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This paper presents a deterministic compartmental model for echinococcosis transmission dynamics. The basic reproduction
number of the model determines the existence and stability of the disease-free and disease-endemic equilibrium points. We
further formulate the optimal control problem and obtain the necessary conditions to minimize the number of infected
individuals and the associated costs. Numerical simulations show that optimal control strategies can significantly reduce the
number of infected individuals to lower levels. Environmental disinfection may be essential for the elimination of infections.
The results of this study will be beneficial for the prevention and control of echinococcosis in the Ganzi Tibetan Autonomous
Prefecture and other areas of China.

1. Introduction

Human echinococcosis is a parasitic zoonosis caused by
infection with the larval stage of the tapeworm Echinococ-
cus. Note that more than 1 million people are affected
with echinococcosis at any one time, and human echino-
coccosis is often expensive and complicated to treat and
may require extensive surgery and prolonged drug therapy
[1]. As a result, human echinococcosis poses a significant
burden on patients and health care. The life cycle of Echi-
nococcus consists of three stages: egg, larva, and adult (see
[2–6]). Adults reside in the definitive hosts (mainly dogs),
produce eggs that are passed in the feces, contaminate the
environment (for example, water, dog’s fur, vegetables,
grass, and soil), and are immediately infectious. After
ingestion by the intermediate host (mainly sheep, goats,
and cattle), Echinococcus eggs (EEs) hatch and release
six-hooked oncospheres which migrate into various organs
(especially the liver and lung) and then develop into a

hydatid cyst. The definitive hosts ingest the cyst-
containing organs of the infected intermediate hosts and
become infected. The protoscolices begin to develop into
adult stages. Humans are accidental intermediate hosts
because they acquire the infection in the same way as
other intermediate hosts but without the biological contri-
bution of spreading the infection to the definitive hosts.
For more related knowledge about echinococcosis, please
refer to [1, 2].

Wang et al. [7] developed a deterministic compartment
model of echinococcosis transmission and pointed out that
the strict slaughter inspection with regard to meat inspection
and offal disposal, dog anthelmintics, and public health edu-
cation about hygiene and dog contact could effectively
reduce the spread of echinococcosis. Wu et al. [8] stressed
that human inventions (deworming EEs and killing wild
dogs) could be the most effective way to control the spread
of echinococcosis. Rong et al. [9] showed that promoting
public health education and disposing of stray dogs could
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significantly help control echinococcosis spreading. Hassan
and Munganga [10] emphasized that treating red foxes only
or disinfecting the environment alone will not be adequate
to eradicate the parasite from the community, and a combi-
nation of both control strategies would be more effective in
controlling the transmission of the disease in the population.
Zhu et al. [11] suggested that the low evacuation rate and
high mortality rate of EEs could contribute to a significant
reduction in human infection cases. Furthermore, they
noted that keeping humans away from EEs and enhancing
treatment rates would be highly effective in preventing echi-
nococcosis transmission in humans. Tamarozzi et al. [12]

confirmed that environmental contamination, particularly
through hand-to-mouth transmission, might be of primary
importance from an overall appraisal of published litera-
tures. Craig et al. [13] said that the five key elements, pre-
venting dogs from accessing offal, treating dogs with
dewormers, meat inspection, no home slaughter, and health
education on hygiene and dog contact, are still valid for
reducing the spread of echinococcosis today. Zhao and Yang
[14] stated that optimal control strategies aimed at minimiz-
ing the number of infected individuals and the associated
costs could effectively reduce the transmission of
echinococcosis.
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Figure 1: Schematic diagram of the transmission dynamics of Echinococcus.

Table 1: Description of parameters of model (1).

Parameters Interpretation Units Source

Λd Recruitment rate of dogs 21:1 × 104 year−1 Estimated

βd Transmission rate from livestock to dogs 5:8 × 10−8 year−1 [7]

μd Natural death rate of dogs 0.08 year−1 [7]

δd Recovery rate of infected dogs 0.21 year−1 Estimated

γ Released rate from infected dogs 9.7 year−1 [7]

μx Death rate of EEs 1 year−1 [8]

ch Disinfection-induced EE mortality rate 10 year−1 Assumed

Λl Recruitment rate of livestock 54:33 × 104 year−1 Estimated

βl Infection rate of livestock by ingesting EEs 7:4 × 10−8 year−1 [7]

ε Fraction of home-slaughtered livestock 0.189 Estimated

μl Natural death rate of livestock 0.152 year−1 [9]

Λh Recruitment rate of humans 1:03 × 104 [29]

βh Infection rate of humans by ingesting EEs 4:2 × 10−11 year−1 [7]

ω Reciprocal of human incubation period 1/14 year−1 [7]

μh Natural death rate of humans 0.0139 year−1 Estimated

δh Recovery rate of humans 0.041 year−1 Estimated

u1 tð Þ Effectiveness of home slaughter inspection 0–1 Assumed

u2 tð Þ Effectiveness of anthelmintic treatment 0–1 Assumed

u3 tð Þ Effectiveness of environmental disinfection 0–1 Assumed

u4 tð Þ Effectiveness of health education 0–1 Assumed
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Hassan and Munganga [10] stated that the joint control
is more effective than the single one. Thus, the optimal prob-
lem of control measures is a worthwhile discussion since the
optimal control strategies could reduce the number of
infected individuals at the lowest cost level (see [14–21] for
example). Although humans are accidental intermediate
hosts and do not participate in the life cycle of Echinococcus,
once a person becomes infected with the disease, it will place
a significant burden on their health and finances. According
to [14], we will consider human infection with echinococco-
sis in our modeling and discuss optimal control strategies by
controlling the intensity of deworming, frequency of envi-
ronmental disinfection, level of strict slaughter inspection,
and frequency of health education.

The rest of this paper is organized as follows. In Section
2, a dynamical model of echinococcosis transmission with
control is given. A mathematical analysis of the model is
presented in Section 3. The optimal control problem is for-
mulated, and the necessary conditions are given in Section
4. Numerical simulations are shown to explore the optimal
controls in Section 5. A conclusion and discussion are given
in Section 6.

2. Model Formulation

For the dog population, the definitive hosts are divided into
two classes: susceptible SdðtÞ and infected IdðtÞ. For the live-
stock population, the intermediate hosts are decomposed
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Figure 2: Simulation results for Strategy A: (a) depicts the profiles of optimal controls u∗1 and u∗2 ; (b–d) represent the number of infected
dogs, infected livestock, and infected humans, respectively.
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into susceptible SlðtÞ and infected IlðtÞ. The definitive hosts
are infected by ingesting the cyst-containing organs of the
infected intermediate hosts. The intermediate hosts become
infected by ingesting EEs from their living environment.
Humans act as accidental intermediate hosts, acquiring
infection when they ingest EEs. The total human population
is separated into susceptible ShðtÞ, exposed EhðtÞ, and
infected IhðtÞ. The EEs released from the feces of infected
dogs are denoted by XðtÞ. A schematic diagram for the
dynamical transmission of echinococcosis is demonstrated
in Figure 1. Based on this schematic diagram, it has the fol-
lowing transmission model:

_Sd =Λd − 1 − u1 tð Þð ÞεβdSdIl − μdSd + δdu2 tð ÞId ,
_Id = 1 − u1 tð Þð ÞεβdSdIl − μdId − δdu2 tð ÞId ,
_X = γId − μxX − chu3 tð ÞX,
_Sl =Λl − βlSlX − εSl − μlSl,
_Il = βlSlX − εIl − μlIl,
_Sh =Λh − 1 − u4 tð Þð ÞβhShX − μhSh + δhIh,
_Eh = 1 − u4 tð Þð ÞβhShX − ωEh − μhEh,
_Ih = ωEh − μhIh − δhIh:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð1Þ
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Figure 3: Simulation results for Strategy B: (a) depicts the profiles of optimal controls u∗1 and u∗3 ; (b–d) represent the number of infected
dogs, infected livestock, and infected humans, respectively.
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In (1), Λd denotes the annual recruitment rate of the sus-
ceptible dogs, μd is the natural death rate of the dog popula-
tion, δd represents the recovery rate of infectious dogs, and
u2ðtÞ ∈ ½0, 1� is the control on the use of praziquantel
(PZQ) dosing for infected dogs. ð1 − u1ðtÞÞεβdSdIl describes
the transmission of echinococcosis between susceptible
definitive hosts and infectious intermediate hosts, u1ðtÞ ∈ ½0
, 1� is the control on the use of very strict slaughter inspec-
tion with regard to meat inspection and offal disposal for
livestock, and ε is the home slaughter fraction of livestock.
In resource-poor pastoral regions, livestock traditionally
pervade home slaughter, so the dog infection rate depends
on the home slaughter fraction ε of livestock being available
for offal of infected livestock. γ denotes the released rate of

EEs by infectious definitive hosts, μx accounts for the natural
death rate of EEs, ch is the death rate of EEs because of envi-
ronmental disinfection, and u3ðtÞ ∈ ½0, 1� is the control on
the use of environmental disinfection for EEs. Λl represents
the annual recruitment rate of susceptible intermediate
hosts, μl is the natural death rate of livestock, and βlSlX
depicts the transmission of EEs to livestock by ingesting
EEs in the environment. Λh is the annual recruitment rate
of a susceptible human population, μh represents the natural
death rate of humans, ð1 − u4ðtÞÞβhShX describes the trans-
mission of echinococcosis between susceptible humans and
an infectious population, and u4ðtÞ is the control on the
use of health education for humans. When ingesting EEs,
humans are infected and then undergo an incubation period
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Figure 4: Simulation results for Strategy C: (a) depicts the profiles of optimal controls u∗1 and u∗4 ; (b–d) represent the number of infected
dogs, infected livestock, and infected humans, respectively.
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1/ω. The infectious humans recover by an infectious period
of mean duration 1/δh.

3. Model Analysis

When the control variables are considered constant, some
mathematical analysis results of model (1) can be obtained.

3.1. Positivity and Boundary of Solutions

Theorem 1.

(i) The solution of model (1) with positive initial condi-
tions is positive for all t > 0

(ii) All positive solutions of model (1) with positive initial
conditions have the upper boundary in ℝ7

+

Proof.

(i) Let ðSdðtÞ, IdðtÞ, XðtÞ, SlðtÞ, IlðtÞ, ShðtÞ, EhðtÞ, IhðtÞÞ
be a solution of model (1) with positive initial values.
Define
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Figure 5: Simulation results for Strategy D: (a) depicts the profiles of optimal controls u∗2 and u∗3 ; (b–d) represent the number of infected
dogs, infected livestock, and infected humans, respectively.
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t1 = sup t > 0 : Sd τð Þ > 0, Id τð Þ > 0, X τð Þ > 0, Sl τð Þ > 0, Ilf
� τð Þ > 0, Sh τð Þ > 0, Eh τð Þ > 0, Ih τð Þ > 0g,

ð2Þ

for all τ ∈ ½0, t�.
Since min fSdð0Þ, Idð0Þ, Xð0Þ, Slð0Þ, Ilð0Þ, Shð0Þ, Ehð0Þ,

Ihð0Þg > 0, then there must be t1 > 0. If t1 <∞, it gives

min Sd t1ð Þ, Id t1ð Þ, X t1ð Þ, Sl t1ð Þ, Il t1ð Þ, Sh t1ð Þ, Eh t1ð Þ, Ih t1ð Þf g = 0,
ð3Þ

and SdðtÞ > 0, IdðtÞ > 0, XðtÞ > 0, SlðtÞ > 0, IlðtÞ > 0, ShðtÞ > 0
, EhðtÞ > 0, IhðtÞ > 0 for all t ∈ ½0, t1Þ.

On the other hand, the first equation of model (1) could
be written as

d
dt

Sd exp
ðt
0

1 − u1ð ÞεβdIl + μdð Þds
� �� �

= Λd + σu2Idð Þ exp
ðt
0

1 − u1ð ÞεβdIl + μdð Þds
� �

:

ð4Þ
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Figure 6: Simulation results for Strategy E: (a) depicts the profiles of optimal controls u∗2 and u∗4 ; (b–d) represent the number of infected
dogs, infected livestock, and infected humans, respectively.
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Consequently,

Sd t1ð Þ = Sd 0ð Þ exp −
ðt1
0

1 − u1ð ÞεβdIl + μdð Þdt
� �

+ exp −
ðt1
0

1 − u1ð ÞεβdIl + μdð Þdt
� �

×
ðt1
0

Λd + σu2Idð Þ exp
ðt
0

1 − u1ð ÞεβdIl + μdð Þds
� �� �� �

dt,

ð5Þ

which implies that Sdðt1Þ > 0. A similar approach could
be applied to show that Idðt1Þ > 0, Slðt1Þ > 0, Ilðt1Þ > 0 and
Eðt1Þ > 0, which is a contradiction. Therefore, t1 =∞.

Hence, all solutions of model (1) with positive initial
conditions remain positive when t > 0.

(ii) The first two equations of model (1) could be trans-
formed into

d Sd + Idð Þ
dt

=Λd − μd Sd + Idð Þ ≤Λd − μd Sd + Idð Þ: ð6Þ

Thus, limsup
t⟶∞

ðSd + IdÞ ≤Λd/μd .
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Figure 7: Simulation results for Strategy F: (a) depicts the profiles of optimal controls u∗3 and u∗4 ; (b–d) represent the number of infected
dogs, infected livestock, and infected humans, respectively.
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The fourth and fifth equations of model (1) could be
transformed into

d Sl + Ilð Þ
dt

=Λl − μl + εð Þ Sl + Ilð Þ ≤Λl − μl + εð Þ Sl + Ilð Þ,
ð7Þ

which leads to limsup
t⟶∞

ðSl + IlÞ ≤Λl/ðμl + εÞ.

The last three equations of model (1) give

d Sh + Eh + Ihð Þ
dt

=Λh − μh Sh + Eh + Ihð Þ ≤Λh − μh Sh + Eh + Ihð Þ,
ð8Þ

which yields limsup
t⟶∞

ðSh + Eh + IhÞ ≤Λh/μh.
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Figure 8: Simulation results for Strategy G: (a) depicts the profiles of optimal controls u∗1 , u
∗
2 , and u

∗
3 ; (b–d) represent the number of infected

dogs, infected livestock, and infected humans, respectively.
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From the third equation of model (1), there is

dX
dt

= γId − μx + chu3ð ÞX ≤
γΛd

μd
− μx + chu3ð ÞX: ð9Þ

Hence, limsup
t⟶∞

X ≤ γΛd/μdðμx + chu3Þ.

Let

Γ = Sd , Id , E, Sd , Id , Sh, Ihð Þ ∈ℝ7
+ : Sd + Id ≤

Λd

μd
, X

�

≤
γΛd

μd μe + chu3ð Þ , Sl + Il ≤
Λl

μl + ε
, Sh + Eh + Ih ≤

Λh

μh

�
:

ð10Þ
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Figure 9: Simulation results for Strategy H: (a) depicts the profiles of optimal controls u∗1 , u
∗
2 , and u∗4 ; (b–d) represent the number of

infected dogs, infected livestock, and infected humans, respectively.
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Thus, all positive solutions of model (1) with positive
initial conditions ultimately have the upper boundary in
ℝ7

+. The closed set Γ is positively invariant and attracts the
solution to model (1).

3.2. Equilibrium Points and Stability Analysis. In this section,
some mathematical analysis results of model (1) can be
obtained when the controls are supposed to be constant.

The disease-free equilibrium of model (1) is denoted by

Edf e = S0d , 0, 0, S0l , 0, S0h, 0, 0
� 	

= Λd

μd
, 0, 0, Λl

ε + μl
, 0, Λh

μh
, 0, 0

� �
:

ð11Þ

In the next, the next-generation matrix approach [22]
will be applied for computing the basic reproduction num-
ber R0. The matrix of new infection F and the matrix of
transition V are defined as follows:

F =

1 − u1ð ÞεβdSdIl

γId

βlSlX

1 − u4ð ÞβhShX

0

2
666666664

3
777777775
,V =

μd + δdu2ð ÞId
μx + chu3ð ÞX
ε + μlð ÞIl
ω + μhð ÞEh

−ωEh + μh + δhð ÞIh

2
666666664

3
777777775
:

ð12Þ
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Figure 10: Simulation results for Strategy I: (a) depicts the profiles of optimal controls u∗1 , u
∗
3 , and u∗4 ; (b–d) represent the number of

infected dogs, infected livestock, and infected humans, respectively.
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Figure 11: Simulation results for Strategy J: (a) depicts the profiles of optimal controls u∗2 , u
∗
3 , and u∗4 ; (b–d) represent the number of

infected dogs, infected livestock, and infected humans, respectively.
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Furthermore, the Jacobian matrices of F and V at the
disease-free equilibrium Edf e are, respectively, obtained by

F =

0 0 1 − u1ð ÞεβdΛd

μd
0 0

γ 0 0 0 0

0 βlΛl

ε + μl
0 0 0

0 1 − u4ð ÞβhΛh

μh
0 0 0

0 0 0 0 0

2
66666666666666664

3
77777777777777775

, V

=

μd + δdu2 0 0 0 0
0 μx + chu3 0 0 0
0 0 ε + μl 0 0
0 0 0 ω + μh 0
0 0 0 −ω μh + δh

2
666666664

3
777777775
:

ð13Þ

Then, the basic reproduction number that is the largest
eigenvalue with a large domain of the next generation matrix
FV−1 is given by
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Figure 12: Simulation results for Strategy K: (a) depicts the profiles of optimal controls u∗1 , u
∗
2 , u

∗
3 , and u∗4 ; (b–d) represent the number of

infected dogs, infected livestock, and infected humans, respectively.
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R0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0x ·R0d ·R0l

3
p

, ð14Þ

where

R0x =
γ

μx + chu3
,R0d =

1
μd + δdu2

· Λd

μd
· 1 − u1ð Þεβd ,R0l

= 1
ε + μl

· Λl

ε + μl
· βl:

ð15Þ

Here,R0x denotes the average number of EEs that might
be ingested by the intermediate host livestock and humans,
R0d describes the average number of infected dogs by
infected livestock, and R0l accounts for the average number
of infected livestock by EEs. For more ecological and epide-
miological significance in (14), please refer to [7, 8, 22].

Assume that Eee = ðS∗d , I∗d , X∗, S∗l , I∗l , S∗h , E∗
h , I∗hÞ should be

the endemic equilibrium of model (1). Let the right-hand
sides of model (1) vanish. By solving these equations, it gives

S∗d =
μd + δdu2ð ÞI∗d
1 − u1ð ÞεβdI

∗
l
, I∗d =

μe + chu3
γ

X∗, S∗l =
Λl

βlX
∗ + ε + μl

,

I∗l =
βlS

∗
l X

∗

ε + μl
, X∗ = μd + δdu2ð Þ ε + μlð Þ2

βl μd + δdu2ð Þ ε + μlð Þ + 1 − u1ð ÞεβdΛl½ � R3
0 − 1

� 	
,

S∗h =
ω + μhð ÞE∗

h

1 − u4ð ÞβhX
∗ , I∗h =

ωE∗
h

μh + δh
,

E∗
h =

1 − u4ð ÞβhX
∗ μh + δhð ÞΛh

μh ω + μhð Þ μh + δhð Þ + 1 − u4ð ÞβhX
∗ ω + μh + δhð Þ½ � :

ð16Þ

Then, it is clear that model (1) has a uniquely endemic
equilibrium Eee if and only if R0 > 1.

A similar method from [7, 9] is used to obtain the fol-
lowing results. Appendix A gives the detailed proof of The-
orem 2. In Appendix B, the proof of Theorem 3 is
presented. The proof of Theorem 4 can be displayed in
Appendix C.

Theorem 2. The disease-free equilibrium Edf e is locally
asymptotically stable if R0 < 1 and is unstable if R0 > 1.

Theorem 3. The disease-free equilibrium Edf e is globally
asymptotically stable if R0 < 1.

Theorem 4. The uniquely endemic equilibrium Eee of model
(1) is globally asymptotically stable when R0 > 1.

4. Optimal Control

To obtain the optimal control strategies, an objective func-
tional is defined by

J uð Þ =
ðT
0
g ϕ, u, tð Þdt =

ðT
0

Id + Il + Ih +
1
2 c1u

2
1 + c2u

2
2 + c3u

2
3 + c4u

2
4

� 	� �
dt,

ð17Þ

subject to the state system (1). ϕ = ðSd , Id , X, Sl, Il, Sh, Eh
, IhÞ is the solution of model (1) with positive initial values
and u = ðu1ðtÞ, u2ðtÞ, u3ðtÞ, u4ðtÞÞ. c1, c2, c3, and c4 represent
the weight constants of the control variables u1, u2, u3, and
u4, respectively. ð1/2Þc1u21, ð1/2Þc2u22, ð1/2Þc3u23, and ð1/2Þc4
u24 denote the costs of home slaughter inspection, anthelmin-
tic treatment, environmental disinfection, and health educa-
tion, respectively.

The objective of the optimal control problem (17) is to
find a control set that minimizes the infected dogs, the
infected livestock, and the infected humans when minimiz-
ing the control cost function. Let U = fu = ðu1ðtÞ, u2ðtÞ, u3ð
tÞ, u4ðtÞÞ: 0 ≤ uiðtÞ ≤ 1, t ∈ ½0, T�, i = 1, 2, 3, 4g be a measur-
able set. Then, there needs to be the optimal control u∗ = ð
u∗1 ðtÞ, u∗2 ðtÞ, u∗3 ðtÞ, u∗4 ðtÞÞ such that

J u∗ð Þ =min J uð Þ: u ∈Uf g: ð18Þ

The necessary conditions that determine the optimal
control u∗ satisfying (5) with constraint model (1) are
derived from Pontryagin’s Maximum Principle. Then, the
optimal control problem (18) is transformed into minimiz-
ing the following Hamiltonian function:

H = g ϕ, u, tð Þ + 〠
8

i=1
λi f i ϕ, u, tð Þ, ð19Þ

where f iðϕ, u, tÞ, i = 1, 2, 3, 4, 5, 6, 7, 8, are the right-hand
sides of model (1). And λi, i = 1, 2, 3, 4, 5, 6, 7, 8, are the
adjoint variables that satisfy the following costate system:

_λ1 = −
∂H
∂Sd

= 1 − u1ð ÞεβdIl λ1 − λ2ð Þ + λ1μd ,

_λ2 = −
∂H
∂Id

= −1 − λ1δdu2 + λ2 μd + δdu2ð Þ − λ3γ,

_λ3 = −
∂H
∂X

= λ3 μx + chu3ð Þ + λ4 − λ5ð ÞβlSl + λ6 − λ7ð Þ 1 − u4ð ÞβhSh,

_λ4 = −
∂H
∂Sl

= λ4 βlX + ε + μlð Þ − λ5βlX,

_λ5 = −
∂H
∂Il

= −1 + 1 − u1ð ÞεβdSd λ1 − λ2ð Þ + λ5 μl + εð Þ,

_λ6 = −
∂H
∂Sh

= 1 − u4ð ÞβhX λ6 − λ7ð Þ + λ6μh,

_λ7 = −
∂H
∂Eh

= λ7 ω + μhð Þ − λ8ω,

_λ8 = −
∂H
∂Ih

= −1 − λ6δh + λ8 δh + μhð Þ,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð20Þ
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with boundary conditions λiðTÞ = 0, i = 1, 2, 3, 4, 5, 6, 7,
8. Additionally, the optimality conditions ∂H/∂ui = 0, i = 1,
2, 3, 4, lead to the optimal controls:

u∗i =min 1, max 0, ucif gf g, i = 1, 2, 3, 4, ð21Þ

where

uc1 =
εβdSdIl λ2 − λ1ð Þ

c1
, uc2 =

δdId λ2 − λ1ð Þ
c2

, uc3

= λ3chX
c3

, uc4 =
λ7 − λ6ð ÞβhShX

c4
:

ð22Þ

5. Numerical Simulations

In this section, the numerical results of different optimal con-
trol scenarios u1, u2, u3, and u4 are presented. The numerical
solution of the optimality system is solved by the forward-
backward sweep method [27]. The ode45 solver in MATLAB
is used to solve (1) with initial values Sdð0Þ = 1:686 × 105, Idð
0Þ = 4 × 104, Slð0Þ = 3:335 × 106, Ilð0Þ = 5 × 105, Xð0Þ = 2 × 1
07, Shð0Þ = 8:05 × 105, Ehð0Þ = 8:064 × 103, and Ihð0Þ = 576,
where Sdð0Þ can be estimated from [28] and Slð0Þ, Shð0Þ, Ihð
0Þ can be estimated from [30]. The other initial values of
model (1) are assumed. The costate system (20) with boundary
conditions λiðTÞ = 0, i = 1, 2, 3, 4, 5, 6, 7, 8, is numerically
obtained from the backward Runge-Kutta scheme. The con-
trol variables (21) are updated by entering the new state and
adjoint values until the current state; the adjoint and control
values are negligibly close. It is well established that the cost
of anthelmintic treatment is more expensive than that of envi-
ronmental disinfection, while the cost of slaughter inspection
is cheaper than that of environmental disinfection. On the
other hand, the cost of health education is cheaper than that
of slaughter inspection. Hence, the weighting constants are
considered as c1 = 50, c2 = 90, c3 = 70, and c4 = 60. All other
parameters are listed in Table 1. Λl is estimated by using the
data from the Statistics Bureau of Ganzi Tibetan Autonomous
Prefecture [28]. Λd, ε, δd, and δh are estimated by using the
data from Zou [30]. The average life expectancy of people in
Ganzi Tibetan Autonomous Prefecture (see [29]) was 72.10
years in 2016. Therefore, the natural death rate μh of humans
in Ganzi Tibetan Autonomous Prefecture is estimated as μh
= 1/72:1 ≈ 0:0139. The death rate of echinococcosis eggs due
to environmental disinfection cannot be directly acquired. It
is instead assumed that the parasite egg mortality rate induced
by environmental disinfection should arrive at ten times
higher than the natural death rate. The combined employment
of two, three, and four control measures will be studied. The
following scenarios are considered:

(A) Scenario one: coupled control measures

(i) Strategy A: slaughter inspection and anthelmin-
tic treatment (u1, u2)

(ii) Strategy B: slaughter inspection and environ-
mental disinfection (u1, u3)

(iii) Strategy C: slaughter inspection and health edu-
cation (u1, u4)

(iv) Strategy D: anthelmintic treatment and envi-
ronmental disinfection (u2, u3)

(v) Strategy E: anthelmintic treatment and health
education (u2, u4)

(vi) Strategy F: environmental disinfection and
health education (u3, u4)

(B) Scenario two: threefold control measures

(i) Strategy G: slaughter inspection, anthelmintic
treatment, and environmental disinfection
(u1, u2, u3)

(ii) Strategy H: slaughter inspection, anthelmintic
treatment, and health education (u1, u2, u4)

(iii) Strategy I: slaughter inspection, environmental
disinfection, and health education (u1, u3, u4)

(iv) Strategy J: anthelmintic treatment, environ-
mental disinfection, and health education
(u2, u3, u4

(C) Scenario three: fourfold control measures

(i) Strategy K: slaughter inspection, anthelmintic
treatment, environmental disinfection, and
health education (u1, u2, u3, u4)

For Strategy A, the slaughter inspection control u1 and
the anthelmintic treatment control u2 are merely carried
out while the environmental disinfection control u3 and
the health education control u4 are chosen to be ignored.
Figure 2(a) shows the paths of optimal controls u∗1 and u∗2 .
The slaughter inspection (blue dash-dot line in Figure 2(a))
should be executed 100% for 15 years and then decreases
gradually to zero. Meanwhile, the anthelmintic treatment
(red dotted line in Figure 2(a)) needs to start the 100% use
for 10 years and then declines to zero. Figures 2(b)–2(d)
illustrates the effect of the optimal controls u∗1 and u∗2 . When
there is no control (see the blue dashed lines in Figures 2(b)–
2(d)), the disease is prevalent. However, when the optimal
controls are implemented (see the red dotted lines in
Figures 2(b)–2(d)), the number of infected dogs, infected
livestock, and infected humans could be significantly mini-
mized to the lower level ðId , Il, IhÞ = ð61,207,6Þ. For Strategy
B, the slaughter inspection control u1 and the environmental
disinfection control u3 are merely applied in (17) while the
anthelmintic treatment and health education are not consid-
ered, i.e., u2 = 0, u4 = 0. Figure 3(a) presents the profiles of
optimal controls u∗1 and u∗3 . The slaughter inspection (blue
dash-dot line in Figure 3(a)) is done 100% intensively for
16 years and then decreases gradually till the end of control.
Meanwhile, the environmental disinfection control (green
dash-dot line in Figure 3(a)) begins with 100% use for 32
years and then declines to zero. Figures 3(b)–3(d) display
the effect of u∗1 and u∗3 . It is obvious that there is a
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considerable difference in the number of infected dogs,
infected livestock, and infected humans between the con-
trolled cases (see the blue dashed lines in Figures 3(b)–
3(d)) and the cases without control (see the red dotted lines
in Figures 3(b)–3(d)). The number of infected dogs, infected
livestock, and infected humans under Strategy B could drop
to the lower level ðId , Il, IhÞ = ð24,61,6Þ. For Strategy C, u1
and u4 are merely considered in (17) while u2 and u3 are
ignored. Figure 4(a) shows the profiles of optimal controls
u∗1 and u∗4 . The slaughter inspection (blue dash-dot line in
Figure 4(a)) is kept at the maximum use of 100% for 34 years
and then declines gradually to zero. On the contrary, the
health education u∗4 (black dashed line in Figure 4(a))
declines from the maximum use of 46.1% to zero in 16 years.
Figures 4(b)–4(d) display that the number of infected dogs,
infected livestock, and infected humans could drop to the
lower level ðId , Il, IhÞ = ð319,1070,8Þ. For Strategy D, u2
and u3 are implemented to optimize the objective functional
(17) while u1 = 0 and u4 = 0. Figure 5(a) shows the paths of
u∗2 and u∗3 . Both the anthelmintic treatment (red dotted line
in Figure 5(a)) and the environmental disinfection (green
dash-dot line in Figure 5(a)) should be done 100% inten-
sively for 14 years and then decline gradually to zero.
Figures 5(b)–5(d) display that there could exist a consider-
able significance for reducing the number of infected dogs,
infected livestock, and infected humans (blue dashed line)
that drops to the lower level ðId , Il, IhÞ = ð6,16,5Þ. For Strat-
egy E, u2 and u4 are considered while u1 = 0 and u3 = 0.
Figure 6(a) shows the profiles of u∗2 and u∗4 . The control u

∗
2

(red dotted line in Figure 6(a)) has a 100% use for 25 years
and then drops gradually to zero. Meanwhile, the control
effort u∗4 (black dashed line in Figure 6(a)) decays from the
maximum use of 46.1% to zero in 14 years. Figures 6(b)–
6(d) suggest that Strategy E could provide a significant
reduction in the number of infected dogs, infected livestock,
and infected humans that decreases to the lower level ðId ,
Il, IhÞ = ð118,396,7Þ. For Strategy F, u3 and u4 are considered
while u1 = 0 and u2 = 0. Figure 7(a) presents the paths of u∗3
and u∗4 . The control u

∗
3 (green dash-dot line in Figure 7(a))

needs to perform a 100% use for 39 years and then gradually
decreases to zero. Meanwhile, the control u∗4 (black dashed
line in Figure 7(a)) drops rapidly from the maximum use of
46.1% to zero in five years. Figures 7(b)–7(d) show that Strat-
egy F could provide a significant reduction in the number of
infected dogs, infected livestock, and infected humans that
drops to the lower level ðId , Il, IhÞ = ð35,84,6Þ.

For Strategy G, the controls u1, u2, and u3 are considered
while u4 = 0. Figure 8(a) shows the paths of u∗1 , u∗2 , and u∗3 .
The control u∗1 (blue dash-dot line in Figure 8(a)) has a
100% use for 12 years and then decreases gradually to zero.
Both the control u∗2 (red dotted line in Figure 8(a)) and the
control u∗3 (green dash-dot line in Figure 8(a)) have a
100% use for 10 years and then drop gradually to zero.
Figures 8(b)–8(d) suggest that the number of infected dogs,
infected livestock, and infected humans under Strategy G
(blue dashed line) could be significantly reduced to a lower
level ðId , Il, IhÞ = ð6,15,5Þ compared to no control (red dot-
ted line). For Strategy H, the controls u1, u2, and u4 are con-

sidered while u3 = 0. Figure 9(a) presents the paths of u∗1 , u∗2 ,
and u∗4 . The slaughter inspection (blue dash-dot line in
Figure 9(a)) should be done 100% for 15 years and then
decreases gradually to zero. The anthelmintic treatment
u∗2 (red dotted line in Figure 9(a)) has the 100% use for
10 years and then declines to zero. On the contrary, the
health education u∗4 (black dashed line in Figure 9(a))
drops rapidly from the maximum use of 46.1% to zero
in 11 years. Figures 9(b)–9(d) display that there is a signif-
icance for u∗1 , u

∗
2 , and u∗4 reducing the number of infected

dogs, infected livestock, and infected humans (blue dashed
line) that drops to a lower level ðId , Il, IhÞ = ð62,207,6Þ. For
Strategy I, u1, u3, and u4 are implemented in (17) while
u2 = 0. Figure 10(a) shows the paths of u∗1 , u

∗
3 , and u∗4 .

The control u∗1 (blue dash-dot line in Figure 10(a)) should
be done 100% intensively for 16 years and then declines
gradually to zero, while the control u∗3 (green dash-dot
line in Figure 10(a)) has the maximum use (100%) for
32 years before dropping gradually to zero. The control
u∗4 drops rapidly from the maximum use (46.1%) to zero
in five years. Figures 10(b)–10(d) suggest that there could
be a considerable significance for reducing the number of
infected dogs, infected livestock, and infected humans
(blue dashed line) that decreases to a lower level ðId , Il,
IhÞ = ð24,61,6Þ. For Strategy J, u2, u3, and u4 are consid-
ered while u1 = 0. The optimal controls u∗2 , u∗3 , and u∗4
are presented in Figure 11(a). Both u∗2 (red dotted line
in Figure 11(a)) and u∗3 (green dash-dot line in
Figure 11(a)) have a 100% use for 14 years and then drop
gradually to zero. Meanwhile, u∗4 (black dashed line in
Figure 11(a)) drops rapidly from the maximum use of
46.1% to zero in four years. Figures 11(b)–11(d) show that
Strategy J (blue dashed line) could provide a significant
reduction in the number of infected dogs, infected live-
stock, and infected humans that deceases to the lower level
ðId , Il, IhÞ = ð6,16,5Þ.

For Strategy K, all the controls u1, u2, u3, and u4 are con-
sidered in (17). The optimal controls u∗1 , u∗2 , u∗3 , and u∗4 are
displayed in Figure 12(a). The control u∗1 (blue dash-dot line
in Figure 11(a)) starts to have a 100% use for 12 years and
then decreases gradually to zero. Both the control u∗2 (red
dotted line in Figure 11(a)) and the control u∗3 (green
dash-dot line in Figure 12(a)) have a 100% use for 10 years
and then decline gradually to zero. Meanwhile, the control
u∗4 (black dashed line in Figure 12(a)) drops rapidly from
the maximum use of 46.1% to zero in four years.
Figures 12(b)–12(d) show that Strategy K (blue dashed line)
has a significant reduction in the number of infected dogs,
infected livestock, and infected humans that could drop to
the lower level ðId , Il, IhÞ = ð6,15,5Þ.

6. Conclusion and Discussion

This paper presents and analyzes a deterministic compart-
mental system for echinococcosis transmission dynamics
under the intervention of constant slaughter inspection,
anthelmintic treatment, environmental disinfection, and
health education. The existence and stability of the disease-
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free and disease-endemic equilibrium points of the model
are discussed. It finds that the basic reproduction number
determines entirely whether the disease is extinct or not
endemic. In the absence of control measures, the basic
reproduction number in Ganzi Tibetan Autonomous Prefec-
ture is estimated to be R0 = 1:0662 > 1. This means that
echinococcosis is an endemic disease. Craig et al. [13] stated
that it is difficult to eliminate the spread of echinococcosis in
scattered seminomadic remote communities, even if the
Echinococcosis Control Program in Western China is car-
ried out by using PZQ for the dog-dosing frequency
monthly. Therefore, comprehensive interventions mainly
including slaughter inspection, anthelmintic treatment,
environmental disinfection, and health education should be
taken into account to control the transmission of echinococ-
cosis. Figures 2–12 have shown that the optimal strategies
from Strategy A to Strategy K have a considerable signifi-
cance in reducing the number of infected dogs, infected live-
stock, and infected humans. The combined prevention and
control measures could eliminate the prevalence of
echinococcosis.

Note that Strategies D, G, J, and K could reduce the
number of infected dogs, infected livestock, and infected
humans to a lower level than other strategies. Therefore,
anthelmintic treatment and environmental disinfection
may play a crucial role in controlling the number of infec-
tious individuals. The anthelmintic treatment against echi-
nococcosis does not eliminate the infection, and most of
the time, when the treatments cease, there is a rebound in
the infection (see [13]). Environmental disinfection may
hence be indispensable for the prevention and control of
echinococcosis. However, the importance of environmental
disinfection for the prevention and control of echinococcosis
is often ignored. Therefore, deworming and environmental

disinfection should be the primary consideration in choos-
ing control measures when developing an echinococcosis
control and prevention program. The slaughter inspection
with regard to meat inspection and offal disposal is aimed
at reducing the number of infected dogs. Consequently, the
number of EEs naturally decreases when the slaughter
inspection is implemented. Thus, infected livestock would
be reduced. From this perspective, the slaughter inspection
may shorten the control time. The health education is aimed
at reducing the possibility of ingestion by humans. The low
evacuation rate of EEs would lead to the small possibility
of ingestion by humans. Therefore, if the number of EEs
drops to a certain level, the health education will become
unimportant. That is to say that the health education has
effectiveness in a short time for the prevention and control
of echinococcosis. Hence, for faster and better prevention
and control of echinococcosis, Strategy K may be recom-
mended to be implemented in the real situation. Finally,
some parameter values (for example, the death rate of EEs
due to environmental disinfection) are not directly available;
our model does not necessarily reflect the true picture of the
prevalence of echinococcosis in the Ganzi Tibetan Autono-
mous Prefecture. Nevertheless, our model analysis suggests
that environmental disinfection is critical to controlling the
spread of echinococcosis and that the optimal integrated
control strategy (Strategy K) can control the disease in the
shortest possible time.

Appendix

A. Proof of Theorem 2

The Jacobian matrix of model (1) evaluated at Edf e is
obtained by

J =

−μd δdu2 0 0 −
1 − u1ð ÞεβdΛd

μd
0 0 0

0 − μd + δdu2ð Þ 0 0 1 − u1ð ÞεβdΛd

μd
0 0 0

0 γ − μx + chu3ð Þ 0 0 0 0 0

0 0 −
βlΛl

ε + μl
− ε + μlð Þ 0 0 0 0

0 0 βlΛl

ε + μl
0 − ε + μlð Þ 0 0 0

0 0 −
1 − u4ð ÞβhΛh

μh
0 0 −μh 0 δh

0 0 1 − u4ð ÞβhΛh

μh
0 0 0 − ω + μhð Þ 0

0 0 0 0 0 0 ω − μh + δhð Þ

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: ðA:1Þ
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Then, the corresponding characteristic polynomial is

P λð Þ = λ + μdð Þ λ + μhð Þ λ + ε + μlð Þ λ + μh + δhð Þ
� λ + ω + μhð Þ λ3 + a2λ

2 + a1λ + a0
� 	

,
ðA:2Þ

where

a0 = ε + μlð Þ μd + δhu2ð Þ μx + chu3ð Þ 1 −R3
0

� 	
,

a1 = ε + μlð Þ μd + δhu2ð Þ + μd + δhu2ð Þ μx + chu3ð Þ + ε + μlð Þ μx + chu3ð Þ,

a2 = ε + μlð Þ + μd + δhu2ð Þ + μx + chu3ð Þ: ðA:3Þ

Let QðλÞ = λ3 + a2λ
2 + a1λ + a0. It is evident from (A.3)

that there are a1 > 0 and a2 > 0. If R0 < 1, then a0 > 0. Fur-
thermore,

a1a2 − a0 = μl + μd + σu2ð Þ½ � a1 + μx + chu3ð Þ2� �
+ μl μd + σu2ð Þ μx + chu3ð ÞR3

0 > 0:
ðA:4Þ

Using Routh–Hurwitz conditions [23], all roots of Qð
λÞ have negative real parts. Then, it is clear that all roots
of PðλÞ have negative real parts. Therefore, the disease-
free equilibrium Edf e is locally asymptotically stable when
R0 < 1. By contrast, Qð0Þ = a0 < 0 if R0 > 1. Since lim

λ⟶+∞
QðλÞ = +∞, there must be a positive root of QðλÞ from
the Intermediate Value Theorem. So, Edf e is unstable if
R0 > 1.

B. Proof of Theorem 3

It is worth noting that the first five equations of model (1)
are independent of the last three equations of model (1).
So, consider the first five equations of model (1) as a
subsystem:

_Sd =Λd − 1 − u1ð ÞεβdSdIl − μdSd + δdu2Id ,
_Id = 1 − u1ð ÞεβdSdIl − μdId − δdu2Id ,
_X = γId − μxX − chu3X,
_Sl =Λl − βlSlX − εSl − μlSl,
_Il = βlSlX − εIl − μlIl:

8>>>>>>>><
>>>>>>>>:

ðB:1Þ

Let ðSdðtÞ, IdðtÞ, XðtÞ, SlðtÞ, IlðtÞÞ be any solution of
model (B.1) in Γ. This implies that IdðtÞ ≤Λd/μd , IlðtÞ ≤
Λl/ðε + μlÞ for all t ≥ 0. Define a Lyapunov function as fol-
lows:

L Id , X, Ilð Þ = Id +
μd + δdu2

γ
X + 1 − u1ð ÞεβdΛd

μd ε + μlð Þ Il: ðB:2Þ

Then, the derivative of L along the solutions of model
(B.1) yields

dL
dt

= _Id +
μd + δdu2

γ
_X + 1 − u1ð ÞεβdΛd

μd ε + μlð Þ
_Il

= 1 − u1ð ÞεβdSd −
1 − u1ð ÞεβdΛd

μd

� �
Il

+ 1 − u1ð ÞεβdβlΛd

μd ε + μlð Þ Sl −
μd + δdu2

γ
μx + chu3ð Þ

� �
X

≤
1 − u1ð ÞεβdβlΛd

μd ε + μlð Þ
Λl

ε + μlð Þ −
μd + δdu2

γ
μx + chu3ð Þ

� �
X

= μd + δdu2
γ

μx + chu3ð Þ R3
0 − 1

� 	
X:

ðB:3Þ

Therefore, _L < 0 if R0 < 1 and X > 0. Moreover, _L = 0
when R0 < 1 and X = 0. As a consequence, the only
invariant set satisfying _L = 0 is Edf e when R0 < 1. By
Lasalle’s invariance principle [24], the disease-free equilib-
rium Edf e is globally asymptotically stable if R0 < 1.

Now, consider the last three equations of model (1).
From above, it has lim

t⟶∞
XðtÞ = 0 if R0 < 1. So, it could be

deduced that lim
t⟶∞

EhðtÞ = 0. Furthermore, lim
t⟶∞

IhðtÞ = 0
and lim

t⟶∞
ShðtÞ =Λh/μh could be derived. Thus, Edf e is glob-

ally asymptotically stable for model (1) when R0 < 1.

C. Proof of Theorem 4

Since _Sd + _Id =Λd − μdðSd + IdÞ, and _Sl + _Il =Λl − ðε + μlÞð
Sl + IlÞ, it implies that lim

t⟶∞
ðSd + IdÞ =Λd/μd and lim

t⟶∞
ðSl

+ IlÞ =Λl/ðε + μlÞ. So the long-term dynamical behaviors
of SdðtÞ and SlðtÞ could be replaced by Λd/μd − IdðtÞ and
Λl/μl − IlðtÞ, respectively. Consider the subsystem of model
(1) as follows:

_Id = 1 − u1ð ÞεβdSdIl − μdId − δdu2Id ,
_X = γId − μeX − chu3X,
_Il = βlSlX − εIl − μlIl:

8>><
>>:

ðC:1Þ

Let

Δ = Id , X, Ilð Þ ∈ℝ3
+ : Id ≤

Λd

μd
, X ≤

γΛd

μd μx + chu3ð Þ , Il ≤
Λl

ε + μl

� �
:

ðC:2Þ

The dynamics of model (C.1) can be focused on Δ since
Γ is positively invariant for model (C.1). The method in [25]
is adopted to explore the global stability of model (C.1).
Define
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h vð Þ =
h1 v1, v2, v3ð Þ
h2 v1, v2, v3ð Þ
h3 v1, v2, v3ð Þ

0
BBB@

1
CCCA

=

− μd + δdu2ð Þv1 + 1 − u1ð Þεβd
Λd

μd
− v1

� �
v3

− μx + chu3ð Þv2 + γv1

− ε + μlð Þv3 + βl
Λl

ε + μl
− v3

� �
v2

0
BBBBBBB@

1
CCCCCCCA
:

ðC:3Þ

Then, h : ℝ3
+ ↦ℝ3

+ is a continuously differential map. It
thus has hð0Þ = 0, and hiðvÞ ≥ 0, i = 1, 2, 3, for all v ∈ Δ when

vi = 0. Furthermore, ∂hi/∂vj ≥ 0, i ≠ j, for v ∈ Δ, so that h is
cooperative on Δ.

For p ∈ ð0, 1Þ and v ∈ Δ, it has

h1 pv1, pv2, pv3ð Þ = − μd + δdu2ð Þpv1 + 1 − u1ð Þεβd

� Λd

μd
− pv1

� �
pv3 ≥ − μd + σu2ð Þpv1 +

� 1 − u1ð Þβd
Λd

μd
− v1

� �
pv3 = ph1

� v1, v2, v3ð Þ:
ðC:4Þ

Similarly, it could be shown that hiðpv1, pv2, pv3Þ ≥ phið
v1, v2, v3Þ, i = 2, 3. So h is strictly sublinear on Δ.

By computing DhðvÞ = ð∂hi/∂vjÞj1≤i,j≤3, it leads to

Then, DhðvÞ is irreducible on v ∈ Δ because jDhðvÞj ≠ 0.
A straightforward computation shows that

Dh 0ð Þ =

− μd + δdu2ð Þ 0 1 − u1ð Þεβd
Λd

μd

γ − μx + chu3ð Þ 0

0 βl
Λl

ε + μl
− ε + μlð Þ

0
BBBBBB@

1
CCCCCCA
:

ðC:6Þ

Then, the characteristic polynomial of Dhð0Þ is

Q λð Þ = λ3 + a2λ
2 + a1λ + a0, ðC:7Þ

where a0, a1, and a2 are known from (B.1). Then, a0 < 0
when R0 > 1. According to the proof process of Theorem
3, there must exist a positive root of QðλÞ. Therefore, sðDh
ð0ÞÞ =max fRe λ : QðλÞg > 0. From Corollary 3.2 in [25],
there are lim

t⟶∞
IdðtÞ = I∗d , lim

t⟶∞
XðtÞ = X∗, and lim

t⟶∞
IlðtÞ =

I∗l . Furthermore, lim
t⟶∞

SdðtÞ = S∗d and lim
t⟶∞

SlðtÞ = S∗l .

When R0 > 1, the limiting system of the last three equa-
tions in model (1) is

_Sh =Λh − 1 − u4ð ÞβhShX
∗ − μhSh + δhIh,

_Eh = 1 − u4ð ÞβhShX
∗ − ωEh − μhEh,

_Ih = ωEh − μhIh − δhIh:

8>><
>>:

ðC:8Þ

It is evident that model (C.8) is linear. By computing the
eigenvalues of the linear model (C.8), it could be shown that
ðS∗h , E∗

h , I∗hÞ is locally asymptotically stable. Therefore, ðS∗h ,
E∗
h , I∗hÞ is globally asymptotically stable. According to [26],

it concludes that the endemic equilibrium Eee of model (1)
is globally asymptotically stable.
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