demonstration

(2.1) Simulated data. Table 3 and Fig 4, compare the lengths of the contigs produced by

each assembler to those of the cDNA reference transcripts. For each set of contigs the median

length falls within the interquartile range of the reference transcripts. CStone produces some

contigs beyond the length of the longest reference used, indicating some overextension, but

the numbers of these are relatively low. For fruit fly, leopard, rat and canary, the overall num-

bers of contigs produced by CStone fall between those of rnaSPAdes and Trinity, the latter

producing the highest numbers. In Table 3 it is observed that for CStone contig numbers were

20939 (fruit fly), 29778 (leopard), 26703 (rat) and 21811 (canary). These were produced from

18520, 29465, 25550 and 21517 underlying graphs respectively (S2 Fig). For Trinity the num-

bers of contigs created were 24947 (fruit fly), 33709 (leopard), 36327 (rat) and 29399 (canary),

and were produced from 15136, 22181, 24077 and 16678 underlying graphs, as derived from

the output contig files. These numbers indicate that CStone, although creating fewer contigs

relative to Trinity, does not represent fewer networks, where networks are striving to have a

one-to-one representation of gene families.

When the reads from each species are mapped against contigs, and the length of contig ver-

sus read count plotted, Fig 5, CStone achieves comparable R2 values to those of both Trinity

Fig 5. Lengths of contigs versus the number of reads mapping to them. The assembler used is indicated along the top of the figure, while the x-axis is labeled along the

bottom. The red line indicates the line of best fit based on a linear model. R2 values, located on the top right corners, indicate the correlation between mapped read counts

and contig lengths, p-values of which are discussed in the text.

https://doi.org/10.1371/journal.pcbi.1009631.g005
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and rnaSPAdes. For the Trinity assemblies of fruit fly and canary it is likely that a few contigs

are lowering the R2 value, for example, for fruit fly there is a single contig of length 4895 nt

with 30,481 reads mapping to it that, when removed, increases the R2 value from 0.5829 to

0.5944. In all cases, including that of the latter, there is a significant correlation, with all p-val-

ues below 2.2e-16, suggesting that the contig read counts are reflecting the nature in which the

reads were simulated (S3 Fig).

For CStone the numbers of contigs associated with each of the three graph classification lev-

els are displayed in Fig 6. Across the four species, for these datasets, an average of 58% and

11% of contigs come from graphs categorized as levels (i) and (ii). These are graphs that have

structures that do not produce chimeric paths. Even when a contig from such graphs may not

be complete, for example due to poor coverage, the proportion constructed is non-chimeric.

To date, contigs produced by such graphs have been treated in an identical manner to those

produced from the more ambiguous graphs classified as level (iii). CStone allows the user to

make this distinction and discuss results related to such contigs in the context of the underly-

ing graph complexity.

For each set of contigs, when the lengths of the reference transcripts are compared to the

lengths of the best matching contigs, based on the longest aligned region as identified using

megablast, Fig 7, a linear relationship is observed in all cases (p-values below 2.2e-16), indicat-

ing that reference transcript lengths are being reflected by the assembled contigs. For each con-

tig, when the length of the aligned regions are compared to the contig length, (Fig 8), a

significant correlation is also present in all cases (p-values below 2.2e-16), confirming that the

Fig 6. CStone graph categories. The numbers of contigs occurring within each of the CStone graph categories. Percentages of the total contigs are indicated above each

bar.

https://doi.org/10.1371/journal.pcbi.1009631.g006
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contigs are generally aligning over the majority of their lengths to the references to which they

matched. The percent identities achieved within the aligned regions along with the number of

different references being aligned to, are summarized in Table 4 and S4 Fig, and in both cases

all values are high. Note: within S4 Fig although the range of identity values for CStone is gen-

erally wider, the means achieved for the four species are 99.80%, 99.25, 98.65 and 99.58%, and

the four medians are 100%. Additionally, all values are above 70%.

The numbers of cDNA reference transcripts uniquely matching contigs produced by a sin-

gle assembler, and those that match contigs produced by each of the different assemblers are

presented in Fig 9. The majority of cDNA reference transcripts are represented by contigs pro-

duced by all three assemblers, indicating good agreement in overall transcriptome representa-

tion following assembly. Combined these results suggest that the contigs produced by the

established assemblers Trinity and rnaSPAdes are of reasonable quality, and importantly, that

those produced by CStone are of sufficient quality for demonstrating our approach to the

inclusion of a graph-based metric indicating the extent of non-chimeric contig formation.

(2.2) Real data. Fig 10 and Table 5, summarize of the lengths of assembled contigs con-

structed from data derived from the two fruit fly whole-body samples. The mean contig

lengths of rnaSPAdes and Trinity are higher, but the CStone median contig lengths fall

between both the latter. For Trinity and rnaSPAdes the means are strongly influenced by the

Fig 7. Length of contigs versus length of reference transcript. R2 values, located on the top right corners, indicate the correlation between cDNA reference transcript

lengths and contig lengths. The description of the rest of the figure is identical to that of Fig 5.

https://doi.org/10.1371/journal.pcbi.1009631.g007
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Fig 8. Length of aligned region versus length of contig. R2 values, located on the top right corners, indicate the correlation between contig lengths and aligned region

lengths. The description of the rest of the figure is identical to that of Fig 5.

https://doi.org/10.1371/journal.pcbi.1009631.g008

Table 4. Summary of percent identity between contigs and transcripts for the alignments represented in Fig 8.

Species Source Min. % identity Median % identity Mean % identity Max. % identity No. of cDNA transcripts matched % of total cDNA transcripts

Fruit

Fly

CStone 74 100 99.80 100 26289 98.53

rnaSPAdes 87 100 99.93 100 26678 99.99

Trinity 81 100 99.90 100 26677 99.98

Leopard CStone 70 100 99.25 100 26947 98.27

rnaSPAdes 83 100 99.89 100 27418 99.99

Trinity 76 100 99.71 100 27413 99.97

Rat CStone 70 100 98.65 100 26585 92.84

rnaSPAdes 81 100 99.75 100 28622 99.95

Trinity 76 100 99.39 100 28603 99.89

Canary CStone 71 100 99.58 100 21297 98.47

rnaSPAdes 85 100 99.91 100 21625 99.99

Trinity 83 100 99.82 100 21588 99.82

https://doi.org/10.1371/journal.pcbi.1009631.t004
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large number of transcripts above 5000 nt in length. Given that the lengths of transcribed

genes are largely expected to be within the range of 300 to 5000 nt [72], such an increase in

means, relative to the medians is more likely to be an indication of contig overextension rather

than contig correctness.

The large portion of cDNA reference transcripts that matched contigs, Table 6, allowed for

quantification of contig quality in terms of the length of matching regions versus over all

Fig 9. Agreeability between assemblers. Venn diagram showing the extent to which contigs produced by each assembler, when run on simulated data,

agree in their representation of the species-specific cDNA reference transcripts. The key indicates the colour of the circle representing each assembler.

https://doi.org/10.1371/journal.pcbi.1009631.g009
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contig length, Fig 11 and Table 6. CStone achieved notably strong correlations indicating

assembly success, but the number of cDNA reference transcripts matched are on average 13%

lower. This is likely due to the absence of overly large contigs above 5000 nt in length; where

internal regions match many different reference transcripts. The largest contigs produced by

CStone for whole-adult 1 and whole-adult 2 were 7,483 and 6,492 nt, while for Trinity and

rnaSPAdes these numbers were 20,628 and 26,446 nt as well as 19,131 and 20,865 nt. CStone

produced 19 such contigs for whole-adult 1 and 29 for whole-adult 2, while for Trinity the

numbers were 3,666 and 7,742 and for rnaSPAdes they were 1,543 and 1,471.

Fig 10. Overall length of contigs produced on real data. On the x-axis the dataset source along with the sample is identified. The numbers on the top indicate the total

number of sequences present. Values covered by box and whiskers are the same as those described for Fig 4. The numbers of contigs above 5000 nt in length are indicated

within Table 5.

https://doi.org/10.1371/journal.pcbi.1009631.g010

Table 5. Summary of the lengths of assembled contigs relative to the cDNA reference transcripts based on real data.

Source Min. length Median length Mean length Max. length Total no of Contigs Above 5000 nt % above 5000

Whole adult 1 CStone 200 444 652 7483 63,696 19 0.03

rnaSPAdes 49 297 975 19131 48,434 1,543 3.19

Trinity 201 967 1784 20628 46,499 3,666 7.88

Whole adult 2 CStone 200 446 654 6492 63,873 29 0.05

rnaSPAdes 49 333 1016 20865 46,605 1,471 3.16

Trinity 187 1482 2322 26556 60,133 7,642 12.71

https://doi.org/10.1371/journal.pcbi.1009631.t005

PLOS COMPUTATIONAL BIOLOGY CStone: A graph based short-read de novo transcriptome assembler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009631 November 23, 2021 15 / 24

https://doi.org/10.1371/journal.pcbi.1009631.g010
https://doi.org/10.1371/journal.pcbi.1009631.t005
https://doi.org/10.1371/journal.pcbi.1009631


To investigate what proportion of contigs greater than 5000 nt in length were due to viral

contamination, all viral reference genomes (�10,000) from NCBI were downloaded (https://

www.ncbi.nlm.nih.gov/labs/virus/). For whole-adult 1, out of the 1,543 and 3,666 contigs from

rnaSPAdes and Trinity, a single match to a Nora virus genome, identified using megablast,

was observed (S1 Table). Out of the 19 contigs from CStone no match occurred. For contigs

below, or equal to, 5000 nt in length, each assembler produced just three matches, where the

length of the matching region was above 200 nt. For CStone two of these being to the Nora

Table 6. Summary of percent identity between contigs and cDNA reference transcripts for the alignments represented in Fig 8 based on simulated data.

Species Source Min. % identity Median %

identity

Mean % identity Max. % identity No. of cDNA transcripts

matched

% of total cDNA

transcripts

Whole adult

1

CStone 71.6670 99.7850 99.4143 100 21915 82.14

rnaSPAdes 71.9070 99.6770 99.4088 100 25739 96.47

Trinity 71.9070 99.6760 99.4120 100 25523 95.66

Whole adult

2

CStone 70.8950 99.7640 99.4033 100 22261 81.18

rnaSPAdes 71.5970 99.6650 99.3990 100 25946 94.62

Trinity 71.5970 99.6640 99.4050 100 25671 93.62

https://doi.org/10.1371/journal.pcbi.1009631.t006

Fig 11. Length of aligned region versus length of contig. R2 values, located on the top right corners, indicate the correlation between contig lengths and aligned region

lengths. The description of the rest of the figure is identical to that of Fig 5.

https://doi.org/10.1371/journal.pcbi.1009631.g011
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virus previously identified. These results indicate that for whole-adult 1 contamination by

virus genomes was minimum. For whole-adult 2 a similar outcome was seen (S2 Table).

For contigs greater than 5000 nt in length, the proportion of aligned regions, relative to con-

tig length, are lower and have an increased range (Fig 12). This is likely due to contigs being

overly extended relative to their best cDNA reference transcript match and/or having internal

regions that do not align. Importantly for all assemblers, contigs below or equal to 5000 nt in

length, produced far higher portions of aligned regions indicating completeness relative to

matching cDNA references; those from CStone possessing the narrowest range of high values.

Similar to the simulated datasets, general agreement between the three assemblers for these

data was high (Fig 13), although that between rnaSPAdes and CStone was highest; possibly

due to the larger kmer sizes used by both the latter (S1 Fig).

Fig 12. Proportions of each contig aligned. Boxes indicate the proportion of each contig aligned relative to its length.

Values covered by box and whiskers are the same as those described for Fig 4.

https://doi.org/10.1371/journal.pcbi.1009631.g012
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(3) Effects of chimerism on differential expression

As the level of chimerism is increased within the reference set used, whilst the ten read datasets

remain constant, the number of differentially expressed transcripts identified between condi-

tions A and B varies (Fig 14); demonstrating that chimera presence is having an effect on their

identification. Within the first Venn diagram, following just a 5% increase in chimeras relative

to the non-chimeric reference set, there are 216 transcripts no longer detected as being differ-

entially expressed (light grey), whilst there are 225 transcripts that are differentially expressed

but that were not previously (dark grey). This trend continues up to the Venn diagram that

compares the list of differentially expressed genes obtained using the 50% chimeric reference

set. In this case there were many overly expressed transcripts due to the way in which back-

ground variation, and over expression, was applied. In non-simulated cases, where there is

potential for few, to hundreds, of de novo assembled contigs being differentially expressed, it is

important to be aware of the possibility of chimerism within each contig for two reasons.

Firstly, individual chimeric contigs called as being differentially expressed are less than reliable

having had their read counts altered erroneously during mapping and secondly, the presence

of chimerism within the reference dataset as a whole has consequences for the count distribu-

tions used when calling differentially expressed contigs [49], whether those individual contigs

are chimeric or not.

Fig 13. Agreeability between assemblers. Venn diagram showing the extent to which contigs produced by each assembler, when run on real data, agree in their

representation of the species-specific cDNA reference transcripts. The key indicates the colour of the circle representing each assembler.

https://doi.org/10.1371/journal.pcbi.1009631.g013
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Conclusion

CStone produces contigs of comparable quality to the two well-established assemblers that it

was tested against. More importantly, it adds additional information to the output in relation

to chimerism that: (i) can benefit the user, and research community as a whole, during the pre-

sentation and discussion of results, by maintaining the context of the ambiguities associated

with chimerism when relevant and, (ii) is adaptable to the output of any de novo assembly tool

implementing a graph-based approach. Additionally, we have demonstrated that the existence

of chimeras within reference sets used for differential expression experiments has an effect on

the detection of differentially expressed genes, thus highlighting the need to develop bioinfor-

matics tools that aid in the quantification of such chimeras during de novo assembly.

Availability

CStone is freely available, along with usage instructions, test data and source code, at the Sour-

ceForge project page: https://sourceforge.net/projects/cstone/. Simulated datasets used within

our analysis are available on the open-access repository Zendo and are associated with the url’s

https://doi.org/10.5281/zenodo.5589533 [64] and https://doi.org/10.5281/zenodo.5589427

[71].

Future directions

Areas of ongoing work include: (i) the incorporating of specialized data transformation and

compression algorithms [73] into CStone in order to decrease assembly times and memory

requirements. (ii) The sub-division of the level three graph classification category in order to

associate each contig derived from such graphs with a likelihood score describing the extent of

chimerism; such a score being dependent on the number of starting and end nodes as well as

Fig 14. Detection of differentially expressed genes in the presence of chimerism. Light grey circles represent the number of identified differentially expressed genes,

between the conditions A and B, that were detected in the absence of chimeric reference transcripts. Dark grey circles represent the number detected in the presence of

chimerism, the extent of which is indicated as the percent value.

https://doi.org/10.1371/journal.pcbi.1009631.g014
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the number and types of cycles present and (iii) on going maintenance and development of

the tool to further enhance the quality of contigs produced based on user feedback. All devel-

opments will be released through the SourceForge project page.

Supporting information

S1 Fig. Unique kmer counts (y-axis) of specified length (x-axis) extracted from simulated

reads. Reads were simulated from the four species (indicated on right) as described under the

“Demonstration” heading of the Design and Implementation section of the manuscript.

Above kmer size of 18 little difference is observed in the number of unique kmers extracted.

Kmer sizes from 1 to 18 show a marked increase as kmer frequency as size is incremented in

steps of 1. This indicates that for these small kmers, shared kmers by chance (or kmer colli-

sions) between different gene families and gene regions are more likely. For example, for kmer

sizes of 4 there are only 256 unique permutations to describe the entire read dataset. Assem-

blies using kmers of this size would produce spurious sets of contigs that are highly chimeric.

The three assemblers used in this study were Trinity, CStone and rnaSPAdes and have default

kmer sizes of 25, 40 and 55 respectively, as indicated with the dashed vertical lines.

(TIF)

S2 Fig. Graph sizes within CStone. Following the edge connection step within CStone groups

of connected edges, i.e. graphs, are extracted prior to the software identifying contigs. The size

range of these networks (box and whiskers) and total numbers (top) are indicated for each of

the simulated datasets (same as for S1 Fig) from the four species used within this study. Boxes

represent the sizes falling within the inter quartile ranges. The median is shown within each

box. Whiskers extend to the furthest data point that is within 1.5 times the inter quartile range

and points beyond this are outliers (black circles).

(TIF)

S3 Fig. Mapping reads back to the cDNA transcripts from which they were simulated. Sim-

ulated reads containing no sequencing error, and distributed evenly across all transcripts, were

mapped back to the cDNA transcripts from which they were generated in order to visualize

the expected linear relationship between mapped read count and cDNA reference transcript

length. Subsequent contigs assembled from these reads should also reflect this linear relation-

ship, if not it is the first indication of poor quality assemblies.

(TIF)

S4 Fig. Percent sequence identity within regions aligned between contigs and cDNA refer-

ence transcripts. These plots are a visualization of the sequence identities presented in

Table 6.

(TIF)

S1 Table. Virus reference genomes from NCBI that matched with contigs representing

whole-adult 1 using megablast.

(DOCX)

S2 Table. Virus reference genomes from NCBI that matched with contigs representing

whole-adult 1 using megablast.

(DOCX)

S1 Method. Demonstrating the effects of chimerism on differential expression analysis.

(DOCX)
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