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Abstract: Water crisis is a global issue due to water contamination and extremely restricted sources of
fresh water. Water contamination induces severe diseases which put human lives at risk. Hence, water
quality monitoring has become a prime activity worldwide. The available monitoring procedures
are inadequate as most of them require expensive instrumentation, longer processing time, tedious
processes, and skilled lab technicians. Therefore, a portable, sensitive, and selective sensor with in
situ and continuous water quality monitoring is the current necessity. In this context, microfluidics is
the promising technology to fulfill this need due to its advantages such as faster reaction times, better
process control, reduced waste generation, system compactness and parallelization, reduced cost,
and disposability. This paper presents a review on the latest enhancements of microfluidic-based
electrochemical and optical sensors for water quality monitoring and discusses the relative merits
and shortcomings of the methods.
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1. Introduction

In this century, one of the major challenges that human beings are likely to face is water quality.
Due to pollution, the amount of drinkable water is reducing day by day. This water pollution or
contamination occurs due to various sources. These sources can be categorized as point sources
and nonpoint sources [1,2]. Dumping of organic and inorganic wastes from industrial and domestic
discards form the point sources of drinking water contaminants, whereas the nonpoint sources are
land runoff, applying chemicals, or leaks from buried solid waste landfills [3]. These sources add
dangerous materials such as heavy metals, nutrients, and pathogens to the surface water. Heavy
metals (e.g., arsenic (As), lead (Pb), mercury (Hg), etc.) naturally exist in the surroundings, and various
anthropogenic actions are also responsible for adding heavy metals to the environment [4]. Most of
these heavy metals may cause fatal effects on public health due to their potentially mutagenic or
carcinogenic effects on the human body [5–8]. Nutrient contamination is also a concern for water
pollution. A key source of nutrients (mostly phosphorus and nitrogen) is land runoff since the nitrate
and phosphorus ions are not held by soil particles. Pathogen contamination is another cause for
concern [9]. Water polluted with organic waste and human and animal excrement is a potent source of
pathogenic bacteria, protozoa, viruses, and parasitic worms. It results in gastrointestinal illness and can
be a potential risk to human health. Escherichia coli (E. coli) is generally considered a faecal indicator
bacteria (FIB). Bacterial counts are typically used to evaluate the influence of sewage pollution [10–12].
Higher concentrations of contaminants in water are responsible for fatalities across the world.
The complications from water contamination are discussed in detail in the subsequent section.

The harmful outcomes of water pollution are increasing due to two main reasons: first, the level
of contaminants in the water is continuously rising and there are no current practical methods to keep
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track of the natural changes, and the second is human growth, which leads to the need of expansion
to new water sources of unknown quality. For this purpose, periodic water quality monitoring
becomes very essential [13]. The traditional methods used for water monitoring are sensitive and
reliable. However, mostly, they are expensive as they rely on specific instrumentation (laboratory
based and not portable). Also, the samples used in these methods require transportation from the
site to the laboratory, which is time consuming and, most importantly, is not field-effective. Hence,
there is an increasing need to develop prompt, portable, and inexpensive sensors with high sensitivity
and reliability. An ideal sensor should have a low cost, high sensitivity and selectivity, and a high
throughput; should be user-friendly; and should provide in-field operation ability. It should also meet
the WHO guidelines for portable sensor requirements [14]. From these perspectives, microfluidic
devices are significantly appealing technologies to achieve the Lab-on-a-chip (LoC)-based point-of-care
applications [15].

Microfluidics is the technology that precisely manipulates a small volume of fluids, using channels
with dimensions of tens to hundreds of micrometers [16–19]. This technology has advantages such
as faster reaction times, better process control, reduced waste generation, system compactness and
parallelization, reduced cost, and disposability [16,20–23]. Most microfluidic devices are disposable
and are used for one-time measurements. Earlier, microfluidics mainly focused on integration of
microsensors with fluidic components (actuators, pumps, valves, etc.) and on miniaturization of
analytical assays. Thereafter, Micro Total Analysis Systems (µTAS) evolved using micro-fabricated
structures. The miniaturization with microfluidics flourished in many life science fields such as genetic
analysis, cell biology, and protein analysis [24]. Currently, these devices are widely applied in all
branches of science such as chemistry, biology, engineering, and biomedical sciences, etc. In earlier days,
silicon was used to fabricate the microfluidic devices [25–27]. Then, glass and polydimethylsiloxane
(PDMS) were used for fabrication purpose. Nowadays, even thermoplastic and paper are accepted
as fabrication materials [15,28,29]. Several manufacturing techniques are available for microfluidic
sensors such as injection moulding, softlithography, and mass-production technologies like etching.
Among these methods, the softlithography technique using polydimethylsiloxane (PDMS) is a highly
popular method [30,31]. However, this process requires special equipment and, in many cases, access
to a clean room [32]. Currently, researchers are also making use of commercial 3-D printers to fabricate
microfluidic sensors as it is possible to fabricate the microstructures in one step from a computer-based
design. The frequently used approaches are inkjet printing, stereolithography (SLA), extrusion printing,
etc. [33,34].

Microfluidic sensors can be categorised in two types: one in which the microfluidic system
measures the parameters inside it and the other in which the measurement of parameters takes place
with the help of external integrated equipment [35–37]. Figure 1 represents the microfluidic system in
two main parts: the sensing unit and the detection unit. The sensing unit involves elements such as
biological entities, functionalized nanoparticles, and metal electrodes, etc., whereas the most commonly
used detection systems with microfluidics are optical- and electrochemical-based systems [36,38]. It is
possible to perform multiple analyses on the microfluidic platform by just modifying its microchannel
patterns. Micromixers have a pivotal point in enhancing the sensitivity of the microfluidic-based
sensors [32,39,40]. Any extensive pre-analysis is not necessary while detecting the pollutants using
microfluidic sensors. Hence, microfluidic LoC devices have been broadly studied as a substitute for the
conventional lab-based methods. Recent reviews presented contamination related to heavy metal [41],
nutrients [42], and pathogens [43,44] individually.
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Figure 1. Illustration of a microfluidic sensing system.

This paper describes the current developments in microfluidic sensors for overall water quality
monitoring that includes heavy metals, nutrients, and pathogenic detection. Specific emphasis is
given on the role of microstructures in sensors. Methods outlined here are categorized on the basis of
the transduction system including electrochemical and optical detection. Electrochemical detection
covers techniques like electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV),
and square-wave anodic stripping voltammetry (SWASV), etc. On the other hand, optical detection
covers colorimetric, fluorescent, chemiluminescence (CL), surface-enhanced Raman scattering (SERS),
and surface plasmon resonance (SPR) sensors. The advantages and limitations of each method along
with their challenges while implementing field-effective sensors are also discussed in this review.

2. The Consequences of Water Pollutants on the Human Body

Water pollution is a widespread problem across the world. It impacts human life in all its
aspects including mental, social, economic, physical, and emotional development. Diseases caused
by contaminated drinking water result in the death of a million people every year—the majority of
which are children [45]. The basic water pollutants are chemical and biological elements. Chemical
pollutants include nutrients and organic and inorganic constituents, whereas biological contaminants
include pathogens. Inorganic constituents include heavy metals [46]. Table 1 summarizes some effects
among populations exposed to these impurities [47,48] and also includes the maximum permissible
limit of the contaminant along with contamination sources [49–53].
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Table 1. Contaminants and their potential health effects.

Contaminant Cancer Developmental/ Neurologic Other Sources Ref.
MCL Reproductive
(mg/L)

Arsenic Skin, SAB Peripheral Cardiovascular, Geothermal activity, [54–59]
(0.01) internal immunologic, agricultural application,

dermatologic mining and smelting, industrial applications,
industrial and electronics wastes

Lead Internal Birth defects Autism, dyslexia, Haemoprotein, Natural deposits, mining, [58,60,61]
(0.01) (OCC) hyperactivity weight loss, manufacturing process,

muscular weakness, and fossil fuel burning
paralysis,
kidney damage

Mercury Internal Damage to Neurobehavioral Cardiovascular, Natural deposits, land runoff [58,62–64]
(0.002) fetus disorders thyroid, asthma, agricultural and industrial applications,

nausea and vomiting, paper and pulp preservatives
diarrhea, skin rashes,
cardiovascular

Cadmium Pancreatic Preterm birth, Neuron cell Leading to Natural deposits, [58,65–67]
(0.004) ovarian LBW death kidney disease, mining, smelting,

breast oxidative stress, tobacco smoking, disposal of sewage
osteoporosis, DNA damage

Chromium Lung and NA NA Nausea and Natural deposits in soil and rocks, [47,58,68,69]
(0.05) gastrointestinal vomiting, volcano irruption,

low blood sugar, coal and oil combustion,
damage to liver sewage sludge,
and kidney, cement production
dermatological

Nickel Lung and NA NA Lung disease, Volcanic eruption, forest fires, [70,71]
(0.02) nasal skin diseases, industrial and domestic wastewater,

liver toxicity sewage sludge
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Table 1. Cont.

Contaminant Cancer Developmental/ Neurologic Other Sources Ref.
MCL Reproductive
(mg/L)

Aluminum NA NA NA Nausea and vomiting, Industrial applications [58,72,73]
(0.05 to 0.2) mouth ulcers, diarrhea,

skin rashes,
arthritic pain

Iron Lung NA NA Gastrointestinal bleeding, Natural deposits, [58]
(0.3) vomiting and diarrhea corroded iron pipes

Nitrate Internal SAB NA Gastric problems, Natural deposits, agricultural usage, [74,75]
(50) blue baby syndrome Parkinson’s disease animal waste, septic tanks,

sewage sludge

Nitrite Blue baby syndrome Gastric problems Natural deposits, agricultural usage, [76–79]
(0.2) animal waste, septic tanks

Pesticide - Carcinogenic LBW NA Skin irritations Agricultural applications [74]
1,3-dichloropropene tumors
(0.02)

E. coli NA NA NA Kidney failure, sewage leakage, [80,81]
(less than anemia, diarrhea, animal waste
1/100 mL) and other serious

health problems

Rotavirus NA NA NA Vomiting, dehydration, disposal of untreated wastewater [46]
Zero severe fatigue

Protozoa NA NA NA Diarrhea, fatigue, Faecal contamination [82]
(Less than nausea, abdominal cramps
1(oo) cyst/100L)

NA: Not Applicable; LBW: Low birth weight; MCL: Maximum contamination level; OCC: Occult cancer; SAB: Spontaneous abortion.
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Environmental vulnerability resulting from heavy metals is gaining awareness worldwide due to
extensive pollution in different parts of the world [8]. Heavy metals are commonly present in most
surroundings. Their physiological and chemical characteristics make them extensively useful in various
industrial fields. Industrial waste enhances the possibility of heavy metal exposure, which leads to
environmental pollution [83], such as for surface water, and to soil contamination. Almost all heavy
metals contain toxic substances. The presence of heavy metal ions like cadmium, arsenic, chromium,
lead, and mercury in water produce harmful long-term effects on human health [5,84]. Arsenic (As)
exists in both the organic and inorganic form in nature, and it has different types [85]. Among all the
types, As(III) and As(V) are present abundantly in natural water and are highly toxic [86–88]. Arsenic
exposure occurs through air, food, and water [89]. Long-term inorganic arsenic toxicity can affect the
cardiovascular, nervous, endocrine, and renal systems. It leads to skin lesions, pulmonary disease,
hypertension, etc. [54]. Furthermore, arsenic toxicity causes different types of cancers [55–57,59].
Cadmium (Cd) is a malleable silver-white toxic metal that appears in the earth’s outermost layer.
Its pollution naturally occurs due to volcanic eruptions, weathering, and river transport. Man-made
activities like mining, smelting, tobacco smoking, disposal of sewage, etc. are equally responsible for
pollution [65]. The International Agency for Research on Cancer has classified Cd and its compounds
as Group 1 carcinogens. Cd toxicity causes osteoporosis, renal dysfunction, preterm birth, and low
birth weights [58,66,67]. Chromium (Cr) is a steely-grey shiny metal that naturally is present in rocks,
soil, animals, and plants. Industrial sources such as magnetic tapes, metal alloys, protective metal
coatings, paint pigments, paper, rubber, and cement, etc. release Cr in the environment [68]. Low-level
Cr toxicity can cause types of ulcers and low blood sugar. Severe chromium toxicity can develop into
lung cancer, gastrointestinal cancer, and DNA damage [47,58,69]. Lead (Pb) is a shiny bluish-gray soft
metal naturally present in the earth’s crust. However, mostly, it is accumulated in the environment due
to activities like manufacturing, mining, and fossil fuel burning [61]. The Environmental Protection
Agency (EPA) has considered Pb to be a carcinogen. Acute or short-term exposure to Pb may result in
appetite loss, loss of hunger, headache, elevated blood pressure, stomachache, kidney dysfunction,
exhaustion, insomnia, painful inflammation and stiffness of the joints, and vertigo. Chronic or
long-term exposure to Pb can cause mental abnormality, congenital disorder, allergies, weight loss,
paralysis, weak muscles, dementia, and renal damage and may even be fatal [58,60]. Mercury (Hg)
is a silvery liquid metal. Its contamination occurs in its surroundings due to industrial activities like
paper and pulp preservatives, pharmaceuticals, cement production, and agriculture industry, etc. [64].
Increased levels of metallic, organic, and inorganic mercury can lead to impairment of the brain,
kidneys, muscles, and the fetus. It causes hypertension, cardiovascular consequences (coronary heart
disease, myocardial infarction, cardiac arrhythmia, etc.), and sudden death [63]. EPA has reported
methyl mercury and mercuric chloride as extremely carcinogenic compounds [58,62].

Nutrients like nitrogen and phosphorous are significant contributors to water body pollution.
Abundant nitrogen occurs naturally in our surroundings as approximately 80% of the air is
comprised of nitrogen. When this atmospheric nitrogen encounters rainwater, it produces nitrate
and ammonium [90,91]. Further, a reduction of nitrate results in nitrite ions [74,92]. These ions can
enter into the soil or surface water. The excessive use of fertilizers in agriculture is the principal
nonpoint source of nitrogen and phosphorus. Another source of agricultural pollution is animal dung.
In addition to this, the disposal of industrial waste and sewage is a significant anthropogenic source
of nitrate pollution [7,93]. The excessive presence of nitrite and nitrate ions causes adverse health
effects [76–79].

Nitrate is an essential ion for the human body to decrease blood pressure and to improve blood
flow. Still, its unnecessary intake can affect the human body. It can develop diseases like gastric
cancer and Parkinson’s disease. Newborns can be afflicted with blue baby syndrome [74]. It also
provides a risk of thyroid cancer [75]. In rivers or lakes, the presence of excessive nitrate produces
unnecessary algae and phytoplankton, which causes eutrophication. This unwanted growth of algae



Sensors 2019, 19, 4781 7 of 37

and phytoplankton absorbs more marine oxygen through the decomposition process and badly affects
aquatic life [90].

Domestic wastewater handling and disposal methods provoke the pathogenic contamination
of water bodies. Pathogenic contamination results in developing viruses, bacteria, and protozoa in
water [82]. Bacteria like Escherichia coli, Enterococci, Bacteroides, etc. are present in the intestines of
warm-blooded animals. These are recognized as indicators of faecal pollution [94,95]. These bacteria
can enter into the ground water due to sewage leakage from septic tanks [80] and are responsible for
waterborne diseases such as severe cholera, diarrhea, legionellosis, and typhoid fever [81]. Additionally,
in the contaminated water supply, rotaviruses, hepatitis A and E viruses, and the parasitic protozoa
Giardia lamblia are frequently observed [46]. Monitoring of pathogenic pollution is also equally
important as many outbreaks of E. coli have been reported worldwide to result in infections and
deaths [96,97].

3. Microfluidic with Electrochemical Detection

Generally, the conventional electrochemical methods include a three-electrode system containing
a reference electrode, a working electrode, and a counter electrode. An interaction between the
analyte and electrode surface produces an electrical signal. According to this working principle,
the detection method can be classified as amperometric, voltammetric, and potentiometric [98].
Measuring micro-volumes of the sample was difficult with the silver (Ag) electrode-based methods
though it has a high sensitivity towards heavy metal detection [99]. The majority of these methods
needed equipment like a rotator, stirrer, etc. Such limitations have been eliminated with the help
of microfabrication technologies by incorporating them on the microfluidic platform. The reference,
measuring, and working electrode can be included in a microfluidic channel [100]. This miniaturization
provides many advantages such as higher processing speed, mass production, portability, reduced
cost, multiple analysis, and simplicity [41]. These microfluidic electrochemical sensors can be used in
point-of-care (POC) applications for water quality monitoring. For the last decade, microfluidic-based
electrochemical sensors have been the subject of considerable study. Several research based sensors are
discussed and listed in Table 2, and commercially available sensors are listed in Table 3.

3.1. Heavy Metal Detection

Chen et al. [101] developed a Hg+2 detector with high sensitivity and reproducibility.
A three-electrode system (Au–Ag–Au) was integrated with a microfluidic channel, as illustrated
in Figure 2a. A novel microfabrication technology (two-step photolithography) was used to develop
the sensor. It turned out to be a disposable sensor due to reduced cost and less reactant consumption.
Anodic stripping voltametry and differential pulse voltametry electrochemical analysis were used
for detecting the Hg+2 ions. The low detection limit (3 ppb) was achieved by this sensor [101].
A similar three-electrode-based reusable polymer lab chip sensor was developed by Jung et al. [99] for
Pb+2 detection, as shown in Figure 2b. A SWASV was used to perform Pb+2 analysis; the sensor
was highly sensitive and environmentally friendly. The achieved limit of detection (LOD) was
0.55 ppb with 300-second deposition time. Another three-electrode system was used in As detection,
as shown in Figure 2c. In this system, a disposable plastic substrate was used to print the electrodes
(carbon, silver, and silver/silver chloride ink). When a water drop was introduced at the electrodes,
the induced current was measured with the help of CV. The method could detect As with LOD of
1 ppb [102]. One more unique method was reported in which the integration of gold nanoparticles with
a microfluidic channel was performed using electrochemical deposition. It consisted of three electrodes,
gold nanoparticles, and a microfluidic channel. Electrodes were constructed with single-walled carbon
nanotubes (SWCNTs) and placed into a microfluidic device as shown in Figure 2d. Gold nanoparticles
were used as an electrolyte material for glucose and arsenic detection. SWASV measurements were
done for ultratrace As(III) analysis. The device provided rapid and sensitive results; it could detect
up to 4.5 ppb within 60 s [103]. In 2016, a electrochemical sensor was screen-printed on flexible
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polyethylene terephthalate material. It was demonstrated for selective monitoring of Pb+2 and Hg+2

metal ions, where electrodes were metalized by carbon- and silver-based inks. The results were
reported using CV. The average peak current’s shift was noticed at 50 µM of Hg+2 and Pb+2. However,
the system was not portable as it did not consist of a readout circuit [104].

Figure 2. Different orientations of electrodes in electrochemical detection methods: (a) Schematic of an
Au–Ag–Au electrode integrated with a microfluidic channel to detect Hg+2 [101]; (b) illustration of a
reusable polymer chip for detection of Pb+2 [99]; (c) electrodes printed on a plastic substrate to detect
As(III) [102]; and (d) single-walled carbon nanotube (SWCNT) electrodes for As(III) detection [103].

In the last few years, paper-based microfluidics has became popular due to the following benefits:
first, no need of components like pumps and tubes as it works on capillary forces and, secondly,
its cost-effectiveness [105–110]. As an example, an economical and simple microfluidic paper-based
electrochemical sensing device (µPED) has been fabricated by Shi et al. [111] for detecting Pb+2 and
Cd+2 in aqueous samples. They have integrated commercial screen-printed carbon electrodes with
filter paper strips as shown in Figure 3. The electrochemical technique was also linked with biological
engineering. In such a combined system, the signal produced by a biosensor is analyzed through a
three-electrode system. The detection was carried out with the help of SWASV and found a very good
limit of detection (2.0 ppb for Pb+2 and 2.3 ppb for Cd+2). The device also exhibited high sensitivity
and stability with real samples without pretreatment of the water sample. Some researchers have also
recommended the use of bioreporters for heavy metal detection. For example, Cortés-Salazar et al. [112]
utilized the natural E. coli defence system against toxic As(III).
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Figure 3. Schematic of paper-based method including integrated commercial screen-printed carbon
electrodes with filter paper strips for detection of Pb+2 and Cd+2 [111].

In this method, they used a commercially available disposable microchip. It contained 16
independent electrochemical cells. The E. coli reporter strain was filled in the microchip. When
the bioreporter encountered arsenic, β-Gal activity was produced within 25 min–50 min. The reported
LOD for the method was 0.8 ppb. The principle of bioreporter is illustrated in Figure 4. Thus, this
microfluidic biosensor has potential to detect arsenic with high sensitivity.

Figure 4. Pictorial presentation of the working scheme of the As(III) bioreporter [112].
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Table 2. Comparison of electrochemical methods.

Electrochemical Methods

Target Detection Sensing Sensing Substrate LOD Real Sample Ref.
Analyte Principle Element Material

Hg+2 ASV Electrode system WE: Au PDMS 3 ppb No [101]
CE: Au
RE: Ag

Pb+2 CV Electrode system WE: carbon Polyethylene 50 µM each No [104]
and Hg+2 CE: Ag terephthalate

RE: Ag/Cl

Pb+2 SWASV Electrode system WE: Ag Polymer 0.55 ppb No [99]
CE/QRE: Ag

Pb+2 SWASV Electrode system WE: carbon Paper 2.0 and 2.3 ppb, Soda water and [111]
and Hg+2 CE: carbon resp. dirty ground

RE: Ag pseudo water

As CV Electrode system WE: Ag Plastic 1 ppb No [102]
CE: Carbon
RE: Ag/AgCl

As SWASV Electrode system WE: Au/SWCNT PDMS 4.5 ppb No [103]
CE and RE: SWCNT

As(III) Amperometry Bioreporter with WE: Au Plastic 0.8 ppb Tap and ground [112]
electrode system CE and RE: Ag water

and E. coli

Nitrate CV Electrode system WE and RE: Ag Glass 25 ppb [113]
CE: Au

Nitrate CV Electrode system WE: Ag Glass 0.2 ppm Field and [114]
CE: Au environmental
RE: Ag water

Nitrate and Potentiometric Electrode system WE: Polymeric membrane Green tapes 9.56 and 0.81 mg/L, Water from [115]
Potassium RE: Ag/AgCl respectively recycling unit
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Table 2. Cont.

Electrochemical Methods

Target Detection Sensing Sensing Substrate LOD Real Sample Ref
Analyte Principle Element Material

Nitrate Potentiometric Electrode system with WE: f-MWCNTs Lipophilic 5 × 10−7M Desalinated [116]
modified working RE:Ag/AgCl carbon nanotubes seawater
electrode

Nitrate EIS Electrode system with WE: NiR/nTiO2-GF PDMS 1 µM No [117]
modified working CE: Au
electrode RE: Ag/AgCl

Nitrate and SWV Electrode system with WE: Cu/MWCNT/RGO/GCE GCE 20 and 30 nM, Tap and [77]
Nitrite modified working CE: Pt-wire resp. mineral water

electrode RE: Ag/AgCl

E. coli Voltammetry Electrode system with WE: immobilized DNA Glass 100 nM No [118]
modified working probe on Au
electrode CE and RE: Pt

Hepatitis B ASV Electrode system WE: GCE Paper 85 pM No [119]
CE: Pt wire
RE: Ag/AgCl and
DNA modified AgNP

E. coli Amperometry Immunoassays Antibody PMMA 50 CFU/mL Real sample [120]

E.coli Positive Sensing and Not specified PDMS 300 CFU/mL No [121]
dielectrophoresis focusing electrode

E. coli EIS Interdigitated Modified silicon Silicon 10 cells/mL No [122]
electrodes sensor chip and PDMS

E. coli and EIS Coplanar electrode Au electrode Silicon 522 cells/mL No [123]
S. aureus

E. coli and Coulter Microfluidic sensing Resistance detection PDMS Individual cell Ballast water [124]
Enterococci principle chip circuit sample

Salmonella Impedance analyzer Interdigitated Au electrode with PDMS 3 × 103 CFU/mL No [125]
typhimurium electrodes immobilized antibodies

LOD: Limit of detection; ASV : Anodic stripping voltammetry; PDMS: Polydimethylsiloxane; PMMA: Poly(methyl methacrylate); CV: Cyclic voltammetry; SWASV: Square-wave
anodic stripping voltammetry; QRE: Quasi-reference electrode; WE: Working electrode; CE: Counter electrode; RE: Reference electrode; EIS: Electrochemical impedance spectroscopy;
SWV: Square-wave voltammetry; RGO: Reduced graphene oxide; GCE: Glassy carbon electrode; -MWCNTs: Functionalised- multiwall carbon nanotube.
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Table 3. Commercially available electrochemical sensors.

Target Measurement Measuring Features Company Ref.
Analyte Principle Range

Arsenic Paper-based electrochemistry Not specified Easy-to-use, quantitative, Bio Nano Consulting [126]
test strips fast, low cost,

nontoxic, disposable

Copper, lead, Stripping square wave Not specified Easy-to-use, quantitative, PalmSense [127]
and cadmium voltammetry with carbon– simple, easy to use,

carbon–silver electrodes cost-effective

Heavy metals Potentiometric cell Not specified Simultaneous analysis, GTQ [128]
with carbon–bismuth portable systems, (Chemical transducers
electrodes in situ results, low cost research Group)

Nitrate Potentiometric cell 0.6 to 200.0 ppm Detection of nitrate–nitrogen MEDIRAY [129]
with liquid membrane in freshwater samples
ion selective electrodes

Nitrate Potentiometric cell 0.5 to 450.0 mg/L Simple to use, Xylem [130]
with ion-selective callibration-free operation
electrodes

Nitrate Potentiometric cell 1 to 14,000 mg/L Easy to use, Vernier [131]
with ion-selective portable
electrodes

Nitrate Potentiometric cell 0.62 to 6200 ppm Replaceable sensing modules, HANNA instruments [132]
with ion-selective durable polyetherimide (PEI) body,
electrodes BNC(Bayonet Neill–Concelman) connection
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3.2. Nutrients

Gartia et al. [113] fabricated an economical, sensitive, and portable electrochemical-based
measurement system for quantitative detection of nitrate in a groundwater sample (Figure 5a).
The sensor chip was fabricated on a glass substrate. The working and reference electrodes
were made up of a thin layer of silver. The counter electrode was a gold-deposited thin layer.
The uniformity of current distribution between electrodes was enhanced using a concentric layout
for the counter and working electrodes. They fabricated a miniaturized potentiostat circuit with
wireless interface to make the sensor field-deployable. When the performances of a microsensor and a
macroelectrode-based electrochemical system were compared, the precise examination proved that
the convention macroelectrodes had far less sensitivity than the microsensor. The CV determination
of nitrate ions in numerous water specimens was performed using the sensor. The LOD for the
microsensor was approximately 25 ppb.

Figure 5. (a) Nitrate sensor chip with wireless communication interface [113]; (b) experimental set up
of low-temperature co-fired ceramics (LTCC)-based continuous flow potentiometric microanalyzer to
determine potassium and nitrate [115]; (c) a mobile sensing platform with a plug-n-play microelectronic
ionic sensor to detect nitrate [114]; and (d) nTiO2-modified graphene foam (GF)-based nitrate
sensor [117].

In a similar manner, Wang et al. [114] developed a mobile phone electrochemical sensing platform
for nitrate quantification, as shown in Figure 5c. A mobile phone sensing platform included a
plug-n-play microelectronic ionic sensor, which performed electrochemical computation utilizing
the smartphone audio jack. A LOC sensing system incorporated a microelectrochemical sensor,
a mobile app, and a controlling unit to control the microfluidics along with the sensor and to manage
the liquid specimens. On the glass substrate, reference and working electrodes were constructed from
a silver layer, and gold layer was used to create the counter electrode. The assay utilized an audio
jack to interface the sensor instead of a camera. A user-friendly mobile application interface made the
testing procedure very simple to use. This compact smartphone-based application could determine
nitrate concentration with a LOD of 0.2 ppm in 60 s. Additionally, the mobile app could save the data
on cloud servers.

Calvo-López et al. [115] developed a compact low-temperature co-fired ceramics (LTCC)-based
continuous flow potentiometric microanalyzer prototype to concurrently detect the occurrence of
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nitrate and potassium ions in the specimens of water recycling process (Figure 6b). The microsystem
combined microfluidics with the sensing mechanism within the same substrate. The detection system
comprised of two ion-selective electrodes that were constructed using a screen-printed Ag/AgCl
reference electrode and ion-selective membranes. Detection limits were 0.81 mg/L and 9.56 mg/L for
potassium and nitrate ions, respectively.

Generally, voltammetric procedures are easy, quick, and inexpensive and do not require specimen
pretreatment before the investigation of the ions in the real specimens. Still, the production of
electrodes that are modified chemically is the main obstruction in such sensors. Enhancing the
ability to transfer electrons between the electrode surfaces and the electroactive analytes is the
principal objective of modified electrodes. Many carbon nanostructured materials like multiwall
carbon nanotubes (MWCNTs), graphene, and metal nanoparticles have been adopted extensively for
accomplishing this purpose [133]. Cuartero et al. [116] reported the use of such carbon nanotubes
in their method. They developed a technique to determine nitrate in seawater using the direct
potentiometric method by in-line coupling to an electrochemical desalination module. Generally,
the presence of highly concentrated sodium chloride in seawater causes difficulties in determining
nutrient nitrite, dihydrogen phosphate, and nitrate at low micromolar levels. In traditional analytical
procedures like colorimetry, UV absorption, fluorescence, chemiluminescence, and ion chromatography
applied for estimating nitrate levels in seawater, very complex pretreatment is necessary. In this
method, a different strategy was accomplished for the reduction of chloride concentration with a
simple electrochemical transformation. A custom-made microfluidic-based flat desalination cell
was combined with the potentiometric sensor (flow cell). The flow cell included an ion-to-electron
transducer and a miniaturized reference electrode, where the transducer was made of lipophilic
carbon nanotube (f-MWCNT)-based nitrate-selective electrode. The LOD of this assay was 5 × 10−7 M.
Bagheri et al. [77] fabricated a novel method in which they deposited CuNPs upon MWCNT-reduced
graphene oxide nanosheets (Cu/MWCNT/RGO) and detected nitrite and nitrate ions individually
and simultaneously. The sensitivity and selectivity of GCE was improved due to the nanoparticles
deposition on the MWCNT-RGO nanocomposite. The output recorded the concentrations of both ions
within a span of 0.1 to 75 µM while determining the analyte simultaneously. The LOD for nitrite ion
was 30 nM and for nitrate ion was 20 nM.

Ali et al. [117] described a microfluidic sensor in which nitrate monitoring was performed with
the help of the EIS technique. The electrochemical electrode used in the method was a porous
graphene foam (GF) scaffold. Electrochemical response was improved by modifying the GF scaffold
with electrospun nTiO2, and nitrate selectivity was increased by modifying the scaffold with nitrate
reductase (NiR) enzyme molecules. Nitrate solutions passed over the nTiO2-activated porous GF,
and very good interaction with distinct receptor NiR bound at the scaffold surfaces occurred for nitrate
detection (Figure 5d). The sensor had high sensitivity and selectivity and a rapid detection time in
nitrate ion quantification.

3.3. Pathogens

Pathogen detection can be performed with a DNA/protein/cell-based probe. Nucleic acid
detection has been recognized as a highly sensitive and selective technology. DNA-based pathogen
analysis can be obtained either by direct target probing or after target amplification. Kim et al. [118]
designed a compact, low-cost, electrochemical DNA-based sensor to provide real-time, continuous
monitoring of pathogens. A mobile interface was coupled with the sensor that provided the analysis
in terms of safe or unsafe water. The electrochemical sensor consisted of two working electrodes with
platinum-based reference and counter electrode (Figure 6a). Immobilization of the working electrode
was done with a DNA probe in the stem-loop structure. The methylene blue (MB) provided the
electron transfer, which resulted in the current peak. When E. coli was introduced into the chamber,
hybridization of the DNA probe took place. This resulted in the opening of the stem-loop structure
which further resulted in a reduction of the current peak. This method provided qualitative results
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and was suitable for POC use. Li et al. [119] fabricated another electrochemical DNA-based sensor to
detect hepatitis B virus (HBV). It was a simple paper-based biosensor designed with an origami paper
structure and was functionalized with a DNA-modified AgNP. The use of DNA increased the speed,
stability, and robustness of the biosensor. Its LOD was 85 pM.

Altintas et al. [120] fabricated a custom-made fully automatic biosensor for pathogen
quantification. This device involved a novel biochip design integrated with the microfluidic
system along with real-time amperometric measurements. The microfluidic system consisted of a
plug-and-play-type biochip docking station that also served as a flow cell for the electrode array along
with the electronic connections (Figure 6b). The sensor surface was modified with the self-assembled
monolayer (SAM) of mercaptoundecanoic acid and placed. SAM-coated electrode arrays were then
activated with polyclonal rabbit anti-E. Coli antibody. Then, an E. coli sample was introduced on the
electrode surface. Subsequently, a horse radish peroxidase-coupled detector antibody was injected.
Thus, the sandwich immunoassay was used for determination of E. coli. This work reported a
rapid, sensitive, and specific detection of a waterborne pathogen E. coli. The sensor output was
enhanced through the use of gold nanoparticles when compared with the standard sandwich method.
The detection limit was 50 colony forming units (CFU)/mL.

The EIS method can illustrate various characteristics of electrochemical technique such as
adsorption, capacitance, diffusion coefficients, electron transfer rate constants, and charge transfer
resistances. Its cost-effectiveness, simplicity, and sensitivity have allowed researchers in the recent past
to use it in a bio-sensing platform with many label-free transduction methods including impedance
flow cytometers and Coulter counters [134–136].

Figure 6. (a) Electrochemical DNA-based sensor for E. coli determination [118] and (b) custom-made
automatic biosensor for pathogenic detection [120].

A sample of particles scattered in a liquid is guided in the direction of electrodes through a
microfluidic channel when an alternating electric field is applied in EIS. The size and configuration of
the particles are responsible for alterations in electric field to particle displacements. Electrical current
analysis is used to measure these alterations [136]. Several such examples of EIS-based detection
methods are reviewed in the following paragraph.

Kim et al. [121] reported a label-free E. coli detection method that utilized positive dielectrophoretic
(pDEP) focusing, capturing, and impedance measurement. This (pDEP)-based system consisted of
an E. coli-focusing and -sensing electrode. Inclusion of the passivation layer avoided the adhesion
of E. coli to the electrode. The change in impedance occurred due to trapping of the E. coli cell on
the sensor electrode. The assay evaluated 300 CFU/mL within 1 min. Jiang et al. [122] designed a
portable microfluidic smartphone-based EIS sensor with Bluetooth connectivity. The microfluidic
sensor consisted of a microhole array silicon substrate with interdigitated sensing electrodes on it and
a sensing microfluidic chamber aligned with a nano-porous filter paper. This filter paper allowed
bacteria to pass through while blocking big dirt particles in water samples. The unit also included an
impedance network analyzer chip with a microcontroller to perform EIS measurement and analysis.
The developed android-based software app was able to remotely control the microcontroller through



Sensors 2019, 19, 4781 16 of 37

Bluetooth. The app could perform functions like a commercially available LCR meter. The LOD
for the bacteria sensing was 10 E. coli cells per milliliter. Clausen et al. [123] developed another
impedance-based real time microfluidic sensor to measure the bacteria levels in water samples with
the water samples flowing continuously through the sensor. This method could discriminate E. coli
from solid particles with the help of an electrical response in the high-frequency phase. Additionally,
the method was able to recognize different bacteria cells: Staphylococcus aureus (S. aureus) and E. coli.
It provided LOD of 522 cells/mL with real-time continuous monitoring of bacteria in aqueous sample
utilizing impedance flow cytometry. Maw et al. [124] utilized a submicron-resistive pulse sensor
based on the Coulter principle for E. coli monitoring. The sensitivity of this method was improved
due to sample handling in a microfluidic chip and the phenomena of microscale hydrodynamic flow.
The unit was made up of a supply section, base unit, detection system, data acquisition system, signal
processing unit, and display unit. The base unit comprised of a PDMS microfluidic chip and four
electrodes, and detection occurred at the microfluidic platform. This label-free and automatic method
provided a rapid result and appeared to be a user-friendly device.

Ghosh et al. [125] presented an economical and easy microfluidic biosensor for quick and
accurate measurement of salmonella typhimurium. The microfluidic chip involved the interdigitated
electrode array. The electrode array surface was immobilized with anti-salmonella antibodies.
The biosensor provided qualitative as well as quantitative impedance analyses within 3 h. Its LOD
was 3 × 103 CFU/mL. The authors also compared the performance of the microfluidic biosensor with
the non-microfluidic biosensor. They found two to three times higher impedance response for the
microfluidic biosensor with lower LOD compared to the non-microfluidic biosensor.

4. Microfluidic with Optical Detection

Many electrochemical methods have been presented for water quality monitoring in this review
paper. The optical strategies due to their simplicity and cost-effectiveness are equally popular too.
In optical-based microfluidic devices, the optical changes happen due to the chelation between the
recognition element and the target constituents. These optical-based microfluidic devices are based
on various techniques such as colorimerty, CL, fluorescence, SERS, and SPR. The colorimetric devices
include measurement of the colour change associated with the reaction between the analyte and the
sensing element. The colour variation can be observed by eye or with the help of an optical detection
method [137]. In the fluorescence detection method, the analyte-induced changes are responsible for
variations in characteristics of fluorochromes including fluorescence intensity, fluorescence polarization,
and lifetime [41]. Several research-based examples of such detection methods are considered in the
following paragraphs and are described in Table 4.

Some commercially available sensors are listed in Table 5.
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Table 4. Comparison of optical methods.

Optical Methods

Target Detection Sensing Sensing Substrate LOD Real Sample Ref.
Analyte Principle Element Material

Cu(II) Colorimetric Chemical compound Sodium diethyldithiocarbamate Paper 0.29 ppm Distilled water [138]
Ni(II) Dimethylglyoxime 0.33 ppm Reservoir water
Cd(II) Cadion 0.19 ppm Beach water
Cr(VI) Diphenylcarbazide 0.35 ppm

Hg2+ Colorimetric Nanoparticles Platinum nanoparticles and Paper 0.01uM Pond and tap water [139]
3,3,5,5-tetramethylbenzidine

Pb2+ Colorimetric Functionalized AuNP functionalized with PDMS 10 µM No [140]
nanoparticles 11-mercaptoundecanoic acid

As(III) Colorimetric Functionalized AuNP functionalized with Paper 1.0 ppb No [141]
nanoparticles α-lipoic acid and thioguanine

As Colorimetric Functionalized AuNP functionalized with Paper Quality analysis Bangladesh [142]
nanoparticles α-lipoic acid groundwater

As(III) Colorimetric Hach®EZ Arsenic Standard Gutzeit Plastic 3 µg/L No [143]
Test Kit reaction reagents

Cu2+ and Fluorescence Quantum dots CdTe quantum dots Paper 0.035 µg/L Lake and sea water [144]
Hg2+ 0.056 µg/L

As(III) Fluorescence Bioreporter cell E. coli PDMS 10 µg/L Tap water [145]

As(III) Fluorescence Bioreporter cell E. coli PDMS 50 µg/L No [146]

As(III) SERS Functionalized AgNP functionalized with PDMS 0.67 ppb Tap water [147]
nanoparticles glutathione/4-mercaptopyridine Mineral water

As(IV) CL Chemical compound Luminol and PDMS 8.9 × 10 −8 M Tap water [148]
Vanadomolybdoarsenate
heteropoly acid

Nitrate Colorimetric Chromogenic agent Chromotropic acid PDMS 0.70 mg/L Drinking water, [149]
and Sulphuric acid freshwater, wastewater,

and sea water
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Table 4. Cont.

Optical Methods

Target Detection Sensing Sensing Substrate LOD Real Sample Ref
Analyte Principle Element Material

Nitrate Colorimetric Chromogenic agent Griess reagent Fiber 7 µg/L Lake water [150]
Tap water

Nitrate Colorimetric Chromogenic agent Griess reagent PMMA 0.0782 ppm Tap water [151]
Bottled drinking water
Home-filtered water

Nitrite and Colorimetric Chromogenic agent Griess reagent Paper 1.0 µM Tap water and [152]
Nitrate Zinc microparticles 19 µM synthetic water

Nitrite and Colorimetric Chromogenic agent Griess reagent PMMA 0.02 µM River water [153]
Nitrate Imidazole buffer 0.025 µM

Nitrite and Colorimetric Chromogenic agent Griess reagent PMMA 20 nM Sea water [154]
Nitrate Copper-activated

cadmium column

E. coli PCR Biological elements Polyclonal antibodies PMMA 6 CFU Recreational lake water, [155]
waste water

E. coli Fluorescence Biological elements Magnetic beads conjugated PDMS ?? Drinking water [156]
with antibodies

E. coli Fluorescence Biological elements Streptavidin-coated PDMS ?? [157]
magnetic markers

E. coli Light scattering Biological elements Antibody-conjugated beads Paper 10 CFU/mL Field water [158]

E. coli SPR Biological elements Au surface modified with PMMA ?? No [159]
S. aureus MUA, EDC/NHS, Protein G

and anti-LPS antibody

Roravirus Fluorescence Graphene oxide Glass 105 PFU/mL No [160]

Antimicrobial- Colorimetric Chromogenic agent Nitrocefin Paper 10 mU/mL Sewage water, [161]
resistant bacteria river water

CL : Chemiluminescence; ?? : Not specified; SPR : Surface plasmon resonance; MUA : 11-mercaptoundecanoic acid; LPS: Lipopolysaccharide; EDC/NHS :
Ethyl-3-(3-dimethy-laminopropyl) carbodiimide hydrochloride/N-Hydrosuccinimide.
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Table 5. Commercially available optical sensors.

Target Measurement Measuring Features Company Ref.
Analyte Principle Range

Arsenic Kit-based colorimetric 0 to 500 ppb Easy-to-use, Hach [162]
effective way

Arsenic Kit-based colorimetric 0 to 500 ppb Result in 12 min, FilterWater.com [163]
100 tests per kit

Arsenic Kit-based digital 2 to 100 ppb Reaction time Palintest Water [164]
colorimetric 20 mins analysis technology

Arsenic Atomic fluorescence 10 ppt Easy-to-learn and P S Analytical [165]
spectrometry easy-to-use system,

can be automated

Lead, thallium, Color-based Not specified Simple to use, ChemSee [166]
mercury, cadmium visual detection results in 15 to 60 s,
iron, nickel, and zinc low-cost analysis

Nitrate Portable photometer 0.0 to 30.0 ppm Easy to use, HANNA [167]
not suitable instruments
for seawater

Nitrate UV absorbance 0 to 50 mg/L Modern communication systems HydroMetrics [168]
with allow data to be accessed in real-time

Nitrate UV absorbance 0.05 to 200 mg/L Access with web browser, OTT ecoN [169]
with optional anti-fouling wiper,

flexible sensor options

C. jejuni, C. coli, PCR-campylobacter Not specified Specific, rapid, and reliable detection; BioVision [170]
C. upsaliensis, and detection kit amplification limit of
C. lari one copy per reaction;

ready-to-use kit
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4.1. Heavy Metal

Colorimetry is the most commonly used technique in microfluidics. The majority of the studied
optical-based microfluidic devices used in heavy metal detection are paper-based colorimetric sensors.
Colorimetric detection is performed in the dark, and so it is free from ambient light interference [171].
Mentele et al. [172] reported a paper-based colorimetric device (µPADs) for metal ion (Fe, Cu,
and Ni) detection (Figure 7a). This method provides a rapid and an inexpensive way of metal
ion detection. The possibility of utilizing paper microfluidics as a 3-D device was proved by Wang et al.
(Figure 7b) [138]. They developed a 3-D paper-based microfluidic device for multiplex heavy metal
(Cu (II), Ni (II), Cd (II), and Cr (VI)) detection through a simple combination of patterned paper by
wax printing, tape, and stacking. The colorimetric determination was performed in association with a
smartphone camera. The developed technique was rapid, low-cost, and user-friendly.

To avoid toxic chemical reactions in arsenic analysis, researchers have investigated and found
gold nanoparticles (AuNPs) to be promising sensor materials in the colorimetric probe. Nath et al. [141]
determined the use of As(III) with the help of simple paper-based microfluidics along with a gold
nano-sensor (Au–TA–TG). The steady flow rate of the paper substrate pores allowed a very low
concentration of arsenic to remain in a microchannel for a long enough period so that it interacted
with the nano-sensor. A rapid reaction of Au–TA–TG with arsenic ions resulted in a visible dark
bluish-black precipitate at the interfacial zone. The working principle is illustrated in Figure 7c.
However, these µPADs were not tested against groundwater samples. When a similar implementation
was tested with groundwater samples, the interference from several naturally occurring metals was
observed [142]. To eliminate this limitation, Chowdury et al. [142] developed a T-shaped µPAD using
the same functionalized gold nanoparticles (Au–TA–Au) as illustrated in Figure 7d. Additionally,
they adjusted the pH value of the water sample to avoid other metal interferences. However, this
assay provided just a qualitative result. Chen et al. [139] reported one more user-friendly and rapid
µPAD for mercury(II) ion (Hg2+) measurement in water, for which they made use of oxidization
of tetramethylbenzidine due to platinum nanoparticles and suppression of the reaction due to the
presence of (Hg2+) ion. The whole interaction resulted in a visible colour change that was provided as
a digital readout through the fiber optic module (Figure 7e). The sensor was capable of measuring
(Hg2+) concentrations up until 0.01µM.

Fan et al. [140] designed a portable, power-free microfluidic device to detect lead (Pb2+).
They detected Pb2+ with MUA-modified AuNPs (MUA-AuNPs). The chemical reaction between
Pb2+ and MUA caused the aggregation of the modified nanoparticles, which in turn produced the
solution colour change from red to purple. The output could be observed with the bare eye with
the help of water drops. It was a rapid and inexpensive method with an LOD of 10 µM. In 2017,
Bonyar et al. [143] developed a custom-tailored colorimetric semiautomated portable device for As(III)
detection in drinking water. They integrated a commercially available arsenic test kit into a disposable
microfluidic cartridge, as shown in Figure 8a. The Gutzeit reaction was carried out in the cartridge
with automatic camera-based colour evaluation. The entire operation was easy to perform due to its
user-friendly semiautomatic action and required approximately 1 h to obtain a result.
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Figure 7. (a) Wax-printed µPADs for colorimetric detection of Fe, Cu, and Ni [172]; (b) 3-D paper
microfluidics for metal ion detection [138]; (c) working principle of As(III) detector based on modified
AuNP [141]; (d) T-shaped µPAD with functionalized AuNp for As(III) detection [142]; and (e) rapid
detection of Pb2+ with MUA-modified AuNP [140].

Miniaturization of fluorescence detection was possible due to the use of the light-emitting diodes
(LEDs) in the optical detection system. LEDs can emit at various wavelengths, and they can easily fit
into typical chip features [37]. Fluorescence detection is an extremely sensitive technique. However,
according to Li et al. [37], its major limitation is that it can be used with the analytes that have
native fluorescence or that can easily be fluorescently labelled. Still, many researchers have employed
fluorescence detection to determine water pollutants. Qi et al. [144] developed a 3-D paper-based
fluorescence sensor to determine Cu2+ and Hg2+ ions. It was based on a combination of quantum
dots (QDs) and an ion imprinting technique on 3-D origami paper. CdTe QDs were implanted on
the exterior of the glass fiber paper (Figure 8a). The change in fluorescence was produced due to the
transfer of the photo luminescent energy of the QDs to its ion imprinting–QD complex. Bacterial
bioassays have shown better performance in arsenic detection compared to a chemical field kit [173].
Theytaz et al. [146] created a microfluidic chip containing immobilized E. coli biosensor bacteria
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(Figure 8b). The E. coli generated green fluorescent protein in response to As(III). The major drawbacks
of the developed method were its low LOD (50 µg/L) and the use of an epifluorescence microscope
that made it a lab-based method. Similarly, Buffi et al. [174] demonstrated fluorescence detection of
As(III) with the help of a bacteria-based bioassay.

Figure 8. (a) Three-dimensional paper-based fluorescence detection of Cu2+ and Hg2+ [144];
(b) E. coli-based fluorescence detection of As(III) [146]; and (c) fluorescence detection of As(III) using
portable bioreporter [145].

The natural defence system of E. coli against As(III) was used to produce a fluorescence signal.
The E. coli was embedded in small agarose beads. These beads were stored on a microfluidic chip; the
fluorescence microscope was then used for signal detection. Hence, the bioassay cannot be considered
as a portable device. Further, in 2014, this assay was enhanced by Truffer et al. [145]. They incorporated
an electronic device with a small optical setup to measure fluorescence from bacterial reporter cells
(Figure 8c). As a result, the device displayed significant potential for field measurements.

Currently, SERS integration with LoC devices is rapidly being adopted in biological and
environmental analysis. Qi et al. [147] displayed prominent potential in integrating SERS
technology with microfluidics in the field of water quality monitoring. They implemented
a continuous flow detection of As(III) ions rapidly. Silver nanoparticles were modified with
glutathione/4-mercaptopyridine (GSH/4-MPY). As(III) has a high affinity towards GSH. Hence,
as As(III) came in contact with GSH/4-MPY, aggregation of nanoparticles occurred that produced a
Raman signal. The developed assay was highly sensitive and reproducible with the LOD of 0.67 ppb.

Som-Aum et al. [148] developed a highly sensitive microfluidic sensor based on the CL
method that could detect As(III) in water. In this method, sorption of a As(V) pre-concentration
in the form of vanadomolybdoarsenate heteropoly acid (VMoAs-HPA) ion-paired with
hexadecyltrimethylammonium bromide on the surface of polystyrene beads packed in the microfluidic
tool was observed. The matrix effect was removed by adding 1 × 10−8 M ethylenediaminetetraacetic
acid to all work solutions. Additionally, the interference from phosphate and chromate was eliminated
by the synthesis of sorption pre-concentration. That also helped to enhance the sensitivity. The method
obtained LOD of 8.9 × 10−8 M within 5 min.

4.2. Nutrients

Most of the available spectrophotometric methods for nitrate measurement in natural waters need
conversion to the more reactive nitrite before detection. Different types of nitrate reduction methods
have been presented, using a variety of reduction materials like hydrazine, copperized cadmium, zinc,
nitrate reductase, and irradiation by ultraviolet light. Among all the methods available, the Griess
assay is the most established method of colorimetric nitrite analysis [175]. Beaton et al. [153] first
reported such a microfluidic-based colorimetric nitrate analysis using the Griess method. It was an
in situ stand-alone system which was compact and consumed low power (1.5 W). Use of colored
polymethylmethacrylate (PMMA) helped to reduce background light interference which made it a
high-sensitivity system. The system displayed detection with high-resolution and produced a better
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output with detection limit of 0.02 µM for nitrite and 0.025 µM for nitrate. Another microfluidic
method was developed by Khanfar et al. [151] to detect nitrate ions in water in an inexpensive and
portable way. It was based on the Griess procedure. The microfluidic chip had a long-coated PMMA
channel constructed with layers of different thicknesses. The detection system included an LED
and photodiode. However, its LOD was low (0.0782 ppm). Jayawardane et al. [152] developed a
cost-effective disposable µPAD to determine nitrite and nitrate (Figure 9a). This method also used
a Griess reaction for nitrite determination. However, for nitrate detection, nitrate was reduced
to nitrite using zinc microparticles inside the µPAD channel. The µPAD was fabricated by an
inkjet printing method. The hydrophilic µPAD channel was integrated with zinc microparticles
and worked as a virtual flow-through solid-phase reactor, which was a unique concept. The LODs of
this method were 1.0 µM and 19 µM for nitrite and nitrate, respectively. This user-friendly method
was suitable for a filed measurement. Recently, Vincent et al. [154] deployed a sensor within the
Seaglider. The sensor employed colorimetric detection, using the Griess assay to determine nitrate
and nitrite. The sensor was comprised of a three-layer PMMA chip. The chip included microchannels,
mixers, photodiodes, and LED. The chip was installed with electronics, valves, and syringe pump.
Eventually, the chip was covered in a housing that was filled with mineral oil and consisted of
internally fitted pressure-compensating bladder. The LOD of the system was 20 nM. Cogan et al. [149]
constructed a low-cost, robust microfluidic sensing platform and an LED-based optical detection
system to determine nitrate in natural waters and wastewater. It was a complete system consisting of
colorimetric measurement unit, a power unit, wireless communication, storage for sampling, reagent,
and waste in a small unit. The chromotropic method for nitrate analysis was applied. The colorimetric
measurement unit included a LED and a photodiode (Figure 9b). The author claimed advantages
such as ease of operation, inexpensive, low consumption of power, high throughput, limited waste
generation, and compactness in design. Xiong et al. [150] designed a novel miniaturized cost-effective
colorimetric fiber-optic chemical sensor (FOCS) system for nitrite detection through interfacing with
a microfluidic capillary waveguide. It was based on the Griess–Ilosvay reaction. When the reaction
occurred between nitrite and Griess reagents, it generated colorimetric azo dye. The light intensity
was changed when the light interacted with the azo dye. The method achieved LOD of 7 µg/L.
The sensor comprised three sections: a capillary waveguide flow cell, a light source connected with an
excitation fiber, and a detector connected with a detection fiber, as shown in Figure 9c. The microfluidic
capillary waveguide also acted like a disposable sampling vessel, a reagent flow-through cell, and a
light transmission element.
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Figure 9. (a) Quantification of nitrite and nitrate using disposable µPAD [152]; (b) schematic of the
flow system and detection cell of LED-based nitrate sensors [149]; and (c) schematic of the fiber-optic
chemical sensor (FOCS) method for nitrite measurement [150].

4.3. Pathogens

A colorimetric method is commonly used in optical detection of various pathogens due to
its simplicity and easy readouts. Many times, imaging devices (cell phone camera, portable
scanner, and digital camera) are incorporated with the colorimetric methods to provide the analysis
interpretation. Wang et al. [176] demonstrated a paper-based E. coli detection method. They used
methylsilsesquioxane (MSQ) barriers to lyse the bacterial cells before the analysis. They also compared
MSQ with other barrier materials, wax and alkylketene dimer (AKD). For this purpose, they printed
circular barriers of MSQ, AKD, and wax. They found MSQ barriers better than the other materials.
The change in colour was recorded with the help of the iPhone 4S camera. Although the assay was
affordable and rapid, it was just a qualitative indicator. Boehle et al. [161] developed a cost-effective
paper-based colorimetric method to detect antimicrobial-resistant bacteria. This method could identify
the presence of b-lactamase-mediated resistance. An array of paper wells was used to optimize the
reaction between b-lactamase and nitrocefin. The time required for the analysis was approximately 1 h
with LOD of 10 mU/mL. San et al. [158] developed another paper-based method to detect E. coli from
field water samples in association with a smartphone. The multichannel paper chip was preloaded
with antibody-conjugated beads. The water sample was applied to the inlet of the paper chip, which
allowed passing of the bacterial antigens. The smartphone was used to capture the digital images at
some angle and to measure the light scatter intensity coming from microbead immunoagglutination
(Figure 10). The entire analysis time was just 90 s. The assay was simple to use and did not require any
external hardware. The only necessary device was a smartphone with a built-in gyro-sensor and an
installed software application.

Fluorescence detection is another common method in optical pathogen detection.
Golberg et al. [156] reported specific capture and detection of bacterial contamination in water.
They developed a unit which consisted of E. coli seizing along with droplet microfluidics, portable
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proprietary fluorescence microscopy, and cloud-based data management and sharing. In this scheme,
they used magnetic beads coupled with specific antibodies to capture E. coli. Further, the seized
E. coli were conjugated fluorescently labeled antibodies. Subsequently, automated optical fluorescence
microscopy was used for the purpose of detection. The entire water quality analysis took place
within eight hours from sample collection to online result display. Malec et al. [157] proposed a
labelled base biosensor where the E. coli was labelled with streptavidin-coated magnetic markers
developing compounds. Video microscopy along with particle tracking software were utilised for
quantitative measurement. The developed microfluidic platform was integrated with microconductors
that generated a magnetic field gradient.

Figure 10. Scheme indicating a mobile-based multichannel paper chip for rapid E. coli detection [158].

When the fluid with the magnetically labelled bacteria (MLB) was brought into the microfluidic
platform, a magnetic field gradient accelerated the MLB towards the outlet. The method was able to
provide a real-time approach for the detection of pathogens from a small-volume liquid sample.

Many researchers implemented integration of a polymerase chain reaction (PCR) test on a
microfluidic platform. For example, Dharmasiri et al. [155] developed a PMMA microfluidic chip with
eight parallel inputs covalently bonded with polyclonal antibodies. The chip was used for the isolation
and detection of E. coli. The quantification was performed after isolation by an off-chip real-time
quantitative PCR test. Fluorescent microscopy was used to examine the fluorescently labelled cells
in the microfluidic chip’s channels. This entire process took just under five hours. The LOD was
approximately 6 CFU. Li et al. [160] developed an integrated microfluidic device for rapid detection
of pathogenic rotavirus. The device integrated reverse transcription (RT) and PCR with an online
fluorescence detection technique. The microfluidic section incorporated the grooved copper heating
block for RT and a heated cylinder for amplification. The RT-PCR technique with fluorescence
microscopy was able to amplify and measure rotavirus RNA within one hour.

Tokel et al. [159] presented a portable, multiplex, inexpensive microfluidic-integrated SPR
platform for rapid detection of bacteria such as E. coli and S. aureus. It was a label-free pathogen
detection platform consisting of microfluidic and SPR technologies. This method utilized a Protein
G-based surface chemistry for E. coli determination that allowed immobilization of antibodies in a
favourable orientation. However, the result was presented as a graph, whereas a direct readout could
have been more appropriate (Figure 11).
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Figure 11. Schematic of SPR-based pathogenic detection [159].

5. Discussion and Outlook

Regular water quality monitoring is a “must” due to the harmful effects of water contaminants
on the various functional systems of a human body. A microfluidic-based sensor is the most suitable
method for this purpose. The sensor comprises of a sensing and detection unit on the microfluidic
substrate. This review explores several sensors mainly with the sensing unit mostly based on chemicals,
biological elements, electrodes, and nanomaterials. The materials used for the sensing unit and
substrates are listed in Figure 12.

Furthermore, the review includes the sensors based on two signal transduction methods:
electrochemical and optical detection.

Electrochemical detection is a big hope for microfluidic devices considering its high sensitivity,
selectivity, miniaturization, and the possibility of mass production. Its adaptability with different
microfabricated electronic parts leads to a portable device. To increase the sensitivity of electrochemical
sensors, modification of electrodes with bioreporters or nanomaterials is advisable. However,
a significant concern in regard to these sensors is the fabrication of chemically modified electrodes
since it involves a very complicated process. Various optical sensing methods are successfully
used in association with microfluidics including colorimetry, chemiluminescence, fluorescence, SPR,
etc. The colorimetric analysis provides simple qualitative results in terms of a colour change.
The colorimetric methods give relative results; they cannot yield exact quantitative results. These
methods also require washing or rinsing steps before the next measurement can be taken in the
microfluidic chip. Compared to colorimetric methods, chemiluminescence techniques have higher
sensitivity. Also, the elimination of an external light source makes the instrumentation simple.
However, the availability of a limited number of chemiluminescence reagents is the main disadvantage
of this technique. The fluorescence detection is another highly sensitive method. Still, it is limited to
analytes that possess inherent fluorescence or that can be labelled fluorescently. SPR and SERS are
highly sensitive and selective optical detection methods. However, integration of these methods with
a microfluidic platform can be an issue due to non-portable instrumentation. An optical diffraction
method is yet another sensitive detection method, though it still remains unaddressed in water
quality monitoring. This method can produce highly sensitive results and can be incorporated with
microfluidic technology. Table 6 summarizes advantages and disadvantages of electrochemical and
optical methods individually.
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Figure 12. Summary.
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Table 6. Advantages and disadvantages of detection methods.

Method Advantages Disadvantages

Electrochemical High sensitivity Tedious fabrication process of electrode
High selectivity
Miniaturized electrodes makes
the system portable
Possibility of mass production

Colorimetric Simple analysis Provides relative output
Provides qualitative results
Quick response

CL High sensitivity Limited number of CL reagents available
Does not require external light source
Portable

Fluorescence High sensitivity Limited to analytes that possess
High selsectivity inherent fluorescence
Portable External light source necessary

SPR High sensitivity Portability may be an issue
High selsectivity
Label-free detection

SERS High sensitivity Highly sensitive to environmental changes
High selsectivity

Optical diffraction High sensitivity Occasionally, signal enhancement by sequential
High selsectivity amplification is necessary
Portable

Field implementation is also an important aspect of discussion while discussing sensitivity and
selectivity. Though there are a few challenges while implementing these sensors in the real world,
the major hurdle associated with these sensors is field deployability. Many sensors discussed here
represent the possibility of in situ and real-time measurement. However, those remain lab-based
methods due to interfacing of lab-based measuring devices. Another challenge is in real sample
measurement due to interference of the matrix effect. Usually, insoluble particles are suspended in
the natural samples, which can influence the detection methods. In the case of optical detection,
such particles can change the analyte concentration due to the stimulation of light scattering, while in
electrochemical detection, such particles can modify the chemical electrodes. These challenges can
be addressed by incorporating suitable measuring as well as filtering devices along with the sensing
mechanism using microfluidics.

Microfluidic technology plays an important role in making the water quality sensors field effective,
as size reduction and automation are highly possible through this technology. However, the technology
has its own challenges such as improper mixing in microchannels caused by laminar flows through it,
which can potentially be addressed by implementing passive mixing microfluidic structures. Another
challenge is the fabrication of microchannels with random geometries. Additionally, fabrication of the
microfluidic sensor may sometimes remain a laboratory prototype that needs access to clean room
equipment and trained staff to operate. It is possible to overcome these challenges with the help of
rapidly emerging 3-D printing technology.

6. Conclusions

In the present review, microfluidic-based sensors for water quality monitoring have been
extensively discussed in detail. This includes a comparison of microfluidic-based electrochemical
and optical methods with advantages and disadvantages for the detection of contaminants such as
heavy metals, nutrients, and pathogens in water that have been published in the last decade. Water
quality analysis with microfluidics is a flourishing technology as it contributes to rapid, economical,
and user-friendly detection methods. It is especially suitable for in situ testing, particularly in
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limited-resource circumstances. The current challenges with in situ testing and real samples are
also discussed in the review. Such challenges can be addressed by including 3-D printing technology
along with the microfluidic platform.
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Abbreviations

The following abbreviations are used in this manuscript:

AKD alkylketene dimer
ASV anodic stripping voltammetry
AuNP gold nanoparticles
BNC Bayonet Neill–Concelman
CFU colony forming units
CL chemiluminescence
CV cyclic voltammetry
E. coli Escherichia coli
EDC ethyl-3-(3-dimethy-laminopropyl) carbodiimide hydrochloride
EIP electrochemical impedance spectroscopy
EIS electrochemical impedance spectroscopy
f-MWCNT functionalised- multiwall carbon nanotube
FOCS fiber-optic chemical sensor
GCE glassy carbon electrode
GF graphene foam
LCR inductance, capacitance, resistance
LEDs light-emitting diodes
LoC Lab-on-a-chip
LOD limit of detection
LPS lipopolysaccharide
LTTC low-temperature co-fired ceramics
MB methylene blue
MCL maximum contamination level
MLB magnetically labelled bacteria
MSQ methylsilsesquioxane
MUA 11-mercaptoundecanoic acid
MWCNTs multiwall carbon nanotubes
NHS n-hydrosuccinimide
NiR nitrate reductase
OCC occult cancer
PDMS polydimethylsiloxane
PMMA polymethylmethacrylate
pDEP positive dielectrophoretic
POC point-of-care
QRE quasi-reference electrode
RGO reduced graphene oxide
SAM self-assembled monolayer
SERS surface-enhanced Raman scattering
SPR surface plasmon resonance
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S. aureus Staphylococcus aureus
SWASV square-wave anodic stripping voltammetry
SWCNTs single-walled carbon nanotubes
SWV square-wave voltammetry
µPADs paper-based analytical devices
µPED microfluidic paper-based electrochemical sensing device
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