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High prevalence of p16 genetic alterations in head and
neck tumours

EC Miracca 1, LP Kowalski 2 and MA Nagai 1

1Disciplina de Oncologia, Departamento de Radiologia, FMUSP, Av Dr Arnaldo 455, 4 andar, São Paulo, CEP 01296-903, Brazil; 2Fundação Antônio Prudente,
Rua Antônio Prudente 211, São Paulo, CEP 01509-900, Brazil

Summary Inactivation of the p16 gene is believed to contribute to the tumorigenic process of several neoplasms, including head and neck
tumours. In the present study, DNA samples from paired tumour and adjacent normal tissue from 47 patients with squamous cell carcinoma
of the head and neck were investigated for the occurrence of p16 genetic alterations. Single-strand conformation polymorphism and direct
DNA sequence analysis led to the identification of p16 mutations in six cases (13%). Southern blot analysis showed that homozygous deletion
is a rare event in the group of tumours analysed. Loss of heterozygosity (LOH) analysis was performed by polymerase chain reaction (PCR)
using two microsatellite markers (IFNA and D9S171) from the 9p21 region. Taking into account only the informative cases, 17 of 32 tumours
(53%) showed LOH for at least one of the markers analysed. The methylation status of the CpG sites in the exon 1 of the p16 gene was
analysed using methylation-sensitive restriction enzymes and PCR amplification. Hypermethylation was observed in 22 (47%) of the head
and neck tumours analysed. In our series of head and neck tumours, evidence for inactivation of both p16 alleles was observed in 13 cases
with hypermethylation and LOH, two cases with hypermethylation and mutation, four cases with mutation and LOH and one case with
homozygous deletion. These findings provide further evidence that genetic alterations, especially hypermethylation and LOH, leading to the
inactivation of the p16 tumour suppressor gene are common in primary head and neck tumours. © 1999 Cancer Research Campaign
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The p16 tumour suppressor gene located on chromosome 9
encodes a 16 kDa protein that acts as a cyclin-dependent k
(cdk) 4/6 inhibitor (Serrano et al, 1993). This gene, whose loc
denominated CDKN2A, has also been named MTS1and p16ink4a

(Kamb et al, 1994a; Ranade et al, 1995). The CDKN2A ge
utilizes alternative first exons and common downstream exon
encode two structurally unrelated proteins, p16ink4a and p19arf,
which mediate cell cycle arrest through different mechani
(Quelle et al, 1995; Stone et al, 1995; Chin et al, 1998).

The progression of proliferating cells through the differ
phases of the cell cycle is highly regulated by activators 
inhibitors (Hunter and Pines, 1994). p16 belongs to an impo
group of proteins that includes the p15ink4b, p21waf1 and p27kip1,
which negatively regulate the G1 phase of the cell cycle (Ser
et al, 1993). The p16 gene product binds to cdk4 and c
inhibiting their association with cyclin D1. The inhibition of th
cyclin D1–cdk4/6 complex activity prevents retinoblasto
protein (pRB) phosphorylation and the release of E2F, leadin
the inhibition of the cell cycle in the G1/S transition (Serrano e
1993; Tam et al, 1994; Yeundall and Jakus, 1995). Gen
abnormalities inactivating the p16 gene might confer cell growth
advantages contributing to the tumorigenic process.
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Genetic alterations involving the chromosomal region 9p21
such as translocations, insertions, heterozygous and homoz
deletions are frequently observed in human cancer. The p16gene
is considered to be the deletion target in this region (Kamb 
1994b; Williamson et al, 1995). High frequencies of homozyg
deletion and mutations of this gene have been detected in cel
derived from different types of tumours (glioma, breast can
melanoma, lung, bladder, leukaemia) (Kamb et al, 1994a; Nobori
et al, 1994), suggesting that p16may play an important role in th
regulation of cellular growth in the majority of cells. However
primary tumours, p16genetic alterations occur frequently in only
subset of tumour types (Koh et al, 1995; Pollock et al, 1996).
highest frequencies of p16 inactivation by mutations and hom
zygous deletions are observed in carcinomas of the panc
oesophagus, renal cell, head and neck and in melanoma (Ca
al, 1994; Mori et al, 1994; Cairns et al, 1995; Flores et al, 1
Reed et al, 1996). Furthermore, germline p16 mutations pr
pose to familial melanoma (Hussussian et al, 1994; Kamb 
1994b).

Several studies have demonstrated high frequencies of lo
heterozygosity (LOH) on the short arm of chromosome
compared to the p16 mutations found in primary tumours. In a
tion, a complex pattern of LOH on 9p21–22 has been observ
different types of tumours, suggesting that this region may har
other tumour suppressor genes associated with the tumori
process (Puig et al, 1995; Farrell et al, 1997; Kim et al, 1997)
the other hand, de novo methylation has been proposed to 
important alternative mechanism of p16 gene inactivation. Merlo
et al (1995), studying cell lines and primary solid tumo
677
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678 EC Miracca et al
(carcinomas of the lung, head and neck and gliomas), de
strated that p16 hypermethylation is a common event in tho
tumours. Subsequent studies have confirmed that p16 is hyper-
methylated in carcinomas of the breast (31%), colon (40
gliomas (44%), oesophageal adenocarcinomas (38%) and mu
myeloma (75%) (Herman et al, 1995; Fueyo et al, 1996; Lo e
1996; Ng et al, 1997; Wong et al, 1997).

Chromosome 9p deletions are considered to play a role in
early stages of the tumorigenic process of the head and 
(Califano et al, 1996). High frequencies of LOH of the 9p21
chromosomal region have been reported in squamous cell c
nomas of the head and neck, including dysplasia and carcino
situ (Nawroz et al, 1994; van der Reit et al, 1994). Analysis ofp16
mutations, hypermethylation and homozygous deletions sho
that 7–79% of squamous cell carcinomas of the head and nec
at least one of those genetic events (Cairns et al, 1994; Zhang
1994; Lydiatt et al, 1995; Reed et al, 1996; Jares et al, 19
however, none of these studies have examined the bia
inactivation of the p16 and its relationship with the patien
clinicopathological characteristics or survival.

In this report, to investigate the role of the p16 genetic alter-
ations in head and neck tumours, we performed a comprehe
analysis of the mechanisms involved in p16 inactivation, such as
mutations, hypermethylation, homozygous and heterozyg
deletions. We further investigated whether there was a relation
between p16 inactivation and clinicopathological characterist
and survival of the patients.

MATERIALS AND METHODS

Tissue samples

Paired tumour and normal tissue were obtained from 47 pat
with primary head and neck squamous cell carcinoma, before
treatment, at the AC Camargo Hospital, São Paulo, Br
Tumours consisted of squamous cell carcinomas localized t
oral cavity (n = 25), oropharynx (n = 8), hypopharynx (n = 7) and
larynx (n = 7). Tumour samples were dissected to remove res
normal tissue before freezing and storage in liquid nitrogen
determine the amount of residual normal tissue, sections of tu
were stained with haematoxylin and eosin for histopatholog
examination. The amount of normal cell contamination in e
tumour sample was estimated by the pathologist to not ex
25%. The age of the patient at the time of operation ranged 
27 to 80 years (median 61). The study included a total of 40 m
and seven females. Information on smoking history and alc
intake was available from 36 and 31 patients respectively. Re
alcohol intake was declared by 83% of the smokers. The clin
stage of the patients was determined according to the UICC T
staging system and histopathological grade based on the W
classification.

DNA extraction

Tissue was ground to a powder using a Frozen Tissue Pulve
(Termovac), the powder was resuspended in 1 ml of lysis b
(10 mM Tris–HCl, pH 7.6, 1 mM EDTA and 0.6% sodium dodecy
sulphate (SDS) and 100µg ml–1 proteinase K, and incubated 
37° overnight. High molecular weight DNA was extracted w
phenol–chloroform and precipitated with ethanol.
British Journal of Cancer (1999) 81(4), 677–683
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LOH analysis

LOH for the chromosomal region 9p21–22 was analysed u
two polymerase chain reaction (PCR)-based polymor
markers, as described previously (Kwiatkowsky and Diaz, 1
Gyapay et al, 1994). Allelic losses were determined by den
metric scan (UltroScan XL; Pharmacia) as complete or part
the intensity of one allele was reduced by at least 40% in tu
DNA as compared with normal DNA of the same patient. L
was scored for informative (heterozygous) patients only.

PCR – single-strand conformation polymorphism
analysis

Two sets of oligonucleotide primers were used to amplify ex
1 and 2 of the p16gene, the primers used were the same as t
described by Okamoto et al. (1994) and Sun et al (1995). 
reactions were performed in 25-µl volumes using 50–100 ng o
genomic DNA template, 1µM of each primer, 1.5 mM magnesium
chloride, 200µM of each deoxynucleotide triphosphate, 0.1µCi
of [α32P-dCTP] (Amersham, specific activity, 3000 Ci mmol–1),
50 mM potassium chloride, 10 mM Tris–HCl pH 8.0, and 0.5 un
of Taq DNA polymerase (Pharmacia, NJ, USA). Samples w
overlaid with mineral oil and amplified for 35 cycles of denatu
tion, annealing and extension optimized for each primer set
reactions were performed with an automated Thermal C
(Perkin-Elmer 580). Amplification products (1µl) were diluted
tenfold in a buffer containing 95% formamide, 20 mM EDTA,
0.05% bromophenol blue and 0.05% xylene cyanol, heate
83°C for 5 min and applied (3µl per lane) on two 6% polyac
amide non-denaturing gel, one containing 5% glycerol and
other 10% glycerol.

Electrophoresis was performed at 6 W for 14–16 h at r
temperature with two cooling fans. Band shift mobility w
detected by autoradiography of dried gels using Kodak X-O
XAR film with an intensifying screen for 12–48 h at –70°C.

Direct DNA sequencing

DNA samples with suspected p16mutations as judged by singl
strand conformation polymorphism (SSCP) gels were ampl
using the same primers. The PCR products obtained were pu
using Wizard PCR Preps kit (Promega Corporation, Madison
USA) according to the manufacturer’s procedure. Three to 5µl of
ten out of the purified DNA was subjected to a dideoxy ch
termination reaction using a double-stranded DNA C
Sequencing kit (Pharmacia) for both sense and antisense pr
Sequencing reaction products were denatured and resolved 
denaturing urea/polyacrylamide gels. Gels were fixed for 15
in a 10% methanol/ 10% acetic acid solution, dried and expos
X-ray film overnight.

Homozygous deletion analysis

By Southern blot: high molecular weight DNAs (10µg) were
digested with EcoRI restriction endonuclease according 
manufacturer’s specification. Digested DNA samples w
electrophoresed in 0.8% agarose gels with ethidium bromide
transferred to nylon membranes, which were hybridized with
PE1 probe described by Merlo et al (1995) labelled w
[32P]dCTP by random priming. Membrane hybridizations 
© 1999 Cancer Research Campaign
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Table 1 p16 genetic alterations observed in head and neck tumours

Number of Alterations
Analyses cases analysed observed

PCR-SSCP Exon 1 47 2/47 (6%)
Exon 2 47 4/47 (8%)

Methylation assay Exon 1 47 22/47 (47%)
LOH IFNA 47 11/28 (39%)

D9S171 47 14/27 (52%)
Southern blot 47 1 case

CP68N CP68T

A  C  G  T A  C  G  T

C
C
A
C
T/A
C
T
C
A

G/A
T/C
C
G
G
T
C
A

T
G
G
C
G/C
G
G
C

CP51N CP51T

A  C   G   T A  C   G  T

CP56N CP56T CP46N CP46T

A  C  G  T  A  C  G  T  A  C  G  T  A  C  G  T

Figure 1 Sequencing analysis of p16 exons 1 and 2 mutations in head and
neck tumours. Case CP68 and CP51 showed a mis-sense mutation in exon
2 (codon 78, CTC→CAC, Leu→His) and in exon 1 (codon 16, CTG→CCA,
Leu→Pro) respectively. Case CP56 shows an intronic polymorphism

IFNA

D9S171

CP 94
NT

CP 12
NT

CP8
NT

CP 75
NT

N  T N  T N  T N  T

Figure 2 Representative autoradiographs from loss of heterozygosity
analysis of chromosome 9p in head and neck tumours. DNAs extracted from
tumour (T) and corresponding normal (N) tissues were analysed using
microsatellite markers IFNA and D9S171 as indicated on the left of the
autoradiographs. Top, case numbers; arrow, allele showing reduction in
intensity
washing were performed as described previously (Nagai 
1993). Southern blots were stripped of probe by sodium hydr
treatment and reprobed with a β-microglobulin probe to evalua
the amount of DNA loaded onto each lane. Scanning densito
of the autoradiographies was carried out to quantify the s
intensity of the hybridized bands using an UltroScan 
(Pharmacia). By PCR, the same primers used for the 
analysis were used to investigate the occurrence of homoz
deletions. PCR reactions were performed using 100 ng of ge
DNA in the same conditions described for the SSCP analys
with 24 cycles. Genomic DNA from the breast cancer cell
MCF-10F was used as positive control for homozygous dele
PCR products were analysed on a 2% agarose gel.

PCR-methylation assay

p16 methylation status was examined using the combinatio
digestion of genomic DNA with methylation-sensitive restric
enzymes and PCR amplification. Genomic DNA (1µg) was
digested with 10 units of HpaII, CfoI or SmaI overnight accordin
to manufacturer’s instructions. In order to ensure complete d
tion this step was repeated. Digested DNA samples were am
by PCR using primers specific for exon 1 of the p16gene (Kamb e
al, 1994a) and for a microsatellite marker (D9S145, 9q13–21
used as PCR control (Furlong et al, 1992). PCR was perfo
under the same conditions described for the SSCP an
without [α32P-dCTP], for 35 cycles of 94°C for 1 min, 55°C for
1 min, 72°C for 1 min and a final extension at 72°C for 5 min. The
PCR products were analysed by electrophoresis on 2% ag
gels.

Statistical methods

Analyses of statistical significance between the p16genetic alter
ations, and the clinicopathological characteristics of the pa
were performed by the χ2 test and Fisher exact test for freque
data in contingency tables. Disease-free survival and o
survival probabilities were calculated based on the Kaplan–M
product limit technique (Kaplan and Meier, 1958).

RESULTS

Paired normal and tumour DNA from 47 patients with head
neck cancer were examined for the occurrence of p16 genetic
alterations (Table 1). Exons 1 and 2 of p16 were analyse
mutations by PCR-SSCP. Seven out of the 47 cases an
showed evidence for p16 mutations (exon 1, three cases; exo
four cases). DNA samples showing electrophoretic band 
mobility were re-amplified and the product purified and u
© 1999 Cancer Research Campaign
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directly for sequencing. Sequencing revealed the presence 
mutations and one intronic polymorphism. Figure 1 shows re
sentative example of the sequencing analysis. Sequencing 
are summarized in Table 2. The p16mutations observed include
three mis-sense mutations (exon 1, codon 16, CTG→CCA,
Leu→Pro; exon 2, codon 78, CTC→CAC, Leu→His; and exon 2
codon 114, CCC→CTC, Pro→Leu), one frameshift mutatio
(exon 2, codon 85, 1 bp insertion), one non-sense mutation 
2, codon 80, CGA→TGA, Arg→Stop) and one intronic mutatio
(intron 1, G→T; splicing alteration). All tumours with mutation
were advanced stage tumours (two stage III and four stage
two in the oral cavity, two in the larynx and two in t
hypopharynx.
British Journal of Cancer (1999) 81(4), 677–683
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Table 2 Summary of the p16 mutations observed in head and neck tumours

Case Exon Codon Mutation Effect

CP 1 Intronl G→T Splicing alteration
CP 16 2 80 CGA→TGA Arg→Stop
CP 28 2 85 1 bp insertion Frameshift
CP 30 2 114 CCC→CTC Pro→Leu
CP 51 1 16 CTG→CCA Leu→Pro
CP 68 2 78 CTC→CAC Leu→His

Table 3 Associations between p16 biallelic inactivation and the
clinicopathological characteristics of 47 patients with head and neck tumours

biallelic inactivation

Characteristics Categories N No Yes P-value a

Age ≤ 50 years 9 5 4
> 50 years 38 25 13 0.57

Gender Male 40 25 15
Female 7 5 2 0.65

Tumour site Oral cavity 24 16 8
Oropharynx 8 4 4
Hypopharynx 7 4 3
Larynx 7 5 2 0.75

Lymph-node status Negative 22 13 9
Positive 25 17 8 0.53

Histological gradeb I 31 19 12
II 10 7 3
III 6 4 2 0.87

Tumour stagec I 1 – 1
II 5 3 2
III 20 15 5
IV 21 12 9 0.31

Tobacco consumption Smoker 36 23 13
Non-smoker 6 5 1 0.33

Alcohol consumption Drinker 31 20 11
Non-drinker 10 8 2 0.35

aChi-square test; bUICC TNM staging system; cWHO classification. 
The occurrence of homozygous deletions was investigate
Southern blotting and PCR. Only one tumour DNA sam
showed reduction (40%) in the intensity of the bands in the a
radiograms when compared with the corresponding normal D
(data not shown), suggesting the occurrence of homozygous
tion.

LOH was analysed by PCR using two microsatellite mark
IFNA and D9S171, flanking the p16 locus (CDKN2). IFNA a
D9S171 showed allelic loss in 11/28 (39%) and 14/27 (5
informative cases respectively. Of the 32 informative tumo
examined 17 (53%) showed LOH for at least one of the mar
analysed. Representative results of the LOH analysis are sho
Figure 2.

Methylation status of the CpG sites in exon 1 of the p16 gene
was examined using methylation-sensitive enzymes (HpaII, SmaI
and CfoI) and PCR amplification. Hypermethylation was detec
in 22 of 47 cases analysed (47%). Tumours with different patt
of DNA methylation are shown in Figure 3. The absence 
310 bp PCR product for exon 1 of the p16gene indicates that th
HpaII, SmaI and/or CfoI restriction sites were unmethylated a
had been cleaved (case CP44T). However, the presence 
310 bp PCR product resistant to digestion with methylat
sensitive enzymes indicates the occurrence of de novo methy
(cases CP13T and CP88T).

In the present study, taking in account only the informa
patients, p16biallelic inactivation was found in 59% (19/32) of th
British Journal of Cancer (1999) 81(4), 677–683

p16

D9S145

CP44T CP13T

Exon 1 p16 Exon 1 p16

CP 44N CP 44T CP 13N CP
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l

Figure 3 Analysis of methylation status of the CpG island in exon 1 of the p16 ge
digestion with HpaII, SmaI or CfoI indicates de novo methylation. A representation 
right. Case CP13T showed methylation at the HpaII and SmaI sites; Case CP88T s
complete digestion at all restriction sites examined indicating absence of methylatio
the
-
on

head and neck tumours analysed; 13 cases with hypermethy
and LOH; four cases with mutation and LOH; and two informa
cases with retention of heterozygosity showing concomi
hypermethylation and mutation. In addition, homozygous dele
was observed in one case.

In the series of tumours examined no correlations were fo
between p16 genetic alterations (mutation, hypermethylation a
LOH together or alone) and age, tumour site, TNM stag
© 1999 Cancer Research Campaign
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Figure 4 Kaplan–Meier estimates of disease-free (A) and overall (B) survival in head and neck patients stratified according to the p16 biallelic inactivation.
■■, patients with tumours showing p16 biallelic inactivation; ●●, patients with tumours without p16 biallelic inactivation (A, P = 0.74; B, P = 0.73)
histological differentiation, positive lymph nodes or tobacco 
alcohol consumption of the patients (Table 3). In addition
differences in survival were found between patients stratified
p16 hypermethylation or biallelic inactivation (median survi
36.71 months) (Figure 4).

DISCUSSION

Mutations, homozygous and heterozygous deletions and h
methylation are the most common genetic events associated
the p16 tumour suppressor gene inactivation. In the present s
we found evidence of p16 inactivation in a high proportion (59%
of the head and neck tumours examined.

Thirteen per cent of the tumours analysed were found to 
p16mutations. The base substitutions in exon 2 were at codon
© 1999 Cancer Research Campaign
o
r

r-
ith
y,

e
8,

80 and 114 located within the ankyrin domains (Serrano e
1993). Mutations at codon 114 involved a highly conser
proline (P114) in the fourth ankyrin domain. Hence, the affec
codons involve amino acids in domains which are likely to
essential for p16biological activity. Although, the exon 2 is shar
by p16ink4a and p19arf (Serrano et al, 1996; Chin et al, 199
experimental evidence indicates that mutations at exon 2 o
CDKN2A affects p16ink4a only (Arap et al, 1997). In addition, exo
1β of the CDKN2A appears to be critical for p19arf function, both
binding of p19arf to p53 and cell cycle arrest requires exon 1β but
not exon 2 (Quelle et al, 1997; Kamijo et al, 1998). Furtherm
in the present study we have observed a point mutation in
acceptor site of intron 1 and a missense mutation in exonα
(codon 16) implicating p16ink4a as the major target of inactivatio
in the head and neck tumours analysed.
British Journal of Cancer (1999) 81(4), 677–683
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Although homozygous deletions has been reported to b
important mechanism of p16 inactivation in several huma
cancers, including head and neck tumours (Reed et al, 199
our series of tumours only one tumour showed evidence
homozygous deletion. Despite the fact that Southern blot and
analyses were used to examine the occurrence of homozy
deletions, we cannot rule out the possibility that normal 
contamination could account for the exquisitely low frequenc
homozygous deletion found in the present study.

LOH and DNA hypermethylation were observed in 53% a
47% of the cases analysed respectively, representing the 
mechanisms which may lead to p16 inactivation. In total 59%
(19/32) of the informative patients with head and neck tumo
examined showed evidence of p16 biallelic inactivation. Overall,
20% (4/20) of the cases with biallelic inactivation showed m
tion and hypermethylation, 10% (2/20) showed mutations 
LOH, 65% (13/20) showed hypermethylation and LOH and 
(1/20) showed homozygous deletion. These observations ind
that LOH and hypermethylation leading to p16 inactivation
common in head and neck tumours. These results are simi
those of Wong et al (1997) in oesophageal adenocarcinoma
corroborate with previous studies that have demonstrated 
incidence of p16 hypermethylation in head and neck tum
(El-Naggar et al, 1997; Gonzáles et al, 1997).

To assess the prognostic potential of p16 inactivation in
development of head and neck tumours the genetic altera
observed (alone and in combination) were correlated with
clinicopathological characteristics (such as age, tumour 
lymph node status, clinical stage, histological grade) and pa
outcome. Our study failed to demonstrate any correlation betw
p16 inactivation and these clinicopathological characteristics
survival of the patients. LOH of chromosomal region 9p21 
been postulated to be an early event in head and neck c
(Califano et al, 1996) and p16 inactivation has been detected 
preneoplastic lesions of the larynx and oral cavity (Gallo e
1997; Papadimitrakopolou et al, 1997). Our failure to find pr
nostic significance for the p16 genetic alterations might sugge
that p16 inactivation is an early event in carcinogenesis in
subgroup of head and neck tumours but with little or no influe
on further tumour progression. The high frequence of tum
with p16 biallelic inactivation observed here provides furth
support to previous report (Reed et al, 1996) that p16 tumour
suppressor gene does play an important role in the tumorig
process of the head and neck. This hypothesis is also suppor
observations that p16 expression inhibits growth in cell line
derived from squamous cell carcinomas of the head and 
(Liggett et al, 1996). However, whether p16 inactivation is an
important predictor for prognosis and disease outcome needs
clarified by further molecular epidemiological studies.
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