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Abstract
Background. Magnetic resonance spectroscopic imaging (MRSI) can be used in glioma patients to map the met-
abolic alterations associated with IDH1,2 mutations that are central criteria for glioma diagnosis. The aim of this 
study was to achieve super-resolution (SR) MRSI using deep learning to image tumor metabolism in patients with 
mutant IDH glioma.
Methods. We developed a deep learning method based on generative adversarial network (GAN) using Unet as 
generator network to upsample MRSI by a factor of 4. Neural networks were trained on simulated metabolic im-
ages from 75 glioma patients. The performance of deep neuronal networks was evaluated on MRSI data measured 
in 20 glioma patients and 10 healthy controls at 3T with a whole-brain 3D MRSI protocol optimized for detection 
of d-2-hydroxyglutarate (2HG). To further enhance structural details of metabolic maps we used prior information 
from high-resolution anatomical MR imaging. SR MRSI was compared to ground truth by Mann–Whitney U-test 
of peak signal-to-noise ratio (PSNR), structure similarity index measure (SSIM), feature-based similarity index 
measure (FSIM), and mean opinion score (MOS).
Results. Deep learning SR improved PSNR by 17%, SSIM by 5%, FSIM by 7%, and MOS by 30% compared to con-
ventional interpolation methods. In mutant IDH glioma patients proposed method provided the highest resolution 
for 2HG maps to clearly delineate tumor margins and tumor heterogeneity.
Conclusions. Our results indicate that proposed deep learning methods are effective in enhancing spatial resolu-
tion of metabolite maps. Patient results suggest that this may have great clinical potential for image guided preci-
sion oncology therapy.

Key Points

 • Develop a deep learning method for super-resolution MRSI using GAN deep neural 
networks to upsample metabolic maps by a factor of 4.

 • Combine deep learning and variational methods to further improve the final super-
resolution MRSI results.

Deep learning super-resolution magnetic resonance 
spectroscopic imaging of brain metabolism and mutant 
isocitrate dehydrogenase glioma
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 • Demonstrate deep learning super-resolution MRSI in mutant IDH glioma patients 
to obtain the highest resolution of 2HG maps that delineate tumor margins and 
tumor heterogeneity.

Magnetic resonance spectroscopic imaging (MRSI) can be 
used in glioma patients to map the metabolic alterations 
associated with IDH1,2 mutations that are central criteria 
for glioma diagnosis in the most recent classification 2021 
WHO of brain tumors.1 The hallmark metabolic alteration 
of cancer IDH1,2 mutations is the de novo overproduction 
of d-2-hydroxyglutarate (2HG)2 as an “oncometabolite” 
that drives the epigenome3 and microenvironment4 to-
ward tumor progression. Due to its high specificity, 2HG 
is a valuable imaging biomarker for diagnosing,5,6 moni-
toring, assessing tumor burden,7 treatment response,8,9 
and pharmacodynamics of targeted therapy in mutant 
IDH1 glioma.10

1H-MRSI in the human brain can measure up to 20 metab-
olites11 that probe-specific molecular mechanisms in neu-
rological diseases, including brain tumors.12 The spatial and 
temporal patterns of MRSI metabolic lesions correlate with 
tumor progression, treatment response, and clinical out-
come.9,13,14 Importantly, tumor appearance and dynamics in 
MRSI are different compared to anatomical MRI.15 However, 
because of low metabolite concentrations MRSI is acquired 
at low resolution (ie, larger voxels) to compensate for lower 
SNR. In this scenario, structural detail is reduced and small 
lesions might be missed since boundaries of lesions are 
blurred. An efficient approach for improving spatial res-
olution is to upsample MRSI using super-resolution (SR) 
methods16 that recover fine structural details. Recently, SR 
MRSI has been demonstrated using patch-based,17 feature 
nonlocal means (FNLM),18 and deep learning.19,20

In this work, we developed and investigated the perfor-
mance of deep learning methods for SR MRSI, particularly in 
glioma patients. The earlier work of Iqbal et al.19 in healthy vo-
lunteers showed upsampled MRSI by deep learning in combi-
nation with prior anatomical MRI. Here, inspired by the work 
of Iqbal et al., we extended the Unet model21 with the frame-
work of the generative adversarial network (GAN)22 in order 
to build more robustness for larger variability in patient data.

In our patient study, we took a 2-step approach to 
upsample low-resolution (LS) MRSI: (1) using deep 
learning alone (DLmethod_1), and (2) combining deep 
learning with prior high-resolution (HR) MRI. As met-
abolic and anatomical lesions can differ in shape, con-
trast, and texture, this raises the possibility that spurious 
spatial features can be introduced from anatomical MRI 
into MRSI. Our 2-step approach has been motivated by 
the need to deal with this circumstance. In addition, we 
studied 2 ways of combining deep learning with prior 
HR MRI: (1) using a sequential method (DLmethod_2) 
in which MRSI is first upsampled by deep learning and 
subsequently reinterpolated by FNLM weights based 
on prior MRI, and (2) using a simultaneous method 
(DLmethod_3) in which both initialized SR MRSI and HR 
MRI data are input together in the deep learning model. 
For the first method, we leveraged the FNLM, which we 
showed to be robust in glioma patients with respect of 
introducing false structural details from MRI into MRSI.18 
We hypothesize that deep learning may provide better in-
itialization for upsampling SR methods compared to con-
ventional interpolation methods (bicubic, spline) or more 
advanced variational methods such as weighted total 
variation (wTV).

A reliable SR MRSI method may increase throughput 
and feasibility of metabolic imaging in clinical setup. 
The availability of MR scanners is limited and minim-
izing the acquisition time is key in providing advanced 
imaging to more patients and decrease the costs. On 
the other hand, computing power has advanced greatly, 
it is more ubiquitous and has lower costs, hence al-
lowing to efficiently shift the burden from image acqui-
sition to image processing. Here, we aim to capitalize 
on the increased compute performance with the goal 
to improve the quality and time efficiency for SR MRSI 
metabolic imaging for neuro-oncology applications in 
glioma patients.

Importance of the Study

Magnetic resonance spectroscopic imaging 
(MRSI) can be used in glioma patients to map 
the metabolic alterations associated with 
IDH1,2 mutations that are central criteria for 
glioma diagnosis. The spatial and temporal pat-
terns of MRSI metabolic lesions correlate with 
tumor progression, treatment response, and 
clinical outcome. Importantly, tumor appear-
ance and dynamics in MRSI are different com-
pared to anatomical MRI. However, because 

of low metabolite concentrations MRSI is ac-
quired at low resolution (ie, larger voxels), 
which may result in reduced structural details, 
with less ability to probe tumor heteroge-
neity, small and early tumors. To address this 
challenge, in this work we developed and in-
vestigated the performance of deep learning 
methods for super-resolution MRSI in glioma 
patients. Such methods can be used for image 
guided precision oncology therapy.
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Materials and Methods

Training Data Simulation

One of the obstacles to employ deep neural network 
(DNN) to upsample metabolic MRSI maps is that there 
are not sufficient HR training data measured in patients. 
The need of training data becomes even more demanding 
when more convolutional layers are used in DNN. 
Measurement of HR MRSI is prohibitive in patients due 
to long measurement times and lack of wide availability 
of pulse sequences that can acquire HR MRSI efficiently.23 
To solve this issue, we resorted to simulations of real-
istic MRSI metabolic maps in order to generate sufficient 
training datasets similar to our prior work.18 To obtain 
patient training MRSI datasets we started from anatom-
ical FLAIR and MEMPRAGE images acquired with 1 mm 
isotropic resolution in 75 glioma patients. FLAIR im-
ages were used to segment tumors (TM) by ITK_SNAP.24 
The healthy part of brain was segmented by FSL25 on 
MPRAGE images into white matter (WM), gray matter 
(GM), and corticospinal fluid (CSF). The tumor and healthy 
brain segmentations were combined to generate very 
high-resolution (VHR) MRSI maps according to

MRSIVHR = 0.1×GM+ 0.12×WM+ 0× CSF+ τ × TM

where τ is chosen from [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], 
and the overall image intensity range is normalized 
to 1.  The VHR MRSI data of size (256  ×  256  ×  176) were 
down sampled subsequently in k-space to generate LR 
MRSI data (46 × 46 × 32). The ground truth HR MRSI data 
(184  ×  184  ×  128), corresponding to LR–HR upsampling 
factor of 4, were generated in 2 ways: (1) by down sam-
pling MRSIVHR in k-space, and (2) by upsampling the LR 
MRSI with the FNLM SR pipeline that has been demon-
strated in 18. The first type of HR MRSI data has sharper 
structural details, similar to anatomical imaging, and have 
been used to train the neural networks for the DLmethod_2 
and DLmethod_3. The second type of HR MRSI has less 
sharp anatomical edges, similar to the quality of MRSI ac-
quired with advanced HR protocols,26–29 and have been 
used to train the neural networks for DLmethod_1. In total 
each 9600 datasets for the 2 types of ground truth HR were 
simulated for training and validation. In addition, we em-
ployed data augmentation that flips and randomly crops 
the minibatch data during training process.

Theory

Given a preprocessed LR metabolite map ILR, our goal is to 
find an operator F such that F(ILR) is similar enough to the 
ground truth metabolite map IHR, where F could be linear 
or nonlinear. Mathematically, this can be written as

ILR = F−1(IHR) + n (1)

where F−1 represents an inverse operator of F and n is the 
noise term. For the deep learning method, F is usually a 

nonlinear operator. For the variational model-based recon-
struction method, it is usually a linear operator.

Unet and GAN architectures.—To upsample ILR, we explore 
2 types of neural networks, where the first is the so-called 
Unet typically used for image segmentation. Considering 
that Unet performs pixel-wise transformations, it can be 
reframed for SR tasks as initially recognized by Iqbal et al.19 
The dense Unet architecture implemented by Iqbal et al. is 
able to carry over features from layer to layer and allow fea-
ture reuse throughout the network.30 However, the exten-
sive feature reuse could introduce spurious features more 
easily considering the fact the anatomical images are also 
given as the input to the neural network, in particular when 
there are differences between metabolic and anatomical 
images in patients, such as different texture or extent of 
lesions. In our implementation instead of introducing 
densely connected networks in the Unet architecture 
we employed a similar neural network architecture as 
Ronneberger et al.,21 where the Unet architecture consists 
of 2 paths. The contraction path, which aims at extracting 
significant features from the input images, is mainly in-
volved with standard convolutional and max pooling 
layers. The expanding path works toward identifying im-
portant features locally from a finer resolution using trans-
posed convolutions and feature concatenation. Since no 
dense layer is involved and only convolutional layers are 
used, our Unet is essentially a fully convolutional network. 
The input for Unet is an initialized SR IISR by bicubic in-
terpolation. The activation function, Relu, is employed in 
all layers.

Furthermore, to augment the performance of the Unet 
we introduced a discriminator network,31 which formulates 
a GAN by treating the Unet as the generator network. The 
generative adversarial model typically involves 2 com-
ponents, the generator network Gθ and the discriminator 
network Dη, where θ denotes the parameters in generator 
network and η denotes the parameters in discriminator 
network. The parameters are comprised by weights (W) 
and biases (B) in all the layers (L) of the network that are 
learned during training. Our ultimate goal is to learn a 
generator function G that is able to reconstruct from the 
initialized SR image (IISR) an image G(IISR) such that the re-
constructed image is as similar as possible to the ground 
truth metabolite map IHR. However, for GAN the generator 
network Gθ is trained to generate SR metabolite maps so 
that the simultaneously trained differential discriminator 
Dη cannot distinguish the generated maps from the ground 
truth HR metabolite maps, which can be solved via the fol-
lowing saddle point optimization problem

min
θ

max
η

¶
E IHR∼Ptrain(IHR)

î
logDη(IHR)

ó
+ E ILR∼PG(ILR)

î
log

Ä
1− Dη

Ä
Gθ(ILR)

ääó©

(2)

The architecture of the proposed Unet–GAN model is 
shown in Figure 1, which basically follows architec-
tural guidelines in 31. Throughout the generator network, 
ParametricReLU (PRelu) activation is utilized but no max 
pooling is involved. In total, there are 8 convolutional layers 
in the discriminator network, in which 3 × 3 convolutional 
kernels are used. The number of kernels is increased from 
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64 to 512 kernels. Image size is reduced by strided convo-
lutions when the number of features is doubled. To obtain 
a probability for sample classification, 2 dense layers and 
a final sigmoid activation function are employed following 
the final obtained feature maps.

The cost function for the optimization problem is 
defined as

1
N

N∑
n=1

Å∑∑ Ä
IHR −Gθ(ILR)

ä2
+ λ log

Ä
−Dη

Ä
Gθ( ILR)

ääã

(3)

which consists of 2 components, mean square error (MSE) 
and adversarial loss over N training samples, where λ ≥ 0 
is the regularization parameter. When only Unet (the gen-
erator network) is used, we set λ = 0, that is, only MSE is 
used in the cost function for computing pixel-wise loss. The 
cost function is referred to as the perceptual loss function 
when λ > 0, which contributes significantly to the superior 
performance by GAN. Both Unet and GAN networks were 
trained in 2 ways: (1) using as input only the MRSI data 
(DLmethod_1 and DLmethod_2), and (2) using as input 
both the MRSI and prior MRI (DLmethod_3). Note that 
DLmethod_2 is DLmethod_1 combined with FNLM, hence 
for both methods the training is done similarly. The block 
diagram for training of all deep learning methods is shown 
in Figure 1.

We trained our networks on a PowerEdge R730 server 
(Dell) with 24 CPU cores (Intel Xeon E5-2687W v4 3.0 
GHz) and 128 GB RAM (RDIMM, 2400 MT/s) running 
Linux Centos 7.6 using Tensorflow packages in Python 3.6. 
Unet was trained with batch size of 16 until convergence 
reached, which took 20k iterations. The Adam optimizer32 
was used with a learning rate of 1e−4 for minimizing the 
cost function. GAN employed Unet as a pretrained model 
and was trained with batch size of 16 and the convergence 
reached after 20k iterations too. The Adam optimizer was 
used with a learning rate of 1e−5 for first 10k iterations and 
1e−6 for last 10k iterations, where the first and second mo-
mentum terms were set 0.9 and 0.999, respectively.

Measured MRSI Data Acquisition and Processing

Twenty mutant IDH1 glioma patients and 10 healthy con-
trol subjects were recruited for this study. All participants 
gave written informed consent with an IRB approved pro-
tocol. IDH1-mutational status in patients was tested by 
anti-human R132H antibody (DIANOVA).33

Whole-brain 3D MR spectroscopic imaging data were 
acquired at 3T on a Tim Trio scanner (Siemens Medical 
Solutions) equipped with a 32-channel head coil and a gra-
dient coil capable of 40 mT m maximum amplitude (200 
mT m s slew rate), using a pulse sequence optimized for 
2HG detection with adiabatic spin echo excitation and 
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Figure 1. Flowchart diagram of deep learning super-resolution (SR) for magnetic resonance spectroscopic imaging (MRSI). There are 3 main 
blocks: (1) the low-resolution metabolic maps are first filtered using spectral quality criteria, inpainted and denoised, (2) the denoised maps are 
interpolated to produce the initial SR maps, and (3) the initialized SR is input in the deep neural networks (Unet or GAN) to obtain the final SR image. 
The last block can be run in 3 ways: (1) for DLmethod_1 only the initial MRSI and deep neural networks are used, (2) for DLmethod_2 the results of 
DLmethod_1 are further improved by subsequent feature nonlocal means (FNLM) with prior MRI, and (3) for DLmethod_3 the initial MRSI and prior 
MRI are both input in the deep neural networks. The architecture of the generator network (Unet) and discriminator network that are part of GAN 
are shown on the bottom left.
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weighted 3D stack-of-spiral k-space encoding. Acquisition, 
reconstruction and processing were performed as de-
scribed in Supplementary Material and further detailed in 
ref. 18: (1) metabolic maps from 20 brain metabolites were 
obtained in all subjects, and (2) 2 metabolic ratios that 
have high contrast to noise ratio for tumors were calcu-
lated in patients: HGG = ([2HG] + [Glutamine])/[Glutamate] 
and TCN = [total Choline]/[total N-acetyl-aspartate].

Image Quality Metrics and Statistical Analysis

Results of the deep learning SR methods were compared 
to the ground truth using image quality metrics34: peak 
signal-to-noise ratio (PSNR), structural similarity index 
measure (SSIM), feature similarity index measure (FSIM), 
and mean opinion score (MOS). For MOS 3 experts were 
asked to evaluate and compare the SR images relative to 

ground truth based on 4 criteria scored from 1 (worst) to 
5 (best) as following: (1) tumor boundaries, (2) local tex-
ture and intensity distribution inside the tumor, (3) healthy 
brain anatomical landmarks such as ventricles, sulci, gray–
white matter border, and (4) healthy brain local texture and 
intensity distribution. The Mann–Whitney U-test in Matlab 
(Mathworks) was used to verify for statistically significant 
differences between the image quality metrics of different 
methods.

Results

First, we investigated the performance of MRSI upsampling 
using Unet and GAN without prior MRI (DLmethod_1). 
Results obtained in 3 representative healthy subjects and 
3 patients are shown in Figure 2. It can be seen that both 
Unet and GAN outperform conventional non-AI methods 
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Figure 2. Super-resolution magnetic resonance spectroscopic imaging (MRSI) without prior MRI (DLmethod_1) in simulated NAA maps in healthy 
subjects (SHS) and simulated d-2-hydroxyglutarate (2HG) maps in patients (SPT) with glioma. Results obtained by Unet and GAN are compared to 
conventional interpolation methods (bicubic and total variation). Examples from 3 simulated healthy subjects and 3 simulated patients are shown, 
from left to right: high-resolution (HR) ground truth MRSI (184 × 184), low-resolution (LR) MRSI (46 × 46), upsampled MRSI (184 × 184) obtained by 
bicubic, total variation (TV), Unet, and GAN.
  

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac071#supplementary-data
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(bicubic and total variation), providing SR maps that have 
similar structural details as the ground truth. In partic-
ular, SR maps obtained by GAN have sharper edges for 
brain anatomical structure such as the gray–white matter 
boundary, compared to Unet that shows some over-
smoothing of this boundary. Figure 2 also presents results 
from 3 representative patients, where Unet and GAN pro-
vide sharper tumor edges and richer texture inside the 
tumors compared to conventional methods, but more sim-
ilar to the ground truth. In Supplementary Figure 1, the 
zoomed tumor region in the same 3 patients shows that 
GAN conforms slightly better than Unet with the ground 
truth tumor boundary. The evaluation of image quality met-
rics is summarized in Table 1 and Supplementary Figure 2. 
Deep learning scored higher than conventional interpola-
tion, increasing PSNR by 17%, SSIM by 5%, FSIM by 7%, 
and MOS by 30%. The quantitative scores (PSNR, SSIM, 
and FSIM) are slightly higher for Unet than GAN, while the 
qualitative MOS score is higher for GAN than Unet.

Upsampling results combining deep learning and prior 
MRI (DLmethod_2 and DLmethod_3) are shown in Figure 
3. For comparison we selected to show the maps for the 
same healthy and patient subjects used in the case of deep 
learning alone (DLmethod_1). Zoomed images of the tumor 
regions are shown in Supplementary Figure 3. The use 
of prior anatomical information in the SR pipeline, either 
sequentially in the form of FNLM (Unet/GAN + FNLM) or 
input simultaneously with MRSI in the DNNs (Unet2inputs/
GAN2inputs) results in more clear structural details of the 
brain anatomy compared to DLmethod_1. The use of FNLM 
combined with deep learning (DLmethod_2) provides very 
close results to the ground truth images with good delinea-
tion of internal gray and white matter anatomy. The results 
obtained by simultaneous input of MRSI and prior MRI into 
neural networks (DLmethod_3) show the most anatomical 
details for SR MRSI, which are even finer higher compared 
to ground truth HR MRSI. This is visible in particular at the 
sulci of SR MRSI, which resemble more the appearance of 
sulci in the prior MRI than in the ground truth HR MRSI. This 
may represent overfitting of sulci by DLmethod_3. The re-
sults obtained by deep learning without prior MRI are close 
to the results of conventional methods combined with 
prior MRI. Maps obtained by GAN provide sharper struc-
tural details than Unet, similar to results of DLmethod_1.

Quantitative analysis of the image qualitative metrics is 
summarized in Table 2 and Supplementary Figure 4. Note 

that, although the first 4 methods are identical in Tables 1 
and 2, the numerical scores are different because the ground 
truth images were differently simulated as mentioned in the 
methods. PSNR, SSIM, and FSIM show that deep learning 
methods outperform conventional methods, either alone or 
in combination with prior MRI. Deep learning without prior 
MRI scored significantly better than conventional interpo-
lation methods alone (bicubic, wTV). The MOS of GAN is 
slightly higher than Unet without prior MRI, and close to the 
conventional methods with prior MRI (bicubic + FNLM and 
wTV + FNLM). It is remarkable that deep learning without 
prior MRI can infer structural details that are obtained when 
conventional methods are aided by prior MRI. Finally, deep 
learning combined with prior MRI scores the highest, with 
slightly higher scores for simultaneous input of MRSI and 
prior MRI. Additionally, we present the training loss curves for 
Unet and GAN in Supplementary Figure 5 to show the con-
vergence of the training. However, we do not generate valida-
tion data which are used for training, considering the fact that 
it is more common to observe the samples generated after 
the completion of the training instead of checking the trend 
of the validation losses for GAN. Indeed, the quality of the 
generated samples helps determine the generator’s ability to 
learn a diverse representation of the input data distribution.

Applications of all the deep learning methods to in vivo 
measured data are presented in Figure 4 and Supplementary 
Figures 6 and 7. Metabolic maps obtained in 3 representative 
patients with mutant IDH glioma are shown in Figure 4 and 
Supplementary Figure 6, respectively. Sharper tumor bound-
aries are obtained by the Unet and GAN compared to bicubic 
and wTV. The heterogeneity of metabolic alterations inside 
the tumor are more evident by Unet and GAN. Results from 3 
representative healthy volunteers in Supplementary Figure 7 
show similar gradual improvement of structural details going 
from conventional bicubic interpolation to DNNs with prior 
MRI. Structural boundaries and edges appear sharper in GAN 
compared to Unet. Deep learning alone without prior MRI pro-
vides structural details similar to those obtained by combining 
conventional interpolation and prior MRI. Including prior MRI 
by FNLM to GAN and Unet improves anatomical details, but 
less than the improvement from conventional interpolation to 
deep learning without prior MRI. Simultaneous input of MRSI 
and prior MRI in DNNs results in images with most structural 
detail, in particular the sulci are emphasized in all subjects, 
and in subject 1 the boundary of gray–white matter becomes 
more apparent.

  
Table 1. Performance of the deep learning methods alone (DLmethod_1) and conventional interpolation for upsampling MRSI

Method→ Conventional DLmethod_1

IQM↓ Bicubic TV UNet GAN 

PSNR 28.57 28.25 33.10* 30.83*

SSIM 0.921 0.868 0.964* 0.934*

FSIM 0.901 0.892 0.964* 0.939*

MOS 3.42 3.35 4.31* 4.42*

Image quality metrics (IQM) of super-resolution MRSI were calculated relative to the simulated ground truth high-resolution MRSI. The largest 
values are shown in bold. Values that are statistically significant for deep learning compared to conventional methods are indicated by asterisk. 
Boxplots of IQM are shown in Supplementary Figure 2. FSIM, feature similarity index measure; MOS, mean opinion score; MRSI, magnetic reso-
nance spectroscopic imaging; PSNR, peak signal-to-noise ratio; SSIM, structure similarity index measure.
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Table 1. Performance of the deep learning methods alone (DLmethod_1) and conventional interpolation for upsampling MRSI

Method→ Conventional DLmethod_1

IQM↓ Bicubic TV UNet GAN 

PSNR 28.57 28.25 33.10* 30.83*

SSIM 0.921 0.868 0.964* 0.934*

FSIM 0.901 0.892 0.964* 0.939*

MOS 3.42 3.35 4.31* 4.42*

Image quality metrics (IQM) of super-resolution MRSI were calculated relative to the simulated ground truth high-resolution MRSI. The largest 
values are shown in bold. Values that are statistically significant for deep learning compared to conventional methods are indicated by asterisk. 
Boxplots of IQM are shown in Supplementary Figure 2. FSIM, feature similarity index measure; MOS, mean opinion score; MRSI, magnetic reso-
nance spectroscopic imaging; PSNR, peak signal-to-noise ratio; SSIM, structure similarity index measure.

  

  
HR MRSI

FLAIR

SHHS1

SHHS2

1.6

0

1

0

SHPT1

SHPT2

LR MRSI

MPRG

Bicubic

Bicubic+FNLM

wTV

wTV+FNLM

Unet

Unet+FNLM

GAN

GAN+FNLM

Unet2inputs

GAN2inputs

Figure 3. Super-resolution magnetic resonance spectroscopic imaging (MRSI) aided by prior MRI in simulated high-resolution NAA maps in 
healthy subjects (SHHS) data and simulated high-resolution d-2-hydroxyglutarate (2HG) maps in patients (SHPT) with glioma data. Results obtained 
by deep learning DLmethod_2 (Unet + FNLM↓, GAN + FNLM↓) and DLmethod_3 (↑Unet2inputs, GAN2inputs↓) are compared to DLmethod_1 (↑Unet, 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac071#supplementary-data
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Conclusions and Discussion

Our results indicate that the proposed deep learning methods 
can effectively enhance the spatial resolution and structural 
details of metabolite maps. This can be further improved by 
the aid of HR anatomical MR images. Deep learning methods 
without prior MRI (DLmethod_1) recover structural informa-
tion and tissue contrast better than conventional interpolation 
methods (bicubic or wTV). The performance of DNNs without 
prior MRI, in particular GAN, is close to combination of con-
ventional methods and FNLM prior MRI. This is particularly 
useful for patient data where lesions may appear differently 
in metabolic images versus anatomical images. The input of 
prior MRI together with MRSI in DNNs (DLmethod_3) provides 
the highest structural detail in healthy volunteers, however in 
patients features of the anatomical lesions may be inadvert-
ently fused to the metabolic lesions when the 2 lesions are 
truly dissimilar at high resolution. In this regard, use of deep 
learning methods with MRSI data alone may avoid this un-
wanted effect in patients, while providing important structural 
improvements. Deep learning methods alone may be useful 
also in the case there is motion between the MRSI and MRI. 
The use of MRI to upsample MRSI assumes that the 2 data 
are well aligned, which may not be true if the subjects have 
moved between the 2 scans. Due to limited spatial resolution 
of MRSI it is hard to correct for motion in postprocessing.35 
Alternatively, further improvements of deep learning met-
abolic maps (DLmethod_1) can be obtained by using FNLM 
and prior MRI (DLmethod_2). This hybrid approach is less sus-
ceptible to introduce spurious features and could be a safer 
choice in using prior anatomical MRI to increase spatial reso-
lution of MRSI in glioma patients. DLmethod_3 may be more 
appropriate in healthy subjects and patients with diffuse brain 

involvement where metabolites and anatomy follow a more 
similar spatial pattern.

There is a small discrepancy between MOS and other 
image quality metrics in evaluating Unet and GAN results. 
Unet tends to have slightly higher PSNR, SSIM, and FSIM, 
while GAN has slightly higher MOS scores. This is not com-
pletely unexpected especially for subtle image differences 
such as between Unet and GAN. Image quality metrics 
have limitations, and it is hard to design a comprehensive 
metric that encompass all the perception details important 
for the human visual system.34 In particular, the human 
experts found that GAN provided sharper boundaries for 
brain structure and tumors, while with Unet the bound-
aries between different structures are slightly smoother.

The results for the MRSI data acquired in glioma pa-
tients suggest that the proposed methods have great 
clinical potential for guiding neurosurgery, radiation, and 
chemotherapy to deliver precision oncology healthcare. 
Determining tumor margins is important for the plan-
ning of surgery and radiation, in particular for mutant 
IDH gliomas where maximal resection and radiotherapy 
benefits patient overall survival.36,37 Objective treatment 
response to standard chemotherapy8 or targeted mutant 
IDH inhibitors10 can be assessed comprehensively by im-
aging tumor metabolism with sufficient structural detail 
to probe regional changes and tumor volume. Metabolic 
imaging brings more specificity to mapping of the tu-
mors, which could disambiguate confounding effects of 
response and progression in anatomical imaging.

Our preliminary results in patients are promising, but 
further validation and verification of the proposed meth-
odology are necessary. The main limitation in validation 
is the lack of sufficient MRSI data acquired at high resolu-
tion. Recently, very advanced acquisition methods have 
been developed,26–29 however their use is limited at the 

↑GAN) and conventional (↑bicubic, ↑weighted TV w/wo FNLM↓) methods. Prior MRI is used to improve super-resolution MRSI, either by feature 
nonlocal means (FNLM) after neural networks, or as a second input (2 inputs) in the neural networks. Examples from 2 simulated healthy subjects 
and 2 simulated patients are shown. High-resolution (HR) ground truth MRSI (1.3 × 1.3 mm2), low-resolution (LR) MRSI (5.2 × 5.2 mm2), upsampled 
MRSI (1.3 × 1.3 mm2), and anatomical MRI (FLAIR and MPRAGE [MPRG] at 1 × 1 mm2). Up and down arrows by the names of the top of the figure 
indicate images in the upper or lower row, respectively, for a given subject.
  

  
Table 2. Performance of deep learning methods combined with prior MRI (DLmethod_2 and DLmethod_3) for upsampling MRSI

Method→ Conventional DLmethod_1 Conventional + MRI DLmethod_2 DLmethod_3

IQM↓ Bicubic wTV UNet GAN Bicubic + FNLM wTV + FNLM UNet + FNLM GAN + FNLM UNet2  
inputs 

GAN2  
inputs 

PSNR 28.09 27.93 28.90 27.94 28.59 28.08 28.97 28.00 30.83* 30.75*

SSIM 0.880 0.883 0.899 0.874 0.907 0.904 0.915 0.905 0.906 0.902

FSIM 0.854 0.887 0.910 0.892 0.898 0.899 0.920 0.906 0.921* 0.917*

MOS 3.02 3.13 3.63 3.84 4.07 4.06 4.42 4.36 4.57* 4.58*

Image quality metrics (IQM) of super-resolution MRSI were calculated relative to the ground truth high-resolution MRSI. Note that ground truth used 
for the methods in Table 2 was simulated differently than ground truth for Table 1. The largest values are shown in bold. Values that are statistically 
significant for deep learning compared to the best conventional methods (Bicubic + FNLM and wTV + FNLM) are indicated by asterisk. Boxplots of 
IQM are shown in Supplementary Figure 4. FSIM, feature similarity index measure; MOS, mean opinion score; MRSI, magnetic resonance spectro-
scopic imaging; PSNR, peak signal-to-noise ratio; SSIM, structure similarity index measure.

  

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac071#supplementary-data
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moment by very complex pulse sequences and reconstruc-
tion techniques which are available to only a small group of 
investigators. As these acquisition methods continue to dis-
seminate more data will become available for training and 
validation. On the other hand, even if advanced sequences 
become more widely available the acquisition time of HR 

MRSI will still be long for many routine clinical exams and 
SR methods as shown here will be beneficial in reducing 
scan times in patients. Although, we demonstrated SR MRSI 
in glioma patients, our framework is generally applicable to 
other neurological or psychiatric diseases where metabolic 
imaging is important to probe disease mechanisms.

  
FLAIR

LR w/SQ +
IPT + NLMD Bicubic wTV Unet GAN

LR HGG

Pt1

Pt2

5.5

0

Pt3

LR w/SQ + IPT Bicubic + FNLM wTV + FNLM Unet + FNLM GAN + FNLM

Figure 4. In vivo super-resolution magnetic resonance spectroscopic imaging (MRSI) measured in glioma patients (Pt). Original low-resolution 
HGG maps measured with the size 46 × 46 (5.2 × 5.2 mm2) were upsampled to 184 × 184 (1.3 × 1.3 mm2) with the corresponding methods from Figure 1. 
First, the low-resolution (LR) maps are filtered by spectral quality (SQ), inpainted for missing voxels (IPT), and denoised by nonlocal means denoising 
(NLMD). After denoising, MRSI is upsampled either by bicubic interpolation, weighted total variation, UNet, or GAN. Anatomical FLAIR images are 
used as prior to obtain super-resolution MRSI by feature nonlocal means (FNLM). Up and down arrows by the names of the top of the figure indicate 
images in the upper or lower row, respectively, for a given subject.
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