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It has been demonstrated that vagus nerve stimulation (VNS) plays a protective role in ischemia/reperfusion (I/R) injury of various
organs. The present study investigates the protective effect of VNS on hepatic I/R injury and the potential mechanisms. Male
Sprague-Dawley rats were randomly allocated into three groups: the sham operation group (Sham; n = 6, sham surgery with
sham VNS); the I/R group (n = 6, hepatic I/R surgery with sham VNS); and the VNS group (n = 6, hepatic I/R surgery plus
VNS). The I/R model was established by 1 hour of 70% hepatic ischemia. Tissue samples and blood samples were collected after
6 hours of reperfusion. The left cervical vagus nerve was separated and stimulated throughout the whole I/R process. The
stimulus intensity was standardized to the voltage level that slowed the sinus rate by 10%. VNS significantly reduced the
necrotic area and cell death in I/R tissues. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST),
and lactate dehydrogenase (LDH) were also decreased by VNS. In addition, VNS suppressed inflammation, oxidative stress, and
apoptosis in I/R tissues. VNS significantly increased the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme
oxygenase-1 (HO-1) in the liver. These data indicated that VNS may attenuate hepatic I/R injury by inhibiting inflammation,
oxidative stress, and apoptosis possibly via the Nrf2/HO-1 pathway.

1. Introduction

Hepatic ischemia/reperfusion (I/R) damage often occurs
during liver surgery procedures, such as liver resection
and liver transplantation [1]. Despite the rapid technologi-
cal advances in liver surgery, hepatic I/R injury remains a
critical concern and can lead to liver dysfunction, remote
organ failure, and high morbidity and mortality rates [2].
Unfortunately, the curative effect of the current therapeutic
strategies is still very limited. Therefore, seeking novel
effective treatments to prevent this injury is necessary.

As a transcription factor, nuclear factor erythroid 2-
related factor 2 (nrf2) participates in regulating oxidative
stress in organs. Under physiological conditions, Nrf2 is
mainly localized in the cytoplasm. When activated by
various stimuli, Nrf2 transfers into the nucleus and

upregulates relevant cytoprotective enzymes, including
heme oxygenase-1 (HO-1) [3, 4]. Many researches indicate
that the Nrf2/HO-1 pathway is closely involved in alleviating
hepatic I/R injury [5–7].

A number of studies have demonstrated that vagus nerve
stimulation (VNS) plays a protective role in I/R injury of the
kidney, heart, and other organs [8–10]. Hepatic vagotomy
has been reported to aggravate hepatic injury and cell apo-
ptosis induced by I/R, indicating the protective role of the
hepatic vagus nerve [11]. Furthermore, α7nAChR activation
has been shown to enhance the Nrf2/HO-1 pathway [12–15].
Unfortunately, it is still unclear whether VNS can protect
against hepatic I/R injury. In the current experiment, an
acute model of hepatic I/R injury in rats was used to evaluate
the protective effect of VNS, and the potential mechanisms
were explored.
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2. Materials and Methods

2.1. Animal Preparation. All experimental operations were
approved by the Animal Care and Use Committee of Wuhan
University and strictly conformed to the Guide for the Care
and Use of Laboratory Animals. The male Sprague-Dawley
rats (each weighing 220-260 g) used in the present study were
purchased from the Animal Center of Wuhan University.
Eighteen rats were allocated into three groups: the sham
operation group (Sham; n = 6); the I/R group (n = 6); and
the I/R+VNS (VNS) group (n = 6). The rats were housed in
cages with an alternating 12-hour light/dark cycle and a
controlled temperature (24°C) and had no restriction on
food and water. All animals were fasted for 8 hours before
surgeries. During the experiment, a surface electrocar-
diogram in rats was recorded with a BIOPAC system
(MP150, Goleta, USA).

2.2. Model of Hepatic I/R Injury. An acute model of segmen-
tal (70%) hepatic ischemia was established according to Ni
et al. [11]. All rats were anesthetized with pentobarbital
(1%, 40mg/kg) intraperitoneally. After a midline laparotomy
was performed, the portal triad to the left and median liver
lobes was separated and occluded by a noninvasive vascular
clamp. The partial hepatic ischemia lasted for 1 hour. The
clamp was then removed, and the abdominal wound was
sewed. After 6 hours of reperfusion, blood samples from
the portal vein and liver tissues from the ischemic lobes were
collected for further detections. Animals in the Sham group
underwent the same surgery except the occlusion. The
protocol is outlined in Figure 1(a).

2.3. Vagus Nerve Stimulation. The hepatic vagus branches
originate from the left vagus nerve. Therefore, we chose the
left vagus nerve as the stimulating target. Left cervical
incision was performed to expose the left cervical vagal trunk.
A pair of self-made silver electrodes and a stimulator
(S20, Jinjiang, Chengdu City, China) were used to deliver
the high-frequency stimulation (HFS) (see Figure 1(b)).
The stimulus frequency was 20Hz, and the duration
was 0.1 millisecond. The stimulus intensity was standardized
to the voltage level that slowed the sinus rate by 10% and
adjusted each hour, according to Liu et al. [16]. In the Sham

group and the I/R group, the vagus nerve was exposed and
the electrodes were placed, while no electrical stimulation
was delivered.

2.4. Histological Examinations. Liver damage was detected by
histological examinations. The liver tissues of the ischemic
lobes were fixed with paraformaldehyde and embedded in
paraffin. The tissues were cut into sections (4μm thick) with
a microtome and stained with hematoxylin and eosin (H&E).
Suzuki classification was used to grade histological injury
from 0 to 4, according to the degree of sinusoidal congestion,
vacuolization of hepatocyte cytoplasm, and hepatocyte
necrosis [17]. The percentage of the necrotic area was
quantified in at least 5 fields per liver sample. Terminal deox-
ynucleotidyl transferase dUTP nick end labeling (TUNEL)
staining was performed to determine hepatocyte apoptosis,
according to the manufacturer’s protocol (Roche, Shanghai,
China). Liver sections were dewaxed in xylene and then
hydrated with graded ethanol. After being treated with
protease K (20μg/mL), the sections were washed in
phosphate-buffered saline (PBS). The liver sections were then
incubated in a TUNEL reagent for 60 minutes at 37°C in the
dark and washed again. After that, 4′,6-diamino-2-phenylin-
dole (DAPI) was used and the sections were incubated in the
dark. The percentage of TUNEL-positive hepatocytes was
calculated in 3 random high-power fields under an inverted
fluorescence microscope (Nikon ECLIPSE TI-SR, Japan).

2.5. Serum Biochemical Measurements. Blood samples were
collected and centrifuged to separate the serum (3,000 rpm,
15 minutes). Levels of alanine aminotransferase (ALT),
aspartate aminotransferase (AST), and lactate dehydrogenase
(LDH) were detected using the ADVIA 2400 Chemistry
System (Siemens, Erlangen, Germany).

2.6. Liver Biochemical Measurements. Levels of malondialde-
hyde (MDA) and glutathione (GSH) and activities of super-
oxide dismutase (SOD) and catalase (CAT) were measured
in the liver homogenate using different assay kits (Nanjing
Jiancheng Bioengineering Institute). The concentrations of
GSH and MDA were estimated according to the instructions
of the respective kits and were reported as nmol/mg protein.
SOD activity was tested by the xanthine oxidase technique,
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Figure 1: Schematic illustration of the (a) experimental protocol and (b) location of the left vagus nerve. Sham: sham operation;
I/R: ischemia-reperfusion; VNS: vagus nerve stimulation.
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and CAT activity was detected by a peroxide indicator assay;
both were expressed as U/mg protein.

2.7. Quantitative Real-Time Polymerase Chain Reaction (RT-
PCR). Total mRNA was extracted from liver tissues using a
TRIpure reagent (ELK Biotechnology) according to the
manufacturer’s protocols. The synthesis of first-strand cDNA
was performed using M-MLV Reverse Transcriptase (ELK
Biotechnology). The expression levels of the target genes
were measured with EnTurbo™ SYBR Green PCR SuperMix
(ELK Biotechnology) using a StepOne™ RT-PCR thermocy-
cler (Life Technologies). The mRNA level of each gene was
normalized to the β-actin mRNA level of the same sample
using the delta-delta CT method. All RT-PCR primer
sequences are listed as follows: IL-1β 5′-ATGAAAGACG
GCACACCCAC-3′ and 5′-GGTGCTGATGTACCAGTT
GGG-3′; IL-6 5′-GCCAGAGTCATTCAGAGCAAT-3′
and 5′-CTTGGTCCTTAGCCACTCCT-3′; TNF-α 5′-
CACCACGCTCTTCTGTCTACTG-3′ and 5′-GCTACGG
GCTTGTCACTCG-3′; and β-actin 5′-CGTTGACATCC
GTAAAGACCTC-3′ and 5′-TAGGAGCCAGGGCAGTA
ATCT-3′.

2.8. Western Blotting Analysis. The levels of Bcl-2, Bax,
nuclear factor (NF)-κB p65, phosphorylated p65 (p-p65),
and HO-1 were measured in liver lysates, and the level of
Nrf2 was detected in nuclear lysates. A protein sample from
each rat was determined. And the protein expression of each
sample was visualized as a protein band. Briefly, equal
amounts of denatured protein were separated by SDS-
PAGE. Then, the protein was transferred to a polyvinylidene
fluoride (PVDF) membrane. After that, the membranes were
blocked with 5% nonfat milk for 1 hour and incubated with
primary antibodies (Bcl-2, Abcam; Bax, CST; HO-1, Abcam;
NF-κB p65, Abcam; p-p65, Abcam; Nrf2, Abcam; β-actin,
Abcam; and Histone H3, CST) at 4°C overnight. Membranes
were then washed in TBST and incubated with anti-rabbit
secondary antibodies. The relative protein expression was
normalized to β-actin (total protein) or histone H3 (nucle-
oprotein) and quantified with image analyzer software
(AlphaEase FC, USA).

2.9. Statistical Analysis. All continuous data are expressed as
the mean ± SD. Comparisons between the different groups
were performed by one-way ANOVA. The data were ana-
lyzed with GraphPad Prism 6.0 software. Differences were
considered to be significant at p < 0 05.

3. Results

3.1. VNS Ameliorated Hepatic I/R Injury. Histological exam-
inations and blood detections were performed to determine
hepatocellular damage. The necrotic area was dramatically
enlarged in the I/R group, as shown by H&E staining (see
Figures 2(a)–2(c)). The VNS group showed a marked reduc-
tion in necrotic liver tissue compared to the I/R group (see
Figures 2(a)–2(c)). In parallel, higher Suzuki scores were
observed in the I/R group compared to those in the Sham
group (see Figure 2(b)). Additionally, Suzuki scores were

lowered by VNS (see Figure 2(b)). Consistent with the histo-
logical alterations, hepatic I/R markedly elevated serum AST,
ALT, and LDH levels (see Figures 2(d) and 2(e)), indicating
impaired liver function. The VNS group exhibited a reversal
of this dysfunction, which was evidenced by lower levels of
AST, ALT, and LDH (see Figures 2(d) and 2(e)). TUNEL-
positive hepatocytes were increased in the I/R group (see
Figures 3(a) and 3(b)). On the contrary, the percentage of
TUNEL-positive hepatocytes was markedly reduced in the
VNS group compared to that in the I/R group (see
Figures 3(a) and 3(b)). These findings indicated that VNS
improved hepatic I/R injury.

3.2. VNS Reduced Hepatic Apoptosis by Regulating the
Expression of Bcl-2 and Bax. To evaluate the cell apoptosis
in the ischemic tissues, the expression levels of Bcl-2 and
Bax were detected. In the I/R group, the level of Bcl-2,
which inhibits apoptosis, was significantly decreased (see
Figures 4(a) and 4(b)). Moreover, the level of Bax, which
induces apoptosis, was increased (see Figures 4(a) and 4(c)).
In contrast, VNS reversed these changes (see Figures 4(a)–
4(c)). The above results indicated that VNS reduced the
extent of apoptosis through Bcl-2 and Bax.

3.3. VNS Inhibited Inflammation in the Liver. The mRNA
levels of inflammatory cytokines were measured to evaluate
inflammation in the liver. IL-1β, IL-6, and TNF-α mRNA
levels were elevated in the I/R group (see Figures 5(a)–5(c)).
On the contrary, VNS lowered the mRNA levels of those
inflammatory cytokines (see Figures 5(a)–5(c)), compared
with those in the I/R group. Additionally, hepatic I/R notably
increased the protein expression of NF-κB p-p65, and VNS
reversed this increase (see Figures 5(d) and 5(e)). These
results suggested that VNS inhibited inflammation induced
by I/R injury.

3.4. VNS Alleviated Oxidative Stress in the Liver. To evaluate
the effect of VNS on hepatic oxidative stress, the levels of
MDA and GSH, as well as SOD and CAT activities, were
examined in the different groups. As a prooxidative stress
indicator, MDA was increased significantly in the I/R group
(see Figure 6(a)). However, this increase was reversed by
VNS (see Figure 6(a)). The level of GSH, a powerful anti-
oxidant, was noticeably reduced in the I/R group (see
Figure 6(b)). In contrast, VNS elevated the level of GSH
compared with that of I/R (see Figure 6(b)). The activities
of SOD and CAT, two important antioxidant enzymes, were
significantly inhibited in the I/R group (see Figures 6(c) and
6(d)). In contrast, the activities of these enzymes were
enhanced in the VNS group compared with those in the I/R
group (see Figures 6(c) and 6(d)). These results suggested
that VNS reduced oxidative stress in the I/R liver.

3.5. VNS Activated the Nrf2/HO-1 Pathway in the Liver.
Hepatic I/R markedly increased the protein levels of Nrf2
and HO-1 (see Figures 7(a)–7(d)). And VNS markedly aug-
mented these increases in the liver (see Figures 7(a)–7(d)).
These results indicated that the activation of the Nrf2/HO-1
pathway induced in the I/R liver was enhanced by VNS.
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4. Discussion

4.1. Major Findings. In the current study, VNS throughout
the hepatic I/R procedure significantly attenuated liver
injury. Serum AST, ALT, and LDH levels were decreased,
and hepatocyte necrosis was reduced by VNS. Additionally,
VNS inhibited inflammation, oxidative stress, and apopto-
sis induced by hepatic I/R. Furthermore, VNS markedly
enhanced Nrf2/HO-1 signaling in the liver, which may
be a potential mechanism underlying its effect.

4.2. VNS Protects against Hepatic I/R Injury. VNS is an FDA-
approved clinical treatment for drug-resistant depression
and medically intractable partial-onset seizures [18]. Accu-
mulating evidence from animal experiments has indicated
that VNS protects against I/R injury of various organs. Our
previous study verified that VNS applied to dogs significantly
reduced myocardial I/R injury [8]. Another study [9] also
reported that cerebral I/R injury could be alleviated by VNS
in a rat model. Similarly, Inoue et al. [10] found that pretreat-
ment of VNS markedly reduced acute kidney injury in mice.
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Figure 2: VNS ameliorated hepatic I/R injury. (a) Representative H&E staining images of liver tissues show necrotic areas in the three groups.
(b) The Suzuki scores and (c) the percentages of necrotic liver sections are shown. Levels of serum (d) AST, (e) ALT, and (f) LDH are
presented. ∗p < 0 05 vs. the Sham group; #p < 0 05 vs. the I/R group. AST: aspartate aminotransferase; ALT: alanine aminotransferase;
LDH: lactate dehydrogenase.
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Considering the similarity of physiopathological processes
in different I/R organs, we hypothesize that VNS can also
play a protective role in hepatic I/R. Furthermore, many
studies have revealed the importance of the autonomic
nervous system in several liver injuries, including I/R
injury. It has been proven that the sympathetic nervous
system participates in raising oxidative stress in the liver.
Lin et al. [19] have reported that hepatic oxidative stress
induced by carbon tetrachloride injection was relieved in
sympathectomized mice. Oben et al. [20] have also reported
that 6-hydroxydopamine, an agent used to induce chemical

sympathectomy, significantly improved liver injury in mice
with antioxidant-depleted diets. The vagus nerve system, as
a natural antagonist of the sympathetic nervous system, has
been demonstrated to play a vital role in ameliorating hepatic
I/R injury. Ni et al. [11] found that both hepatic vagotomy
and α7nAChR−/− could aggravate I/R-induced liver apo-
ptosis in mice. Moreover, numerous researches have sug-
gested that pretreatment with different acetylcholine
receptor agonists significantly reduced liver I/R injury in
mice [15, 21, 22]. These results suggest that the vagus nerve
system may protect the liver by activating α7nAChR. The
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Figure 3: VNS induced hepatocyte apoptosis. (a) Representative micrographs of immunofluorescence staining for TUNEL (green) and DAPI
(blue) in hepatocyte nuclei from the three groups. (b) The percentages of TUNEL-positive hepatocytes are shown. ∗p < 0 05 vs. the Sham
group; #p < 0 05 vs. the I/R group.
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Figure 4: VNS reduced hepatic apoptosis by regulating Bcl-2 and Bax. (a) Representative blots and relative protein levels of (b) Bcl-2 and (c)
Bax in liver tissues are shown. ∗p < 0 05 vs. the Sham group; #p < 0 05 vs. the I/R group.
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present study first reported that direct VNS can effectively
protect against hepatic I/R injury, consistent with these
previous studies.

4.3. Potential Mechanisms. Among a considerable variety of
underlying mechanisms in hepatic I/R injury, increased
inflammatory reactions play a pivotal part [5, 23]. The
VNS-mediated cholinergic anti-inflammatory pathway has
been well studied in the liver. Acetylcholine released by vagus
nerve terminals can bind to α7nAChR on Kupffer cells and
prevent the production of inflammatory cytokines [24, 25].
Several studies have reported that treatment with α7nAChR
agonists significantly inhibited hepatic NF-κB activation in
the I/R liver [15, 21]. In the current study, the inflammation
factor levels and NF-κB signaling in I/R tissues were reduced
by VNS, indicating that the cholinergic anti-inflammatory
pathway may be a potential mechanism.

Excessive production of reactive oxygen species in the
early phase of reperfusion is another critical factor in hepatic
I/R injury [26, 27]. Some prior researches have indicated that
the activation of antioxidative enzymes and antioxidants
significantly ameliorated hepatic I/R injury [28, 29]. Further-
more, our previous study showed that VNS reduced the level
of MDA and increased the activity of SOD in a canine
myocardial I/R model [8]. The present study indicated that
VNS decreased the level of MDA, elevated the level of GSH,
and activated SOD and CAT in the I/R liver. These data
suggest that VNS protects the I/R liver partly through its
antioxidative properties.

The Bcl-2 family, a crucial regulator of apoptosis, plays a
key role in I/R. Bcl-2 (an antiapoptotic protein) and Bax (a
proapoptotic protein) are well known to participate in the
occurrence of cell death in the I/R liver [30]. Our previous
study verified the regulatory effect of VNS on the Bcl-2 fam-
ily. VNS applied to myocardial I/R dogs markedly induced
the expression of Bcl-2 while inhibiting the expression of
Bax [8]. Similarly, in the present study, VNS exerted an
antiapoptotic effect through the Bcl-2 family. These results
indicate that the Bcl-2 family may be involved in the mecha-
nisms of the protection of VNS.

To investigate the deeper molecular mechanisms, the
expression levels of Nrf2 and HO-1 in I/R tissues were
measured. Accumulating evidence from studies has indicated
the protective effect of the Nrf2/HO-1 pathway against
hepatic I/R damage [5–7]. Kudoh et al. reported that deple-
tion of Nrf2 in mice aggravated inflammation, oxidative
stress, and cell apoptosis in the I/R liver, while activation of
Nrf2 significantly suppressed hepatic damage [7]. Moreover,
a large number of researches have demonstrated that the
Nrf2/HO-1 pathway can be induced by α7nAChR activation
[12–15]. Navarro et al. found that Nrf2 deletion removed the
neuroprotective effect of PNU282987, an α7nAChR agonist
[14]. Furthermore, in a hepatic I/R model, nicotine treat-
ment activated the Nrf2/HO-1 pathway and reduced I/R
injury. However, zinc protoporphyrin, an HO-1 inhibitor,
eliminated this protection [15]. These results indicate that
α7nAChR activation exerts its protective effect in an Nrf2-
dependent manner. Consistent with previous reports, our
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Figure 5: VNS inhibited inflammation in the liver. Relative mRNA levels of (a) IL-1β, (b) IL-6, and (c) TNF-α are shown. (d) Representative
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Figure 6: VNS alleviated oxidative stress in the liver. The effect of VNS on the levels of (a) MDA and (b) GSH in liver tissues is shown. The
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Figure 7: VNS activated the Nrf2/HO-1 pathway in the liver. (a) Representative blots and (b) relative protein levels of Nrf2 in liver tissues are
shown. (c) Representative blots and (d) relative protein levels of HO-1 in liver tissues are shown. ∗p < 0 05 vs. the Sham group; #p < 0 05 vs.
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study showed that VNS could significantly increase Nrf2/
HO-1 signaling in the I/R liver. Therefore, the Nrf2/HO-
1 pathway may act as a pivotal mediator for the protective
effects of VNS on hepatic I/R.

4.4. Clinical Implications. Hepatic I/R injury often occurs
in liver surgeries and remains a lethal threat. Here, we
demonstrated the protective effect of VNS on hepatic
I/R damage. VNS has been widely used for the treatment
of drug-resistant epilepsy and depression. Traditional VNS
requires device implantation, which limited its application.
Recent studies have demonstrated that auricular VNS, a non-
invasive stimulation of the vagus nerve, could achieve the
same effects as VNS [31, 32]. Therefore, this type of noninva-
sive VNS might be a novel therapeutic measure for hepatic
I/R in patients.

4.5. Study Limitations. There are several limitations in this
study. First, we used pentobarbital for anesthesia, which
may influence the autonomic nerve system. However, the
experiments in the three groups were performed under the

same anesthetic condition to eliminate this influence. Sec-
ond, the present study only revealed the activation of the
Nrf2/HO-1 pathway after VNS. The effect of VNS after inhi-
bition of Nrf2/HO-1 is supposed to be explored in our fur-
ther studies. Third, we delivered VNS only with the current
parameters. Further studies are needed to investigate the
most appropriate stimulation parameters. Last, we only
explored the acute effect of VNS on hepatic I/R injury in
the present study. The long-term impact remains unclear.

5. Conclusions

In conclusion, we provided evidence that VNS applied to an
acute hepatic I/R model significantly attenuated hepatic I/R
injury by inhibiting inflammation, oxidative stress, and apo-
ptosis in the liver. In addition, we found that VNS markedly
activated the Nrf2/HO-1 pathway in the liver. Considering
these results together, the present experiment demonstrated
that VNS may protect against hepatic I/R injury by enhanc-
ing Nrf2/HO-1 signaling (see Figure 8).
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Oxidative
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IL-1�훽
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SOD
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Figure 8: Schematic illustration of the protective effect of VNS on hepatic I/R injury and potential mechanisms. VNS protects against hepatic
I/R injury by inhibiting inflammation, oxidative stress, and apoptosis in the liver, possibly via the Nrf2/HO-1 pathway.
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