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Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease, with large variation in survival be-
tween patients. Currently, it remains rather difficult to predict survival based on clinical parameters alone.
Here, we set out to use clinical characteristics in combination with MRI data to predict survival of ALS patients
using deep learning, a machine learning technique highly effective in a broad range of big-data analyses. A
group of 135 ALS patientswas included fromwhomhigh-resolution diffusion-weighted and T1-weighted images
were acquired at thefirst visit to the outpatient clinic. Next, each of the patientswasmonitored carefully and sur-
vival time to deathwas recorded. Patientswere labeled as short,mediumor long survivors, based on their record-
ed time to death as measured from the time of disease onset. In the deep learning procedure, the total group of
135 patients was split into a training set for deep learning (n = 83 patients), a validation set (n = 20) and an
independent evaluation set (n = 32) to evaluate the performance of the obtained deep learning networks.
Deep learning based on clinical characteristics predicted survival category correctly in 68.8% of the cases. Deep
learning based onMRI predicted 62.5% correctly using structural connectivity and 62.5% using brainmorphology
data. Notably, when we combined the three sources of information, deep learning prediction accuracy increased
to 84.4%. Taken together, our findings show the added value of MRI with respect to predicting survival in ALS,
demonstrating the advantage of deep learning in disease prognostication.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular dis-
ease, heterogeneous in terms of symptomdevelopment, disease onset and
disease progression (Chiò et al., 2011; Ravits and La Spada, 2009). ALS pa-
tients display, on average, a survival time of 3–4 years after onset of symp-
toms (del Aguila et al., 2003; Hardiman et al., 2011). To date, clinical
characteristics such as site of onset, respiratory status, ALS Functional Rat-
ing Scale (ALSFRS) scores (Cedarbaumet al., 1999) andC9orf72phenotype
status (i.e. a disease-causing repeat expansion mutation in ALS
(DeJesus-Hernandez et al., 2011; Renton et al., 2011)) are shown to have
some predictive power for prediction of survival (Chiò et al., 2009;
Elamin et al., 2015; Scotton et al., 2012;Wolf et al., 2014, 2015). Prognosis
basedon thesemarkers, however, often remains toouncertain tobe imple-
mented in clinical practice (Elaminet al., 2015) asmotor neuron lossmight
already occur before clinical weakness can be measured (Simon et al.,
2014). This stresses the importance of the development of new (objective)
.P. van den Heuvel).
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markers and neuroimaging techniques might provide such markers and
improve prognostication (Turner et al., 2011). Reliable prediction of sur-
vival at the first clinical MRI appointment would provide highly valuable
information for patients and care providers.

Neuroimaging data has been used to separate ALS patients from
healthy controls. In these approaches, machine learning techniques
(e.g. support vector machines, (Cristianini and Shawe-Taylor, 2000))
have been used to group patients and controls on the basis of changes
in motor and extra-motor resting-state functional connectivity,
reaching an overall accuracy of 87% (Fekete et al., 2013). Also other rest-
ing-state networks have been used in machine learning approaches
with an accuracy of 72% (Welsh et al., 2013). In ALS, cortical thinning
and subcortical changes have been related to disease progression, put-
ting forward these changes as a biomarker of ALS (Agosta et al., 2012;
Mezzapesa et al., 2013; Turner and Verstraete, 2015; Verstraete et al.,
2012;Walhout et al., 2015;Westeneng et al., 2015). For this reason, cor-
tical thickness has been used as an alternative imaging metric to sepa-
rate patients from controls, reaching accuracies ranging from 60 to
75% (Ahmed et al., 2015; Foland-Ross et al., 2015; Greenstein et al.,
2012; Lerch et al., 2008). Notwithstanding the importance of exploring
classification approaches to distinguish between patients and controls,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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predicting disease course, i.e. going beyond the establishment of patient-
control identification, is presumably amore difficult problem, and argu-
ably clinically more relevant. In the present studywe therefore set out to
explore the use of clinical characteristics in combination with MRI-based
metrics of connectivity and brain morphology. White matter brain con-
nectivity was derived from diffusion-weighted connectome imaging and
brainmorphology (i.e. cortical thickness and subcortical volume),was ex-
tracted from T1-weighted images. We used deep learning, a powerful
technique shown to be of great value in many classification problems
(Dean et al., 2012; Hinton et al., 2012; Krizhevsky et al., 2012;
Mohamed et al., 2012; Wu et al., 2015), with Google's visual search algo-
rithmandGoogle's AlphaGoprogramaswell-knownexamples of applica-
tions of deep learning (Dean et al., 2012; Krizhevsky et al., 2012; Silver et
al., 2016). Deep learning methods have shown high value in the fields of
image classification (Krizhevsky et al., 2012;Wu et al., 2015), speech rec-
ognition (Hinton et al., 2012;Mohamed et al., 2012) aswell as in elucidat-
ing complex relationships in MRI data (Plis et al., 2014).

Focusing on testing the predictive power of deep learning in differ-
entiating between three survival duration subgroups (i.e. short, medi-
um and long survivors), we assess the prediction accuracy of four
deep learning networks which are based on 1. clinical data, 2. structural
connectivity MRI data, 3. morphology MRI data and 4. a combined ap-
proach, in which clinical and imaging data are combined using layered
deep learning. We show that the prediction accuracy of future survival
time of ALS patients can be as high as 84% on the basis of combined clin-
ical and neuroimaging data.

2. Materials and methods

2.1. Patients

A total dataset of 135 patients with sporadic ALSwas included in this
study (Table 1). Patients were diagnosed according to the El Escorial
Table 1
Demographic and clinical characteristics of all study participants. Total dataset is divided in a t

Total Training
n = 135 n = 83

Survival class distribution [n (%)]
Short 52 (38.5) 31 (37.3)
Medium 52 (38.5) 32 (38.6)
Long 31 (23.0) 20 (24.1)

Age at first MRI (years) 61.7 (30.3–78.9) 61.3 (35.8–78
Sex (m/f) 99 / 36 60 / 23
Disease duration
(months)b 21.8 (3.2–174.4) 20.1 (3.2–174
Site of onset [n (%)]

Bulbar 32 (23.7) 24 (28.9%)
Non-bulbar 103 (76.3) 59 (71.1)

Age at onset (years) 59.9 (25.8–78.1) 59.6 (35.2–77
TTD (months) 15.1 (1.3–149.6) 14.2 (1.3–149
ALSFRS slopec 0.74 (0.05–4.08) 0.69 (0.06–3.
FVC (in %) 94.3 (59–142) 95.1 (59–142
C9orf72 status [n (%)]

Long 8 (5.9) 3 (3.6)
Wild type 117 (86.7) 73 (88.0)
Unknown 10 (7.4) 7 (8.4)

FTD status [n (%)]
ALS with FTD 3 (2.2) 1 (1.2)
ALS without FTD 115 (85.2) 71 (85.5)
Unknown 17 (12.6) 11 (13.3)

El Escorial category [n (%)]
Definite ALS 21 (15.6) 15 (18.1)
Not definite ALS 114 (84.4) 68 (81.9)

Values are in mean (min-max) unless otherwise specified.
SD, standard deviation; TTD, time to diagnosis; FTD, frontotemporal dementia; FVC, forced vita

a p-values were computed using a one-way ANOVA (age at first MRI, disease duration, age a
C9orf72 phenotype status, FTD status, EL Escorial category) among the four subsets.

b Disease duration was measured from disease onset until date of first MRI scan.
c ALSFRS slope was calculated using the formula (48-ALSFRS-R score)/time between sympto
criteria (Brooks et al., 2009) and recruited from the outpatient clinic
for motor neuron diseases of the University Medical Center Utrecht.
Parts of this dataset have been described in earlier publications in the
context of examining patient-control group effects (Schmidt et al.,
2014; Verstraete et al., 2011) (demographics given in Table 1). The in-
cluded set involved data of patients that were either deceased (n =
122) or still alive with a disease duration of over 50 months (n = 13)
at the time of analysis, providing the opportunity to test survival predic-
tions using information from the first clinical MRI appointment.

The included clinical characteristics (Table 1) consisted of eightmet-
rics. These comprised 1. site of disease onset, 2. age at disease onset and
3. time to diagnosis (i.e. the time from disease onset until the diagnosis
of ALS was given). In addition, 4. the ALSFRS slope was included to pro-
vide an indication of disease progression based on the revised ALS Func-
tional Rating Scale (ALSFRS-R) (Cedarbaum et al., 1999) and time T (in
months) between symptom onset and first examination: slope =
(48 − ALSFRS-R) / T (Kimura et al., 2006; Kollewe et al., 2008;
Qureshi et al., 2006). Other clinical variables taken into account were
5. the forced vital capacity (FVC), 6. C9orf72 phenotype status, 7.
frontotemporal dementia (FTD) status as derived from the (revised)
Neary criteria (Neary et al., 1998; Rascovsky et al., 2011) and 8. El
Escorial criteria diagnostic category.

Among the group of 135 patients, there was no history of brain inju-
ry, psychiatric illness, epilepsy, or neurodegenerative diseases other
than ALS. The Ethical Committee for human research of the University
Medical Center Utrecht approved the study protocols and informed
written consent according to the Declaration of Helsinki was obtained
from each patient.

2.2. Short, medium, long survivors

Each of the 135 patients was categorized according to the true sur-
vival time (i.e. time between disease onset and death): short survivors
raining set, validation set and evaluation set.

Validation Evaluation p-valuea

n = 20 n = 32

0.994
8 (40.0) 13 (40.6)
8 (40.0) 12 (37.5)
4 (20.0) 7 (21.9)

.5) 63.0 (30.3–71.7) 62.2(46–78.9) 0.741
16 / 4 23 / 9 0.765

.4) 24.0 (3.7–109) 25.0 (4–126.5) 0.976
0.164

4 (20.0) 4 (12.5)
16 (80.0) 28 (87.5)

.4) 61.0 (25.8–70.7) 60.1 (43.8–78.1) 0.852

.6) 12.9 (2.7–75.9) 18.5 (4.0–120.0) 0.537
70) 1.03 (0.12–4.08) 068 (0.05–3.49) 0.126
) 93.5 (62–121) 92.9 (65–124) 0.813

0.256
1 (5.0) 4 (12.5)
19 (95.0) 25 (78.1)
0 (0.0) 3 (9.4)

0.082
0 (0.0) 2 (6.3)
15 (75.0) 29 (90.6)
5 (25.0) 1 (3.1)

0.351
1 (5.0) 5 (15.6)
19 (95.0) 27 (84.4)

l capacity; ALSFRS-R, revised ALS functional rating scale.
t onset, TTD, ALSFRS slope, FVC) or chi-squared test (class distribution, sex, site of onset,

m onset and first examination (in months).



Fig. 1. Survival class distributions of the 135 subjects across the training, validation, and
evaluation sets. The three survival categories (short, medium and long) are displayed for
each data subset. The training set contained 83 patients and the validation set 20
patients. The evaluation set consisted of 32 patients. There are no significant differences
in known survival class distributions and demographics between the three datasets (all
p N 0.05, see Table 1 for more details).
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with survival up to 25 months after disease onset, medium survivors
with survival between 25 and 50 months after disease onset, and long
survivors living over 50 months after disease onset (Elamin et al.,
2015). The group of long survivors consisted of patients who either
died after a disease duration of at least 50 months or were still alive
and had a disease duration of at least 50 months at time of analysis.

2.3. Image acquisition and preprocessing

T1 and diffusion-weighted scans were acquired from all patients
using a 3 Tesla Philips Achieva Medical Scanner with a SENSE receiver
head-coil, described in detail by (Verstraete et al., 2011) and (Schmidt
et al., 2014). A high-resolution T1-weighted image was acquired for an-
atomical reference by a 3D fast field echo using parallel imaging (TR/
TE = 10/4.6 ms, flip-angle 8°, slice orientation: sagittal, voxel size =
0.80 × 0.75 × 0.75 mm, field of view= 176 × 240 × 240 mm covering
the whole brain). For each subject, two sets of 30 weighted diffusion
scans and 5 unweighted B0 scans were acquired with opposite k-
space readouts (Andersson et al., 2003) using the following settings:
parallel imaging SENSE p-reduction 3, high angular gradient set of 30
different weighted directions, TR/TE = 7035/68 ms, 2 × 2 × 2 mm
voxel size, 75 slices, b = 1000 s/mm2. Anatomical T1-weighted images
were parcellated using FreeSurfer (V5.1.0) according to the Desikan-
Killiany atlas (Desikan et al., 2006) dividing the segmented gray matter
into 83 distinct brain regions (68 cortical regions (34 for each hemi-
sphere), 14 subcortical areas, and the brainstem). Of the 68 cortical re-
gions, cortical thickness was measured by computing the distances
between the gray/white matter boundary and pial surface at each
point on the cortical mantle (Fischl and Dale, 2000). Volumes of the
14 subcortical areas and the brainstem were computed with
FreeSurfer's automated procedure for volumetric measurements
(Fischl et al., 2002). Preprocessing of diffusion-weighted images includ-
ed corrections for susceptibility and eddy-current distortions
(Andersson and Skare, 2002; Andersson et al., 2003). Next, a tensor
was fitted to the diffusion signals in each voxel and diffusion tensor im-
aging metrics, such as fractional anisotropy (FA) (Alexander et al.,
2007), were derived. White matter tracts were reconstructed using
Fiber Assignment by Continuous Tracking (FACT) (Mori et al., 1999;
Mori et al., 2002; Mori and van Zijl, 2002); tracking was initiated by 8
seeds per white matter voxel and stopped using conditions as detailed
in previous work (Schmidt et al., 2014). For each subject, an individual
brain networkwas reconstructed by selecting the interconnecting tracts
from the total cloud of reconstructed streamlines for each pair of regions
included in the used cortical atlas (van den Heuvel and Sporns, 2011;
Verstraete et al., 2011). We focused on white matter connectivity
strength measured in terms of FA (from here on referred to as connec-
tion weight). In support of using this metric as a marker for disease ef-
fects, previous studies have extensively shown FA changes in ALS
patients (Agosta et al., 2011; Ciccarelli et al., 2006; Menke et al., 2012;
Schmidt et al., 2014; Senda et al., 2011; Turner et al., 2011; Verstraete
et al., 2010; Verstraete et al., 2014).Moreover, the extent towhich FA al-
terations are observed has been suggested to reflect distinct sequential
ALS disease stages (Kassubek et al., 2014;Müller et al., 2016; Schmidt et
al., 2015), and has been noted to mirror the pattern of phosphorylated
43 kDa TAR DNA-binding protein (pTDP-43,(Brettschneider et al.,
2013)) aggregation. FA values of tracts interconnecting brain regions
were stored in a weighted connectivity matrix.

2.4. Training, validation and test set

The total set of 135 datasets (i.e. 135 patients)was randomly divided
into a training set (n = 83), a validation set (n = 20), and an indepen-
dent evaluation set (n = 32), by first randomly selecting an evaluation
set of the total dataset, and next by dividing the remaining subset of the
data into a training set and a validation set, with the proportional splits
between 70/30 and 80/20 (Crowther and Cox, 2005; Shahin et al.,
2004). The training, validation and evaluation sets had similar survival
class distributions (Fig. 1) and were not significantly different for each
of the eight clinical characteristics (Table 1).

2.5. Deep learning neural network

A deep learning approach on the basis of an artificial neural network
was applied. In brief (see for details on the applied deep learning proce-
dures below), the procedure included deep learning on the training set,
with the validation set used to stop the training process on time to pre-
vent overfitting of the classifier to the training set (Duda et al., 2001).
The evaluation set was then used to assess the final performance of
the trained neural network on an independent sample.

For clarity, we note that the term ‘neural network’ here is taken from
the field of supervised learning (Bishop, 1995; Duda et al., 2001; Hinton
et al., 2012; Larochelle et al., 2009) and does not refer to the concept of
brain network as used in the field of connectomics (Bullmore and
Sporns, 2009; van den Heuvel et al., 2012; van den Heuvel et al.,
2008). Deep learning networks refer to the subclass of neural networks
comprising multiple hidden layers (Hinton et al., 2012) that allow for
a detailed input-to-output mapping. Due to the inclusion of multiple
hidden layers, deep learning networks are particularly useful formodel-
ing high-level abstractions from data (Larochelle et al., 2009).

In total, four deep learning networks were constructed (Fig. 2).
These were based on 1. clinical data, 2. structural connectivity MRI
data, 3. morphology MRI data and 4. a combination of the previous
three information sources. The input vectors or features of these net-
works included the normalized clinical characteristics (8 in total), nor-
malized cortical thickness and subcortical volumes derived from T1-
weightedMRI and/or the connectionweights as stored in the connectiv-
ity matrices. Normalization was performed using a min-max feature
scaling in order to accelerate training (Priddy andKeller, 2005). Average
values of features were imputed for missing values (i.e. either unknown
clinical characteristics or connections that could not be detected in pa-
tients), with missing values being accounted for in an additional binary
input vector. The output vectors, i.e. the classes that the deep learning



Fig. 2. Visualization of the prediction process using deep learning networks. (i) First, a network based on clinical characteristics (i.e. site of onset, age at onset, time to diagnosis, ALSFRS
slope, FVC, C9orf72 phenotype status, FTD status and El Escorial criteria diagnostic category) is fitted, consisting of 158 and 448 hidden nodes. (ii) Next, a network is fitted based on
connectivity matrices, storing white matter connectivity strengths in terms of FA, composing of 134 and 313 hidden nodes. (iii) Third, a network based on brain morphology (68
cortical thickness values and 15 subcortical volumes) is fitted, consisting of 181 and 178 hidden nodes. (iv) The output nodes of these three networks are used as input nodes for the
combination network, consisting of 171 and 108 hidden nodes. From the output nodes of each network a class label can be derived, revealing the survival prediction of a patient.
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network had to classify, represented the predefined classes of short,me-
dium and long survivors. Inwhat follows,wewill describe the construc-
tion of the four deep learning networks, their training and their
evaluation.

2.6. Deep learning network construction

1. Clinical deep learning
First, a deep learning network was constructed for the clinical char-
acteristics (Fig. 2). The input vector of this network represented the
eight clinical characteristics, including site of onset, age at onset,
time to diagnosis, ALSFRS slope, FVC, C9orf72 phenotype status,
FTD status and El Escorial criteria diagnostic category. Each layer in
the deep learning network consisted of nodes and was connected
to other layers usingweighted edges (Duda et al., 2001). The number
of input nodes was based on the number of clinical characteristics
and the number of output nodes was based on the number of classes
(short, medium, long). The number of hidden layers was set to two,
in order to balance between the benefit of discoveringmore complex
relations, the risk of overfitting, and training time and complexity
(Karsoliya, 2012). The number of hidden nodes was set by means
of a fine neuron grid search during the training phase (described
below), with the number of hidden nodes in both layers varying
from 1 to 500.

2. Structural connectivity deep learning
Second, a deep learning network was constructed for the structural
connectivityMRImetric (Fig. 2). This secondnetwork employed con-
nectionweight of each reconstructed connection as an input node for
the deep learning (2285 features in total: 83 brain regions × 82 / 2=
3403 possible connections of which 2285 are existing connections).
The number of output nodes was set to three survival classes. Two
hidden layers were used and the sizes of these layers were found
using a fine neuron grid search in the same search domain as similar-
ly set for clinical deep learning.

3. Morphology deep learning
Next, a deep learning network was constructed based on the cortical
thickness and subcortical volume measurements (Fig. 2). The input
vector of the morphology network included 68 cortical thickness
values and volume values of 14 subcortical regions and the
brainstem, resulting in a total of 83 input nodes. The number of out-
put nodes was set to three survival classes and two hidden layers
were used. The size of these layers was set bymeans of a fine neuron
grid search in the same search domain as described for structural
connectivity deep learning.

4. Clinical-MRI combined deep learning
In addition to the clinical and MRI deep learning networks, a fourth
network was constructed that combined the three information
sources. The input layer of this network included each of the three
output nodes of the clinical and MRI deep learning networks, thus
consisted of nine input nodes (Fig. 2). The number of hidden nodes
was found using a neuron grid search in the same range as for the
other networks during the training phase. Output nodes (three
nodes) represented survival class.

2.7. Network training

All four deep learning networks were trained using the following
procedures. Each hidden node was assigned a non-linear (logistic) acti-
vation function (Hjelm et al., 2014). Feeding each training data point
through the network produced the output vector of weights. This out-
put vector was compared to the target values, with any difference in
the predicted outcome and the real outcome (i.e. short, medium, long
survivors) defined as error using the cross-entropy error function
(Murphy, 2012; Rubinstein and Kroese, 2004). After presenting all ex-
amples of the training set to the network, the networkweightswere up-
dated by backpropagation learning (Rumelhart et al., 1986) using the
scaled conjugate gradient algorithm (Møller, 1993) to correct the
weights in a direction that reduced the error of the network. During
this training phase, overfitting of the network was prevented by the
use of L2-regularization technique (i.e. penalizing by adding the sum
of the squared values of the weights to the error function) with param-
eter λ = 0.1 (Ng, 2004) and performance comparison against the vali-
dation set. The validation data was presented to the network after
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each training iteration to obtain a non-training performance error.
Training was stopped when the validation error ceased to decrease
(Sarle, 1995). This training procedure was repeated for all networks
constructed in the neuron grid search; performance of these networks
was evaluated using the measures described below, and the optimal
deep learning network size was selected.

2.8. Network evaluation

After the training stage, performance of the obtained neural network
was assessed in the evaluation phase by means of the evaluation
dataset. The input features (i.e. clinical characteristics (network 1), con-
nectivity matrices (network 2), morphology values (network 3) or all
three information sources (network 4)) of the subjects in the evaluation
set (n= 32) were presented to the trained networks. The softmax acti-
vation function (Bishop, 1995) was used for the output nodes, resulting
in a vector of values varying between 0 and 1 that add up to 1 and the
output node with the highest probability was selected as the predicted
class label using a winner-take-all approach (Duan et al., 2003; Hinton,
2002; Hinton et al., 2012; Lefebvre et al., 2013). To determine whether
the predicted classwas correct, the network output labelwas compared
to the true class label (i.e. true survival class of a patient). Good classifi-
cationsweremarked by equal labels for the true and predicted class, in-
correct classifications were marked by a mismatch between prediction
and truth. Next, a mosaic plot of the trained network (Fig. 3) was com-
puted to visualize the distribution of datasets over the different classes
Fig. 3. The distribution of the prediction results shown inmosaic plots. The columns represent th
subjects in that column. The colors orange, gray and blue represent the predicted survival class
right) denote the number of patients that were correctly classified and the off-diagonal cells
predicted by the network. The positive predictive value (Fletcher and Fletcher, 2005) for eac
number of predictions of that class (i.e. highlighted cell/sum of same colored cells). The ove
number by the total population. For the evaluation set (n = 32), the clinical deep learning n
network and the clinical-MRI combined deep learning network obtained overall accuracies o
classification mosaic plot are displayed for comparison of the results obtained on the evaluat
accuracy of 100% is achieved. In a random classification, three class labels are randomly distrib
after prediction (Hartigan and Kleiner, 1981), including the positive
predictive values (PPV) of the network, defined as the percentage of pa-
tients with a predicted label that coincided with the true class label
(Altman and Bland, 1994; Fletcher and Fletcher, 2005). For each class
a PPV scorewas computed as PPVi=Ni

correct /Nlabel i (i∈ {short,medium,
long}), withNi

correct being the number of patients that correctly received
class label i and Nlabel i the total number of patients predicted to have
class label i. PPVs were computed to give an impression of the discrim-
inative power and thus predictive value of the network.

In addition, the overall performance of a network was assessed as
the overall accuracy of the predictions, denoting the percentage of pa-
tients for whom the network predicted the correct class label and was
calculated using the formula Ncorrect / N. Here, Ncorrect denoted the num-
ber of patients for whom the prediction by the deep learning network
was equal to the true survival class (i.e. highlighted diagonal elements
in mosaic plot), and N denoted the total number of patients included
in the set.

3. Results

3.1. Clinical deep learning

The clinical network was trained on eight clinical characteristics
(site of onset, age at onset, time to diagnosis, ALSFRS slope, FVC,
C9orf72 phenotype status, FTD status and El Escorial criteria diagnostic
category). Neuron grid search resulted in a deep learning network with
e known survival class of patients, where thewidth of columns is relative to the number of
es short, medium and long, respectively. The highlighted diagonal cells (bottom left to top
the number of patients that were mispredicted (opaque cells), i.e. the wrong class was
h predicted class can be derived by dividing the correctly predicted subjects by the total
rall accuracy is computed by summing the highlighted diagonal cells and dividing this
etwork, the structural connectivity deep learning network, morphology deep learning

f 68.8%, 62.5%, 62.5% and 78.1%, respectively. (Box) A perfect classification and a random
ion set. In the perfect classification, all subjects are correctly classified and therefore an
uted over the subjects, only predicting a third of the total subject population correctly.
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8 input nodes, 158 nodes in the first hidden layer, 448 nodes in the sec-
ondhidden layer, and 3 output nodes. The predicted short survivors had
a PPV of 72.7% on the evaluation set; medium survivors had a PPV of
64.3% and long survivors 71.4%. The highest PPV was obtained for the
predicted short survivors, indicating that a predicted short survival on
the basis of clinical metricswasmore often correct than a predictedme-
dium or long survival. The optimal network based on clinical character-
istics gave an evaluation accuracy of 68.8% (Fig. 3), a training accuracy of
78.3% (Fig. S1) and a validation accuracy of 70.0% (Fig. S2).

3.2. Structural connectivity deep learning

The structural connectivity MRI network, based on connection
weights, consisted of 2285 input nodes (the total number of recon-
structed tracts), and was fitted 134 and 313 nodes in the first and sec-
ond hidden layer respectively, and comprised 3 output nodes. The PPV
scores for the predicted short, medium and long survivors of the evalu-
ation set were 62.5%, 57.1% and 100.0%, respectively. The highest PPV in
this network was obtained for the long survivor class, indicating that
this structural connectivity-based deep learning networkwas highly re-
liable when it gave predictions for the class of long survivors. The struc-
tural connectivity deep learning network reached an evaluation
prediction accuracy of 62.5% (Fig. 3), a training accuracy of 79.5%
(Fig. S1) and a validation accuracy of 60.0% (Fig. S2). With average sim-
ulated PPV chance levels of 38.6% (short), 38.6% (medium) and 23.0%
(long) when assigning random class labels to patients, these findings
show that objective connectivity values alone can provide valuable in-
formation on disease survival.

3.3. Morphology deep learning

The morphology MRI deep learning network consisted of 83 input
nodes (68 cortical thickness values and 15 subcortical volumes), and
was fitted to 181 and 178 nodes in the first and second hidden layer re-
spectively, and contained included the three survival classes as output
nodes. The PPV scores of the evaluations set were 64.3% (short), 61.5%
(medium) and 60.0% (long survival), respectively. The highest PPV in
this network was obtained for the short survivor class, indicating that
Fig. 4. Fitted normal curves on accuracy distributions of the four networks. Normal curves
are fitted on the accuracy distributions of the clinical deep learning network (blue), the
structural connectivity deep learning network (orange), morphology deep learning
network (purple) and the clinical-MRI combined deep learning network (gray), based
on 16 randomly selected subjects (repeated 10,000 times) from the first evaluation set
(n = 32). The mean accuracies (dashed lines) of these distributions were 68.7%, 62.5%,
62.4% and 84.4% for the clinical deep learning network, structural connectivity deep
learning network, morphology deep learning network and clinical-MRI combined deep
learning network, respectively. A paired t-test showed significant differences between
accuracies of each pair of networks (all p b 0.001).
the morphology network, similar to the clinical network, was more re-
liablewhen it predicted a short survivor. Themorphology deep learning
network reached an evaluation prediction accuracy of 62.5% (Fig. 3), a
training accuracy of 80.7% (Fig. S1) and a validation accuracy of 60.0%
(Fig. S2). These findings support the relation between morphology
and disease progression, and thus disease survival.

3.4. Clinical-MRI combined deep learning

Next, the prediction probabilities from the clinical deep learning net-
work and the prediction probabilities from the twoMRI networks were
presented as input for a combined deep learning network. Grid search
during network training resulted in a network configuration with 9
input nodes, 171 nodes in thefirst hidden layer, 108 nodes in the second
hidden layer, and 3 output nodes. PPV scores of the combined network
on the evaluation set included 90.9%, 83.3% and 77.8% for the predicted
short, medium and long survivor classes, respectively. The combined
network reached an evaluation accuracy of 84.4% (Fig. 3), a training ac-
curacy of 88.0% (Fig. S1) and a validation accuracy of 80.0% (Fig. S2). Sta-
tistical testing indicated that survival prediction was significantly
improved (p b 0.001) due to the addition of structural connectivity
data and morphology MRI findings to the clinical characteristics
(Fig. 4, see Supplementary materials for details).

4. Discussion

Weevaluated the use of deep learning to predict survival time of ALS
patients on the basis of clinical characteristics and advanced MRI met-
rics. Our findings show that MRI data alone (i.e. structural connectivity
and brain morphology data, consisting of cortical thickness and subcor-
tical volumes) can provide valuable predictions of survival time. Fur-
thermore, combining clinical characteristics and MRI data into a
layered deep learning approach can further improve predictions about
whether a patient will have a short, medium or long survival time.

Previous studies have used proportional Cox hazard classification
(Cox, 1972) employing clinical characteristics such as site of onset, exec-
utive dysfunction and diagnostic delay (Elamin et al., 2015; Scotton et
al., 2012) to develop prognostic models for survival. These models al-
ready showed the predictive power of clinical data, with PPVs and over-
all accuracies lower than or similar to results in our study, indicating a
potentially better predictive power of survival classes using deep learn-
ing. It should however be noted that PPV scores are dependent on the
prevalence of a subtype in the total population andmight also influence
the differences in scores.

Deep learning on diffusion-weighted imaging data led to a predic-
tion accuracy of 62.5%. Deep learning on T1-weighted images data re-
sulted in a prediction accuracy of 62.5%. A combination of these
imaging metrics yielded an improved prediction accuracy of 78.1%
(see Supplementary materials for more details), indicating the predic-
tive power of combining imaging metrics in deep learning. Previous
studies have used MRI data for the prediction of diagnosis; that is,
they used structural connectivity MRI data to differentiate between
ALS patients and healthy controls, resulting in prediction accuracies be-
tween 70 and 80% (Fekete et al., 2013;Welsh et al., 2013). Other studies
used cortical thicknessmeasurements to discriminate between patients
and controls in various diseases, such as Alzheimer's disease (Lerch et
al., 2008), childhood onset schizophrenia (Greenstein et al., 2012), and
major depression (Foland-Ross et al., 2015) with prediction accuracies
ranging from 60 to 75%. In our study we examined a presumably more
difficult task of predicting survival time within the group of patients,
with a priori chance levels (i.e. true positive rate) here equal to 33.3%
for the three survival classes, rather than 50% for patient/control status.
The potential of MRI in patient classification and prognostication was
previously also shown for the prediction of disease status in Alzheimer's
disease, where machine learning differentiated between two subtypes
of dementia based on T1-weighted images with accuracies of 89%



367H.K. van der Burgh et al. / NeuroImage: Clinical 13 (2017) 361–369
(Klöppel et al., 2008). In this study we included all reconstructed con-
nections instead of focusing on connections between specific brain re-
gions, for example from motor regions to other brain areas (Schmidt
et al., 2014). By considering all connections, a deep learning method is
allowed to identify combinations of affected connections that are most
valuable for survival prediction. As such, the deep learning network
may detect relevant patterns in connections that are only slightly affect-
ed, thereby adding valuable information for prediction. The ability of
deep learning to distill complex relationships from large datasets
makes it a promising tool for disease prognostication.

The predictions of the network based on clinical parameters and the
twoMRI networks were combined in a clinical-MRI network. The clinical
network seemed to be less sensitive to correctly predicting short survi-
vors compared to the MRI networks (see Supplementary materials for
more details). The combined network learned relationships between
the survival class predictions of the three other networks. Patients incor-
rectly predicted by either the clinical or one of the MRI networks were
oftenpredicted correctly by the combinationnetworkusingprediction in-
formation from the other two networks. By utilizing the predicting prob-
abilities of the survival classes instead of the survival class label, the
uncertainty of predictions was taken into account. The prediction proba-
bilities of the clinical, structural connectivity MRI and morphology MRI
networks contributed equally to the combined prediction.

Deep learning shows promising results for the prediction of survival
categories for individual ALS patients, but several points have to be
taken into account. Large training and evaluation sets are preferred to en-
sure convergence of prediction accuracies and to prevent overfitting (Ng,
2004). In addition, external validation is crucial for the development of a
reliable prognostic tool and should be incorporated in future examina-
tions. Second, while deep learning can effectively make predictions on
datasets with complex relationships, dependency among input variables
and between input and output variables cannot be easily deduced. In
future research, it would therefore be worthwhile to investigate possibil-
ities to reveal these dependencies and gain more insight into the mecha-
nisms underlying disease progression. Third, prediction may also be
improved using additional deep learning networks based on fMRI scans,
as used in previous studies investigating disease diagnosis (Fekete et al.,
2013; Welsh et al., 2013). Finally, additional clinical characteristics or
diffusion tensor imaging metrics may also improve prediction. For exam-
ple, radial diffusivity differences have been shown between ALS patients
and healthy controls (Agosta et al., 2010;Metwalli et al., 2010) and there-
fore might also be of value in survival prognostication.

Deep learning is a powerful approachwith successful applications in
many real world issues. Here, we show that deep learning can also be of
benefit to medical problems. Our findings show that deep learning can
contribute to early prognostication of survival in ALS by combining clin-
ical characteristics and brain imaging data. Our study provides promis-
ing results and may contribute to developing an automated
prognostication tool for the estimation of survival in individual patients.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2016.10.008.
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