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Abstract: Due to the spectral complexity and high dimensionality of hyperspectral images (HSIs),
the processing of HSIs is susceptible to the curse of dimensionality. In addition, the classification
results of ground truth are not ideal. To overcome the problem of the curse of dimensionality
and improve classification accuracy, an improved spatial–spectral weight manifold embedding
(ISS-WME) algorithm, which is based on hyperspectral data with their own manifold structure
and local neighbors, is proposed in this study. The manifold structure was constructed using the
structural weight matrix and the distance weight matrix. The structural weight matrix was composed
of within-class and between-class coefficient representation matrices. These matrices were obtained
by using the collaborative representation method. Furthermore, the distance weight matrix integrated
the spatial and spectral information of HSIs. The ISS-WME algorithm describes the whole structure of
the data by the weight matrix constructed by combining the within-class and between-class matrices
and the spatial–spectral information of HSIs, and the nearest neighbor samples of the data are retained
without changing when embedding to the low-dimensional space. To verify the classification effect of
the ISS-WME algorithm, three classical data sets, namely Indian Pines, Pavia University, and Salinas
scene, were subjected to experiments for this paper. Six methods of dimensionality reduction (DR)
were used for comparison experiments using different classifiers such as k-nearest neighbor (KNN)
and support vector machine (SVM). The experimental results show that the ISS-WME algorithm can
represent the HSI structure better than other methods, and effectively improves the classification
accuracy of HSIs.

Keywords: curse of dimensionality; spatial–spectral weight manifold embedding; ground-truth
classification accuracy; dimensionality reduction

1. Introduction

With the development of science and technology, hyperspectral images (HSIs) have become the
main research direction in the field of modern remote sensing technology. HSIs have a large number of
spectral bands, which provide detailed spectral information about objects [1,2]. However, due to the
strong correlation between adjacent spectra, there is much redundant information in HSIs, which take
up a large storage space and require much computation time. Moreover, when classifying HSIs,
classification accuracy is subject to the curse of dimensionality [3]. In order to improve classification
accuracy, a dimensionality reduction (DR) method is a necessary and feasible preprocessing measure
for HSI [4,5].
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A DR method aims at extracting important features of images, mapping high-dimensional data to
low-dimensional space, and using the data in low-dimensional space to describe high-dimensional
features [5]. In recent years, scholars have put forward many DR methods, which can be divided
into the following two categories: linear dimensionality reduction (LDR) algorithms and manifold
dimensionality reduction (MDR) algorithms [6]. The former includes principal component analysis
(PCA) [7], linear discriminant analysis (LDA) [8], and independent component analysis (ICA) [9],
and so on. These methods project images to the low-dimensional space by linear transformation and
find the optimal transformation projection. However, because ground-truth features reflected in HSI
are often nonlinear topological structures, important features of the images are lost if only an LDR
method is used. Therefore, MDR algorithms are gradually appearing, including local linear embedding
(LLE) [10], local preserving project (LPP) [11], Laplacian eigenmaps (LE) [12], and so on. By learning
the intrinsic geometric structure of data, manifold learning [13] can obtain the potential manifold
structure of the high-dimensional data to achieve the goal of dimensionality reduction.

The purpose of the MDR method in HSI is to find the manifold structure in the high-dimensional
space. LLE [14] obtains the reconstruction weight by characterizing the local adjacency sample of
the data and keeps the neighborhood relationship in the local range unchanged when mapping to
the low-dimensional space. However, an LLE algorithm only determines the neighbor relationship
between points and cannot describe the structural features of data. Therefore, the linear neighbor
representation weight matrix of different samples is different. When the LLE algorithm is used for
different samples, the algorithm needs to be re-run, which is time consuming. It has a considerably
low efficiency. Wu et al. [15] proposed an improved weighted local linear embedding (WLE-LLE)
algorithm, which constructs the weight matrix by calculating the Euclidean distance and geodesic
distance between samples. In addition, it merges LLE with LE algorithms to form a new objective
function to effectively represent the topology structure of the data. Huang et al. [16] proposed a
sparse discriminant manifold embedding (SDME) algorithm, which forms a dimensionality reduction
framework based on graph embedding and sparse representation methods to make full use of the prior
label information. Xu et al. [17] proposed a superpixel-based spatial–spectral dimension reduction
(SSDR) algorithm by integrating the similarity between space and spectrum. The mapping matrix of the
spatial domain is found by using superpixel segmentation to explore spatial similarity. Pixels from the
same label construct a label-guided graph to explore the spectral similarity. Furthermore, integrating
the labels and spatial information contributes to learning a discriminant projection matrix. Wu et al. [18]
proposed a correlation coefficient-based supervised locally linear embedding (SC2SLLE) algorithm,
which introduces the Spearman correlation coefficient to determine the appropriate nearest neighbor
points, and increases the discriminability of embedding data on the basis of supervising the LLE
method. Zhang et al. [19] proposed a SLIC (Sample Linear Iterative Clustering) superpixel based for
Schroedinger eigenmaps (SSSE) algorithm, which uses SLIC segmentation to obtain spatial information
for superpixels of different scales and sizes. The use of an SE method yields low-dimensional data.
Hong et al. [20] proposed a robust local manifold representation (RLMR) algorithm based on LLE,
to learn a novel manifold representation methodology, and then combine the new method with
spatial–spectral information to improve the robustness of the algorithm.

In this paper, an improved spatial–spectral weight manifold embedding (ISS-WME) algorithm
is proposed to combine spatial–spectral information and manifold structure to extract the features
of HSI. First, the spatial–spectral information of HSI is extracted with the Gaussian variant function.
The product of the spatial distance matrix and the spectral distance matrix is then used to be the distance
weight matrix. Then, the collaborative representation method is used to express the characteristics of
the HSI structure. Samples from the same class are as much as possible in the same hyperplane after
projection, and samples from the different classes are as far apart as possible. The structural weight
matrix is obtained by combining the within-class and between-class weight representation matrices.
The product of the distance weight matrix and the structure weight matrix is used as the new weight
matrix. When the data is mapped from high-dimensional manifold space to low-dimensional space,
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it is easy to make abnormal points appear if only considering the structural distribution between the
data points. Furthermore, it is easy to cause the problem of sparseness if only keeping the data nearest
neighbor relationship unchanged during projection transformation. To overcome abnormal points and
the sparseness problem, both the structure and neighbor sample relationship are taken into account
in this paper. Finally, the model can be efficiently solved by solving the minimum eigenvalue to the
generalized eigenvalue problem and obtaining a projection matrix. The main contributions of the
proposed algorithm are as follows:

1. A new weight matrix is constructed to describe the structure between samples, in which the
product of the spatial–spectral distance weight matrix and the structure weight matrix is taken as
a new data weight matrix. Compared with the previous weight matrix, which only considers
spectral distance or spatial distance, the new weight matrix integrates the spatial–spectral
information and structural characteristic of the data.

2. The model not only makes the manifold structure invariant, but also preserves the nearest
neighbor relationship of the samples, when the high-dimensional data are projecting to the
low-dimensional space.

This paper is arranged as follows. Section 2 briefly summarizes the LLE and LE methods and
reviews the related works of these models. Section 3 provides the detailed description and the solving
process of ISS-WME. Section 4 compares the performance of the proposed method and other DR
methods with respect to three public data sets. Finally, the conclusions and perspectives are provided
in Section 5.

2. Related Works

2.1. Local Linear Embedding

Given the data set X =[x1, · · · , xN] ∈ RD×N, where xi ∈ RD, this denotes the ith sample with
D-dimension features and N is the number of the samples. We assume that the D-dimensional-sample
xi projects to d-dimension space M, d � D. Therefore, the low-dimensional coordinate of the
transformed data is Y =

[
y1, · · · , yN

]
∈ Rd×N, where yi ∈ Rd. The core of the LLE algorithm is to

retain xi and its local neighbor samples are unchanged after DR. We consider the point and its local
neighbor points as belonging to the same class. Under the principle of minimizing reconstruction
errors, the sample xi can be linearly represented by these neighbor samples. By reconstructing the
weight matrix, the original space is connected with the low-dimensional embedding space. Moreover,
the reconstruction weight matrix between each sample and its nearest neighbor samples is kept
unchanged, and the embedding result in the low-dimensional space is obtained by minimizing the
reconstruction errors. Therefore, the weight coefficient matrix of the relationship between xi and its
local neighbors can be obtained by solving the following optimization problem [21]:

min
N∑

i=1
‖xi −

k∑
j=1

wijxj‖

2

s.t.
k∑

i=1
wij= 1

(1)

In Equation (1), xj(j = 1, · · · , k) is one of the k samples, which is closest to Xi(i = 1,· · ·N), and wij,
andstands for the weight neighbor relationship between samples xi and xj; if they are not neighbors
then wij= 0. Assuming the projection of D-dimensional samples into d-dimension space, it is desirable
to maintain the same linear relationship:
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
min

N∑
i=1
‖yi −

k∑
j=1

wijyj‖

2

s.t 1
N

N∑
i=1

yiy
T
i = I,

N∑
i=1

yi= 0
(2)

where I is the identity matrix and yi= YIi. Then, we have the following: M =(I−W)T(I−W), hence,
Equation (2) can be changed into the following problem:

argmin
Y

N∑
i=1

‖YIi−Ywi‖
2 = argmin

Y
tr
(
YMYT

)
(3)

Using the method of Lagrangian multiplier, Equation (3) can be easily solved by the generalized
eigenvalue decomposition approach as follows:

MYT= λYT (4)

Then, we can obtain the eigenvector corresponding to the dth smallest non-zero eigenvalues, and
the low-dimensional embedding matrix can be represented as Y =

[
y1, · · · , yd

]
.

The LLE algorithm [22] can successfully maintain the local neighbor geometric structure and have
a fast calculation speed. However, as the number of data dimension and data size increases, it has
large sparsity, poor noise, and other problems.

2.2. Laplacian Eigenmaps

Given the data set X =[x1, · · · , xN] ∈ RD×N and using the KNN method to find the k-nearest
neighbors of the sample xi, an overall data structure matrix is then formed, and xj is the jth nearest

sample of xi. Then, there is a weight value as hij= exp
(
−‖xi−xj‖

)
. Let Y =

[
y1, · · · , yN

]
∈ Rd×N,

which denotes the low-dimensional embedding samples of data set X, and Y = PTX. Then, Y can be
solved by constructing the following optimization problem [23]:

min
N∑

i,j=1
‖yi−yj‖

2hij

s.t
N∑

i=1
yi= 0,

N∑
i=1
‖yi‖

2= I
(5)

Similarly, Equation (5) constraints ensure it has a solution. And it can be solved by using the
generalized eigenvalue decomposition approach as follows:

Ly = λDy (6)

where Dii =
∑
j

hij is a diagonal matrix and L = D−H is the Laplacian matrix. H is the weight matrix

made up of hij. The embedding samples in the d-dimensional space are constructed by the eigenvectors
corresponding to the d minimum eigenvalues.

The LE algorithm [24] introduces the graph theory to achieve the purpose of DR methods.
Nevertheless, due to the inaccurate weight matrix in the LE algorithm, the traditional LE algorithm
cannot accurately describe the structure for complex hyperspectral data, resulting in the fact that the
data in the low-dimensional space cannot fully express the original data features.

3. Improved Spatial–Spectral Weight Manifold Embedding

To solve large sparsity, inexact weight, and other problems of the LLE and LE [25] algorithms,
an improved spatial–spectral weight manifold embedding (ISS-WME) algorithm is proposed in this
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paper. It combines spatial–spectral and high-dimensional manifold structure information to construct
a weight matrix corresponding to the HSI structure. Considering the multi-manifold structure of
HSI, the combination of its structure and the nearest neighbor samples simultaneously makes the
data neighbor relationship invariable, without breaking the original structure when embedding to
the low-dimensional space. In this regard, Section 3.1 specifically analyzes how to construct a weight
matrix that is more consistent with the sample structure. In addition, Section 3.2 describes the final
optimization objective function.

3.1. Spatial–Spectral Weight Setting

Through experimental study, researchers have found that classification accuracy can be improved
by combining the spatial information in the analysis of HSI. Hence, the ISS-WME method is based on
spatial and spectral information. It uses the variation of Gaussian function to represent the spatial and
spectral distance, respectively. Given the HSI data set X = [x f, xp

]
, where xf is the spectral reflectance

of a pixel and xp is the spatial coordinates of a pixel, to construct Dij, we find each pair of samples

xi= [x f
i , xp

i

]
and xj =

[
xf

j , xp
j

]
, where i, j = 1, · · · , N. Therefore, the spatial distance matrix and spectral

distance matrix are represented, respectively, as follows:
Df

ij= 1− exp

− ‖xf
i−xf

j ‖
2

σ2
f


Dp

ij= 1− exp

− ‖xp
i −xp

j ‖
2

σ2
p

 (7)

Therefore, the spatial–spectral distance weight matrix is as follows:

Dij= Df
ij·D

p
ij (8)

In HSI, adjacent pixels in the same homogenous region usually belong to the same class, so any
sample in the same class can be linearly represented by homogeneous neighbor samples. Similarly,
the whole data sample centers can be represented by different classes of sample centers [26]. Hence,
the HSI still maintains this characteristic after DR. We want to obtain a within-class representation
coefficient matrix by minimizing the error of the collaboration representation model. To prevent
overfitting, regularization constraints are added to the optimization model. The objective function of
the within-class collaboration representation model is as follows:

c∑
k=1

lk∑
i = 1
i ∈ τk

(
‖PTxi − PTXkθ

w
k ‖

2
2 + λ‖θw

k − θ
w
k ‖

2

2

)
(9)

In Equation (9), lk is the sample number in the kth class and τk is the sample set other than the kth
class, and Xk is expressed as the sample set from the same class as xi, except xi. θw

k is the within-class
linear representation coefficient matrix of the kth class sample, and the within-class mean coefficient
matrix is θw

k =
[

1
n−1 , · · · , 1

n−1

]
∈ R(n−1)×1, and θw denotes all the within-class linear representation

coefficients
[
θw

k

∣∣∣i = 1 · · · c
]
.

Likewise, the objective function of the between-class representation coefficient matrix is as follows:

c∑
k=1

(
‖PTx− PTXkθ

b
k‖

2
2 + λ‖θb

k − θ
b
k‖

2

2

)
(10)
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In Equation (10),
_
x is the mean of the total samples, and Xk is the central sample set of each

class sample. θb
k denotes the between-class representation coefficient matrix of the kth class sample,

and the between-class mean coefficient matrix is θb
k =

[
1

n−1 , · · · , 1
n−1

]
∈ R(n−1)×1, and θb denotes all the

between-class representation coefficients
[
θb

k

∣∣∣k = 1 · · · c
]
.

The within-class representation matrix θw
k is obtained by solving the minimum value of Equation (9)

(setting the derivative of objective function about within-class representation coefficients to be 0):

∂f
∂θw

k
= −2YT

k

(
xi −Ykθ

w
k

)
+ 2λ

(
θw

k − θ
w
k

)
= 0 (11)

Therefore, the within-class coefficient matrix is as follows:

θw
k =

(
YT

kYk+λI
)−1(

YT
kyi+λθw

k

)
(12)

In the same way, we can set the derivative of objective function about between-class representation
coefficients to be 0, so the between-class coefficient matrix is as follows:

θb
k =

(
Yk

TYk+λI
)−1

(
Yk

Tyk+λθb
k

)
(13)

3.2. ISS-WME Model

Given the HSI data set X =[x1, · · · , xN], xi ∈ RD, we assume that the projection matrix P ∈ RD×d is
expected to project the data X into the low-dimensional space. Y =

[
y1, · · · , yN

]
, yi ∈ Rd represents the

samples in low-dimensional space, and Y = PTX. As proposed by Wu [15], both of the distance and
structural factors are taken into account in this paper. Then, we regard the spatial–spectral matrix as the
distance weight WD

ij and coefficient matrices as the structure weight WS
ij, then WD

ij and WS
ij constitute

the new weight matrix between samples, such as the following:
Wij = WD

ij ·W
S
ij

WD
ij = Dij

WS
ij = βθw + (1−β)θb

(14)

where β represents the proportion of the within-class matrix and the between-class matrix in the
structure weight.

Furthermore, the high-dimensional data mapping to the low-dimensional space not only makes
the local manifold structure unchanged, but also maintains the local neighbor relationship invariant.
Introducing the weight of Equation (14) to increase the robustness of the model, the improved weight
manifold embedding optimization problem is as follows:

min 1
2

N∑
i,j=1
‖yi−yj‖

2Wij+α
N∑

i=1
‖yi −

k∑
j=1

Gijyj‖

2

s.t
N∑

i=1
‖yi‖

2= I,
N∑

i=1
yi= 0,

k∑
j=1

Gij= 1
(15)

where α is a compromise parameter. Wij is the spatial–spectral matrix in Equation (14) and Gij is
still the weight matrix representing the nearest neighbor relationship. If xi and xj are neighbors,
Gij = dG(i, j) represents the geodesic distance; otherwise, Gij= 0. According to Equations (2) and (5),
the optimization problem (15) is equivalent to the following:
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min 1
2

N∑
i,j=1
‖PTxi−PTxj‖

2
Wij+α

N∑
i=1
‖PTxi−PT

k∑
j=1

Gijxj‖

2

=
N∑

i,j=1
PT

(
xiWijxT

i −xiWijxT
j

)
P + α

N∑
i=1

PT(XIi−XGi)
2P

= tr
(
PTX(D′−W′)XTP

)
+αtr

(
PTX(I−G)T(I−G)XTP

)
= tr

(
PTXL′XTP

)
+αtr

(
PTXM′XTP

)
= tr

(
PTXBXTP

)
(16)

where L′= D′−W′ is the Laplacian matrix, D′ii =
N∑

j=1
Wii is a diagonal matrix, W′ =

[
Wij

]
N×N

is a

symmetric matrix, and M′ = (I−G)T(I−G). Moreover, B = L′ + αM′. Finally, the objective function
can be conducted as the following optimization problem: mintr

(
PTXBXTP

)
s.t.PTXD′XTP = I

(17)

With the method of Lagrange multiplier, the optimization problem is formed as follows:

XBXTpd = λ′XD′XTpd (18)

where pd is the generalized eigenvector of Equation (18) according to their eigenvalue λ′1 ≤ · · · ≤ λ′d.
Then, we can learn a projection matrix P =

[
p1, · · · , pd

]
. In summary, Algorithm 1 is as follows:

Algorithm 1 Process of the ISS-WME Algorithm

Input: HSI data set X =[x1, · · · , xN] ∈ RD×N and xi =
(
xf

i , xp
i

)
, low-dimensional space d� D, K is the nearest

neighbor.
1: HSI is segmented into superpixels using the SLIC segmentation method and randomly select training
samples (for Pavia University, training samples are 2%, 4%, 6%, 8%, 10%), and then use Equations (7) and (8) to
calculate the spatial–spectral distance matrix between superpixels. In addition, make sure the number of
superpixels and training samples is the same.
2: Then, use Equations (12) and (13) to obtain the structure representation matrix between training samples.
The product of the two types of matrices is taken as the new matrix Equation (14).
3: According to the local manifold structure and nearest neighbor relationship of the samples, the objective
function of Equation (16) is constructed.
4: By solving the generalized feature of Equation (18), the corresponding eigenvector is obtained.
5: Learn a projection matrix P.
Output: The data in low-dimensional space is Y = PTX

4. Experiments and Discussion

In order to verify the effectiveness of the proposed algorithm ISS-WME, we conducted experiments
on three commonly used HSI data sets, namely Indian Pines, Pavia University, and Salinas scene.
We considered the overall accuracy (OA) [19], classification accuracy (CA), average accuracy (AA),
and kappa coefficient (kappa) [27] of the classification results as evaluation values. We compared
the ISS-WME algorithm with six other representative DR algorithms, i.e., PCA, Isomap [28], LLE, LE,
SSSE, and WLE-LLE. We used two more commonly used classifiers, i.e., the Euclidean distance-based
k-nearest neighbor (KNN) algorithm [29] and the support vector machine (SVM), to classify the
low-dimensional data. We performed the experiment using MATLAB on an Intel Core CPU 2.59 GHz
and 8 GB RAM computer.
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4.1. Data Sets and Parameter Setting

4.1.1. Data Sets

The Indian Pines, Pavia University, and Salinas scene data sets were subjected to experiments in
the paper.

The Indian Pines data set [30,31] and Salinas scene data set [2,30] were the scenes gathered by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. Indian Pines consisted of 145× 145
pixels and 220 spectral bands. However, several spectral bands with noise and water absorption
phenomena were removed from the data set, leaving a total of 200 radiance channels to be used in the
experiments. Salinas had 512× 217 pixels and 204 spectral bands.

The Pavia University data set [30,32] was acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor. Its size was 610× 340 pixels. Some channels were removed due to noise
and the remaining number of spectral bands was 103.

4.1.2. Experimental Parameter Settings

For this paper, six different DR algorithms were compared with the proposed ISS-WME method.
These comparison algorithms are described as follows. PCA, Isomap, LLE, and LE are four classical
DR algorithms. The SSSE algorithm combines the spectral and spatial information and WLE-LLE
combines the spectral and structural information. In addition, for the LE, LLE, WLE-LLE, and SSSE
algorithms, the number of nearest neighbor samples must be set in the experiment. To compare and
analyze the classification results in the experiment, the nearest neighbor samples were set as 15 in
all experiments. The SSSE and ISS-WME algorithms also require computational spatial and spectral
information, so we set the parameters as

(
σf,σp

)
= (0.1, 100).

In each experiment, each data set was divided into training samples and testing samples. We used
different DR algorithms to learn a projection matrix on the training samples, and then utilized the
acquired embedding matrix to project the testing samples into the low-dimensional space. Finally,
we used a KNN or SVM classifier to classify the data in the low-dimensional space. Moreover,
to reduce the systematic error, the results were computed 10 times to calculate the average value for
each experimental result with the associated standard deviation. We used OA, CA, AA, and K to
evaluate the different algorithm performances. In the Indian Pines experiment, the parameters were
set to (β,α) = (0.5, 0.2). In the same way, the parameters were set to (β,α) = (0.5, 0.1) in the Pavia
University experiment. Finally, in the Salinas scene, the parameters were (β,α) = (0.5, 0.2).

4.2. Results for the Indian Pines Data Set

To fully attest the algorithm performance of the ISS-WME method, experiments were carried
out under the conditions of different numbers of training samples, different embedding dimensions,
and different DR methods. We randomly selected n% (n = 10, 20, 30, 40, 50) samples from each class
as the training sample set, and the rest were the testing sample set. We also set the hyperspectral
dimensionality (HD) of low-dimensional embedding from 10 to 50. The results of the proposed
ISS-WME method were compared with those of the other comparison DR methods.

Figures 1 and 2 show the OA of the KNN and SVM classifiers on different embedding dimensions
using different DR methods. Specifically, (a)–(e) represent different training sample sets. The OA
of Indian Pines with different training samples directly classified by a KNN or SVM classifier was
used as the baseline. Compared with the five other dimensionality reduction methods, ISS-WME
and WLE-LLE achieved the best and the second-best overall accuracy, respectively, under different
dimensions or different training samples. Comparing Figures 1 and 2, the overall accuracy of SVM is
higher than KNN.
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Figure 2. OA obtained by using a support vector machine (SVM) classifier, with respect to (a–e),
different sizes of training sets (10%, 20%, 30%, 40%, 50%) and different hyperspectral dimensionality
(HD) (from 10 to 50) for the Indian Pines data set.

As can be seen in Figures 1 and 2, the OA decreases as the dimension increases. In Figure 1, it can
be observed that, for the KNN classifier, the proposed ISS-WME method obtains similar classification
results with those of WLE-LLE in almost all cases of embedding dimensions, and achieves the best
classification result in hyperspectral dimensionality (HD) = 50. Figure 2c shows the OA of the HD
for the 30% samples of the Indian Pines data as training set. Compared with RAW, PCA, Isomap,
LLE, LE, SSSE, and WLE-LLE, when HD = 50, ISS-WME increases the OA by 12.01%, 8.2%, 7.98%,
5.28%, 4.15%, and 2.69%, respectively. To further demonstrate intuitively the classification results of
the DR algorithms, the comparison results for the 50% of the Indian Pines data trained with the SVM
classifier in HD = 20 are presented visually in Figure 3 with the best overall accuracy. It includes
(a) the false-color image, (b) the corresponding ground-truth map, and the different DR methods’
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classification maps (c)–(j). It can be observed that the proposed ISS-WME algorithm performs better in
land-over classes than the other compared DR methods.
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algorithms for the Indian Pines data in HD = 20: (a) false-color image (R:57,G:27,B:17); (b) ground-
truth map; (c) original (SVM); (d) principal component analysis (PCA); (e) Isomap; (f) local linear 
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In order to further describe the comparison results, the quantitative comparison of classification 
accuracy using SVM classifiers under HD = 20 for different DR methods is summarized in Table 1. 
The results include the OA and kappa coefficient for each method, and each result is the average of 
the results of 10 runs with the associated standard deviation. As can be seen in Table 1, in most cases, 
the classification results (OA and kappa) generated by ISS-WME are the best.

Figure 3. Classification maps of an SVM classifier using different dimensionality reduction (DR)
algorithms for the Indian Pines data in HD = 20: (a) false-color image (R:57,G:27,B:17); (b) ground-truth
map; (c) original (SVM); (d) principal component analysis (PCA); (e) Isomap; (f) local linear embedding
(LLE); (g) Laplacian eigenmaps (LE); (h) SLIC superpixel based for Schroedinger eigenmaps (SSSE);
(i) weighted local linear embedding (WLE-LLE); and (j) improved spatial–spectral weight manifold
embedding (ISS-WME); (k) representation of different classes.

In order to further describe the comparison results, the quantitative comparison of classification
accuracy using SVM classifiers under HD = 20 for different DR methods is summarized in Table 1.
The results include the OA and kappa coefficient for each method, and each result is the average of
the results of 10 runs with the associated standard deviation. As can be seen in Table 1, in most cases,
the classification results (OA and kappa) generated by ISS-WME are the best.
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Table 1. Results of the different DR methods for the Indian Pines data set (OA%±ASD%).

Samples Classifier Index RAW PCA Isomap LLE LE SSSE WLE-LLE ISS-WME

10%
KNN

OA 49.44 ± 1.94 61.42 ± 1.35 65.23 ± 1.62 60.85 ± 1.30 64.82 ± 1.47 59.35 ± 1.96 65.86 ± 1.39 66.46 ± 1.90
Kappa 32.79 ± 1.65 44.98 ± 1.15 49.26 ± 1.59 44.21 ± 1.59 49.42 ± 1.89 42.95 ± 2.11 48.31 ± 1.56 48.86 ± 1.85

SVM
OA 49.82 ± 1.37 68.40 ± 1.14 64.12 ± 1.62 65.93 ± 1.71 71.77 ± 1.61 68.17 ± 1.10 75.03 ± 1.26 75.38 ± 1.47

Kappa 33.19 ± 1.35 52.82 ± 1.11 48.26 ± 1.65 51.94 ± 1.23 56.19 ± 1.51 52.93 ± 1.03 59.71 ± 1.35 62.08 ± 1.56

20%
KNN

OA 51.97 ± 1.17 66.00 ± 1.48 68.42 ± 1.35 66.00 ± 1.20 69.72 ± 1.35 66.03 ± 1.74 68.60 ± 1.43 69.56 ± 1.71
Kappa 32.56 ± 1.52 50.10 ± 1.59 52.90 ± 1.25 50.20 ± 1.23 54.37 ± 1.36 50.44 ± 1.71 53.42 ± 1.41 54.27 ± 1.75

SVM
OA 51.86 ± 1.59 72.34 ± 1.47 71.36 ± 1.62 71.42 ± 1.27 75.01 ± 1.75 73.22 ± 1.45 77.80 ± 1.93 81.25 ± 1.51

Kappa 35.08 ± 1.65 57.15 ± 1.42 55.74 ± 1.79 56.15 ± 1.39 58.56 ± 1.67 58.13 ± 1.53 62.83 ± 1.92 66.29 ± 1.42

30%
KNN

OA 54.19 ± 1.28 68.13 ± 1.64 70.83 ± 1.53 68.43 ± 1.66 72.30 ± 1.32 67.91 ± 1.03 72.46 ± 1.35 73.02 ± 1.43
Kappa 37.55 ± 1.36 52.60 ± 1.74 55.54 ± 1.56 52.94 ± 1.51 57.29 ± 1.22 52.48 ± 1.87 57.34 ± 1.18 57.84 ± 1.55

SVM
OA 53.11 ± 1.35 74.82 ± 1.69 74.72 ± 1.33 74.37 ± 1.48 77.83 ± 1.54 77.54 ± 1.33 80.48 ± 1.76 83.83 ± 1.73

Kappa 36.51 ± 1.63 59.63 ± 1.66 59.45 ± 1.34 59.07 ± 1.56 63.60 ± 1.55 60.53 ± 1.19 65.57 ± 1.71 69.73 ± 1.71

40%
KNN

OA 54.67 ± 1.62 70.03 ± 1.13 73.33 ± 1.84 75.91 ± 1.47 73.94 ± 1.20 68.92 ± 1.14 73.94 ± 1.79 74.08 ± 1.44
Kappa 38.36 ± 1.14 54.64 ± 1.10 58.26 ± 1.79 60.86 ± 1.43 59.05 ± 1.15 53.58 ± 1.35 58.99 ± 1.77 59.25 ± 1.50

SVM
OA 54.28 ± 1.81 76.07 ± 1.44 75.91 ± 1.37 75.98 ± 1.21 80.02 ± 1.65 76.31 ± 0.96 82.07 ± 1.53 84.80 ± 1.80

Kappa 37.72 ± 1.71 61.13 ± 1.46 60.94 ± 1.42 60.86 ± 1.23 63.00 ± 1.63 61.45 ± 0.93 67.35 ± 1.57 70.36 ± 2.34

50%
KNN

OA 55.41 ± 1.50 70.38 ± 1.44 73.67 ± 1.29 71.29 ± 1.47 75.10 ± 1.56 69.48 ± 1.51 75.22 ± 1.47 74.56 ± 1.36
Kappa 39.14 ± 1.44 55.19 ± 1.40 58.71 ± 1.24 55.93 ± 1.41 60.31 ± 1.44 54.28 ± 1.50 60.27 ± 1.48 59.73 ± 1.24

SVM
OA 54.77 ± 1.39 76.65 ± 1.76 76.93 ± 1.38 76.67 ± 1.27 81.84 ± 1.24 78.46 ± 1.59 82.54 ± 1.27 84.71 ± 0.93

Kappa 38.12 ± 1.35 61.75 ± 1.76 61.89 ± 1.49 61.63 ± 1.34 66.89 ± 1.21 63.51 ± 1.77 67.74 ± 1.37 70.11 ± 1.06
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Table 2 provides the training and testing sample numbers of each class in the Indian Pines data set
in the experiment, as well as the classification results of the SVM classifier using different DR methods.
Compared to Table 1, Table 2 shows the evaluation index CA, where the best results are shown in bold
numbers. It can also be seen in Table 2 that the ISS-WME method achieves the best accuracy in 10
classes of samples.

Table 2. Results of each class of samples in different DR methods for the Indian Pines data set (HD = 20).

Class
Sample DR + SVM Classifier (%)

Train Test RAW PCA Isomap LLE LE SSSE WLE-LLE ISS-WME

Alfalfa 23 23 13.04 52.17 26.09 30.77 40.58 52.17 56.52 86.96
Corn-N 714 714 38.42 69.37 69.42 40.06 70.07 65.92 77.08 72.17
Corn-M 415 415 25.06 48.76 49.96 44.34 62.33 58.47 62.25 56.47

Corn 119 118 14.41 77.11 38.14 26.27 47.74 46.05 62.15 53.95
Grass-P 242 241 59.06 90.87 89.21 62.38 89.76 89.35 94.47 94.65
Grass-T 365 365 86.48 97.81 97.63 97.90 97.44 97.63 98.26 98.86

Grass-P-M 14 14 35.71 76.19 52.38 50.28 90.48 76.19 83.33 83.81
Hay-W 239 239 88.70 99.86 99.72 97.13 99.44 98.61 99.72 99.68

Oats 10 10 11.24 43.33 60.00 30.00 80.00 80.00 70.00 86.67
Soybean-N 486 486 25.17 63.51 69.82 94.24 78.26 79.08 75.03 75.17
Soybean-M 1228 1227 71.15 83.32 81.83 73.62 87.48 83.46 86.66 79.52
Soybean-C 297 296 56.41 64.75 57.32 52.70 67.91 60.47 73.99 74.07

Wheat 103 102 74.51 94.12 98.69 75.21 97.06 97.39 99.67 99.87
Woods 633 632 94.57 97.68 97.63 86.71 97.31 96.78 97.42 97.66

Buildings-G-T-D Stone-S-T 193 193 29.02 45.77 45.60 34.20 43.52 44.39 51.81 52.85
47 46 91.30 90.58 94.20 88.70 86.96 92.03 96.38 98.41

OA 54.77 76.65 76.93 76.67 81.84 78.46 82.54 84.71
AA 54.04 74.70 70.47 61.53 77.27 76.12 80.30 81.92

kappa 38.12 61.75 61.89 61.63 66.89 63.51 67.74 70.11

4.3. Results for the Pavia University Data Set

In order to fully attest the algorithm performance of ISS-WME, experiments were carried out
under the conditions of different numbers of training samples, different embedding dimensions, and
different DR methods. We randomly selected n% (n = 2, 4, 6, 8, 10) samples from each class as the
training set, and the rest were the testing set. We also set the hyperspectral dimensionality (HD) of low
dimensional embedding from 10 to 50. The results of the proposed ISS-WME method were compared
with those of the other DR methods.

Figures 4 and 5 show the OA of the KNN and SVM classifiers on different embedding dimensions
using different DR methods. Specifically, (a)–(e) represent different training sets. The OA directly
obtained by using different classifiers in dimensions was used as the baseline. Compared to the six other
algorithms, ISS-WME achieved the best OA in almost all cases with different embedding dimensions
under different numbers of training samples. As can be seen in Figure 5, image classification accuracies
are more or less susceptible to distortion with the increase in embedding dimensions. No matter which
DR algorithms are adopted, the curse of dimensionality occurs to a certain extent. Compared with
Figures 4 and 5, the distortion is serious when using the SVM classifier.
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Figure 5. OA with respect to (a–e), different sizes of training sets (2%, 4%, 6%, 8%, 10%) and different
HD (from 10 to 50) for the Pavia University data set, combined with the SVM classifier.

As can be seen in Figure 4, the OA of different DR methods is relatively stable with the increase
in training sets when KNN is used as the classifier. Figure 5e shows the impact of the hyperspectral
dimensionality (HD) on the OA for 10% samples of Pavia University data as training set. Compared
with RAW, PCA, Isomap, LLE, LE, SSSE, and WLE-LLE, when HD = 50, ISS-WME increases the OA
by 0.13%, 0.55%, 1.24%, 3.34%, 0.64%, and 0.31%, respectively. In order to further demonstrate the
classification results of DR algorithms, the classification result maps for the 10% of the Pavia University
data trained with the SVM classifier in HD = 20 are presented visually in Figure 6, including (a) the
false-color image, (b) the corresponding ground-truth map, and the different DR methods’ classification
maps (c)–(j). It can be observed that the proposed ISS-WME algorithm performs better than the other
compared DR methods, in most land-over classes.
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best classification accuracy about six classes, and the best results of the indexes are shown in bold. 

Figure 6. SVM classification maps of the different methods with the Pavia University data set in HD=20:
(a) false-color image (R:102,G:56,B:31), (b) ground-truth map, (c) original (SVM), (d) PCA, (e) Isomap,
(f) LLE, (g) LE, (h) SSSE, (i) WLE-LLE, and (j) ISS-WME; (k) representation of different classes.

To further describe the comparison results, the quantitative comparison of OA of different DR
methods at HD = 20 is summarized in Table 3. The results include the overall accuracy and kappa
coefficients of each method, and each result is an average of the results of 10 runs with the associated
standard deviation. As can be seen in Table 3, the classification results (OA and kappa) produced by
ISS-WME are the best in most cases. In addition, it can be seen in Table 4 that ISS-WME obtained the
best classification accuracy about six classes, and the best results of the indexes are shown in bold.

Table 4 provides the number of training and test samples for each class in the Pavia University
data set in the experiment, as well as the classification results under the SVM classifier using different
dimensionality reduction methods. Compared with Table 3, the classification accuracy (CA) is displayed
in Table 4, where the best results are shown in bold numbers. Moreover, it can be seen in Table 4 that
the ISS-WME method achieves the best accuracy in sixclasses of samples.
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Table 3. Results of the different DR methods for the Pavia University data set.

Samples Classifier Index RAW PCA Isomap LLE LE SSSE WLE-LLE ISS-WME

2%
KNN

OA 61.55 ± 1.64 69.75 ± 0.90 68.29 ± 2.20 63.25 ± 1.81 73.92 ± 1.27 73.70 ± 1.10 75.65 ± 1.47 75.84 ± 1.27
Kappa 44.23 ± 1.23 57.78 ± 1.49 55.49 ± 3.13 47.71 ± 2.94 63.99 ± 1.17 63.31 ± 1.52 66.12 ± 1.29 66.38 ± 1.42

SVM
OA 58.42 ± 1.13 79.71 ± 1.18 71.84 ± 3.22 79.05 ± 1.42 77.70 ± 1.82 78.30 ± 0.88 82.86 ± 0.83 84.17 ± 0.87

Kappa 44.61 ± 2.96 71.99 ± 1.60 60.66 ± 4.61 70.84 ± 1.71 69.24 ± 2.66 69.91 ± 1.23 76.65 ± 1.13 78.32 ± 1.19

4%
KNN

OA 61.83 ± 1.46 76.32 ± 1.23 72.89 ± 1.76 68.69 ± 1.76 78.44 ± 1.70 72.45 ± 1.33 78.99 ± 1.26 80.64 ± 1.51
Kappa 45.04 ± 1.06 67.18 ± 1.48 62.40 ± 1.25 56.39 ± 1.45 70.09 ± 1.84 61.89 ± 1.27 70.09 ± 1.45 73.34 ± 1.59

SVM
OA 59.62 ± 1.51 82.60 ± 1.74 73.84 ± 3.43 82.52 ± 1.04 81.71 ± 1.21 76.63 ± 1.28 85.53 ± 1.16 85.96 ± 0.99

Kappa 42.32 ± 1.19 76.07 ± 2.51 63.60 ± 5.03 76.12 ± 1.44 74.96 ± 1.25 67.80 ± 1.74 80.34 ± 1.29 80.95 ± 1.16

6%
KNN

OA 71.73 ± 1.39 79.08 ± 1.18 72.35 ± 1.83 71.35 ± 1.37 80.48 ± 1.29 71.74 ± 2.39 80.51 ± 1.50 82.38 ± 1.44
Kappa 63.93 ± 1.80 71.16 ± 1.63 61.88 ± 1.96 59.82 ± 2.44 73.03 ± 1.42 60.56 ± 3.58 73.18 ± 1.58 75.76 ± 1.64

SVM
OA 71.81 ± 1.27 84.98 ± 1.84 75.06 ± 1.86 85.32 ± 1.32 83.45 ± 1.46 78.05 ± 2.06 85.93 ± 1.69 87.13 ± 1.49

Kappa 65.34 ± 1.61 79.49 ± 1.20 65.34 ± 2.78 77.38 ± 1.49 77.52 ± 1.71 69.81 ± 2.94 80.92 ± 1.93 82.56 ± 1.68

8%
KNN

OA 71.80 ± 1.51 80.45 ± 1.36 73.72 ± 1.89 73.81 ± 1.23 81.65 ± 1.16 76.63 ± 2.25 81.54 ± 1.51 83.09 ± 1.19
Kappa 65.14 ± 1.83 73.11 ± 1.54 63.93 ± 2.61 63.96 ± 1.38 74.74 ± 1.23 62.39 ± 2.55 74.47 ± 1.74 76.79 ± 1.28

SVM
OA 70.14 ± 1.22 85.52 ± 0.87 77.23 ± 2.55 84.56 ± 1.21 84.55 ± 1.30 79.03 ± 1.43 86.75 ± 1.30 86.91 ± 1.40

Kappa 61.92 ± 1.46 80.31 ± 1.23 68.58 ± 3.72 78.96 ± 1.29 79.06 ± 1.42 71.17 ± 1.64 82.08 ± 1.43 80.20 ± 1.55

10%
KNN

OA 71.96 ± 1.18 81.36 ± 1.47 75.48 ± 1.56 74.15 ± 0.95 81.74 ± 0.72 73.11 ± 1.73 82.62 ± 1.46 83.83 ± 0.59
Kappa 65.60 ± 1.46 74.21 ± 1.00 66.23 ± 2.24 64.20 ± 1.43 74.85 ± 1.02 62.48 ± 2.84 76.11 ± 1.69 77.85 ± 0.86

SVM
OA 70.99 ± 1.31 85.75 ± 1.29 76.42 ± 0.65 75.02 ± 0.73 85.07 ± 1.18 79.24 ± 1.00 86.15 ± 0.24 86.98 ± 1.12

Kappa 63.95 ± 1.29 80.68 ± 1.77 67.42 ± 1.19 59.69 ± 0.86 79.80 ± 1.31 71.46 ± 1.40 82.65 ± 0.93 82.37 ± 1.12
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Table 4. Results of each class of samples in different DR methods for the Pavia University data set
(HD = 20).

Class
Sample DR+SVM Classifier (%)

Train Test RAW PCA Isomap LLE LE SSSE WLE-LLE ISS-WME

Asphalt 657 6565 62.96 88.41 74.41 86.10 95.19 81.98 84.93 88.03
Meadows 1846 18463 91.90 97.72 95.76 96.66 98.78 96.19 96.50 97.42

Gravel 208 2078 45.72 50.71 47.89 59.04 80.93 52.38 64.55 84.23
Trees 303 3033 39.96 84.75 79.55 86.34 87.00 75.25 89.90 89.65

Metal sheets 133 1332 98.51 99.61 99.94 99.72 100.00 99.23 100.00 100.00
Bare Soil 498 4979 46.54 66.36 80.77 48.25 87.39 58.26 65.56 87.44
Bitumen 132 1317 45.02 49.72 42.47 65.27 79.88 66.16 74.02 80.38

Bricks 365 3645 54.43 84.45 75.44 83.27 84.25 80.57 82.78 86.38
Shadows 94 937 46.57 99.37 62.50 99.68 95.88 99.84 93.38 100.00

OA 70.99 85.75 76.42 75.02 85.07 79.24 86.15 86.98
AA 59.07 80.12 73.19 80.48 89.92 78.87 83.51 90.39

kappa 63.95 80.68 67.42 59.69 79.80 71.46 82.65 82.37

4.4. Results for the Salinas Scene Data Set

To describe the comparison results, the quantitative comparison of OA of different DR methods
when HD = 20 is summarized in Table 5. The results include the overall accuracy and kappa coefficients
of each method, and each result is an average of the results of 10 runs with the associated standard
deviation. As can be seen in Table 5, the classification results (OA and kappa) produced by ISS-WME
are the best in most cases. In addition, it can be seen in Table 6 that ISS-WME obtained the best
classification accuracy about 12 classes, and the best results of the indexes are shown in bold. Moreover,
the results of three classes are the same as the WLE-LLE algorithm.



Sensors 2020, 20, 4413 20 of 25

Table 5. Results of the different DR methods for the Salinas scene data set (HD = 20).

Samples Classifier Index RAW PCA Isomap LLE LE SSSE WLE-LLE ISS-WME

2%
KNN

OA 75.23 ± 1.64 75.98 ± 2.90 76.52 ± 2.20 82.56 ± 2.81 78.56 ± 1.27 80.12 ± 1.10 81.53 ± 1.47 82.67 ± 1.43
Kappa 59.89 ± 1.23 65.12 ± 1.49 63.29 ± 3.13 72.69 ± 2.94 65.23 ± 1.17 69.96 ± 1.22 70.69 ± 2.29 69.12 ± 1.96

SVM
OA 63.34 ± 1.13 75.12 ± 2.18 78.22 ± 3.22 89.23 ± 2.42 86.23 ± 1.72 86.23 ± 1.88 88.93 ± 0.83 88.53 ± 1.23

Kappa 50.96 ± 2.96 64.36 ± 1.60 69.35 ± 4.61 79.96 ± 1.71 75.69 ± 2.66 74.15 ± 1.03 80.63 ± 1.53 75.63 ± 1.56

4%
KNN

OA 78.20 ± 1.86 76.52 ± 1.23 75.89 ± 1.66 83.63 ± 1.76 79.23 ± 1.70 81.23 ± 1.33 83.56 ± 1.16 83.84 ± 1.51
Kappa 60.93 ± 2.06 64.78 ± 1.48 63.25 ± 1.85 72.56 ± 1.45 66.36 ± 1.84 70.36 ± 1.27 72.12 ± 2.05 70.34 ± 1.09

SVM
OA 66.47 ± 1.51 77.25 ± 1.54 79.94 ± 2.43 89.38 ± 2.94 88.23 ± 1.71 89.23 ± 1.88 88.99 ± 1.06 90.22 ± 0.99

Kappa 55.63 ± 2.19 65.23 ± 1.51 67.89 ± 4.03 78.96 ± 3.44 75.63 ± 1.85 75.63 ± 1.74 80.34 ± 1.29 80.95 ± 1.16

6%
KNN

OA 78.91 ± 1.39 76.23 ± 1.18 78.59 ± 1.83 85.26 ± 2.37 80.23 ± 2.29 83.23 ± 2.39 85.13 ± 1.23 85.02 ± 1.64
Kappa 62.36 ± 2.80 63.63 ± 2.63 62.56 ± 1.96 74.23 ± 2.44 69.36 ± 2.42 70.32 ± 3.28 73.25 ± 1.78 72.76 ± 1.64

SVM
OA 68.01 ± 1.27 77.56 ± 1.84 80.49 ± 1.86 91.61 ± 2.32 89.56 ± 1.86 90.12 ± 2.26 89.96 ± 1.29 91.90 ± 1.29

Kappa 59.13 ± 1.61 68.96 ± 1.20 72.06 ± 1.78 80.65 ± 2.49 77.96 ± 1.71 76.12 ± 2.48 78.92 ± 1.63 82.56 ± 1.68

8%
KNN

OA 78.82 ± 1.51 76.63 ± 1.36 81.56 ± 1.89 85.96 ± 1.23 81.63 ± 2.16 84.63 ± 2.25 85.17 ± 1.31 86.23 ± 1.19
Kappa 65.34 ± 1.83 63.59 ± 1.54 65.75 ± 2.61 75.26 ± 1.38 70.23 ± 1.23 72.12 ± 2.55 73.69 ± 1.54 73.79 ± 1.28

SVM
OA 68.96 ± 2.22 77.96 ± 1.87 81.20 ± 2.55 91.92 ± 3.21 90.05 ± 1.30 88.96 ± 1.73 89.69 ± 1.30 91.16 ± 1.04

Kappa 57.69 ± 2.46 65.36 ± 2.23 73.96 ± 3.72 79.86 ± 3.29 81.02 ± 1.42 78.02 ± 1.64 76.08 ± 1.23 80.20 ± 1.55

10%
KNN

OA 80.21 ± 1.18 77.69 ± 1.47 84.72 ± 1.56 86.95 ± 0.95 81.23 ± 1.72 85.23 ± 1.73 86.33 ± 1.46 86.78 ± 1.72
Kappa 68.23 ± 1.46 65.26 ± 2.00 69.89 ± 2.24 67.36 ± 1.43 71.53 ± 2.02 72.36 ± 2.84 76.11 ± 1.69 72.19 ± 1.02

SVM
OA 69.13 ± 1.21 79.02 ± 2.29 80.99 ± 0.65 92.16 ± 2.73 89.92 ± 2.18 90.13 ± 1.20 90.57 ± 1.24 92.19 ± 1.02

Kappa 58.63 ± 1.09 68.32 ± 2.77 79.63 ± 2.19 81.96 ± 2.86 78.69 ± 1.91 76.98 ± 1.40 82.65 ± 1.93 84.23 ± 1.62
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Table 6. Results of each class of samples in different DR methods for the Salinas scene data set
(HD = 20).

Class
Sample DR+SVM Classifier (%)

Train Test RAW PCA Isomap LLE LE SSSE WLE-LLE ISS-WME

Brocoil_green_weeds_1 201 1808 91.26 93.14 99.34 96.68 99.23 98.23 99.56 98.01
Brocoil_green_weeds_2 373 3353 99.22 99.28 99.88 95.53 99.64 91.65 99.88 99.88

Fallow 198 1778 61.75 81.33 94.60 93.59 99.52 96.29 99.78 93.36
Fallow_rough_plow 139 1255 96.49 97.29 97.63 95.37 98.34 97.61 99.36 99.20

Fallow_smooth 268 2410 80.00 83.24 97.42 83.65 99.88 89.46 98.34 98.34
Stubble 396 3563 95.29 96.07 94.50 86.59 99.94 94.39 100.00 99.94
Celery 358 3221 97.21 89.67 90.18 88.33 88.62 98.63 99.44 99.75

Grapes_untrained 113 11158 75.75 83.28 88.86 83.59 97.82 87.38 84.27 99.48
Soil_vinyard_develop 620 5583 98.64 90.69 99.25 97.13 94.58 94.75 99.86 99.89

Corn_senesced_green_weed 328 2950 83.12 84.61 93.42 95.25 96.20 98.31 99.17 99.17
Lettuce_romaine_4wk 107 961 10.19 81.50 97.30 83.58 92.77 89.81 91.89 99.77
Lettuce_romaine_5wk 193 1734 90.26 92.17 99.88 91.47 98.79 94.23 96.77 99.77
Lettuce_romaine_6wk 92 824 94.90 97.57 98.06 92.73 90.23 97.09 98.06 98.79
Lettuce_romaine_7wk 107 963 78.17 99.38 97.77 89.81 58.45 94.39 92.52 92.72

Vinyard_untrained 727 6541 41.36 54.32 64.72 56.23 58.45 66.73 57.11 67.25
Vinyard_vertical_trellis 181 1626 87.71 98.40 98.65 98.53 97.26 97.54 96.65 98.77

OA 69.13 79.02 80.99 92.16 89.92 90.13 90.57 92.19
AA 80.08 88.87 94.47 89.25 91.86 92.91 94.54 96.51

kappa 58.63 68.32 79.63 81.96 78.69 76.98 82.65 84.23

Table 5 provides the number of training and test samples for each class in the Salinas scene data
set in the experiment, as well as the classification results under the SVM classifier using different
dimensionality reduction methods. Compared with Table 5, the classification accuracy (CA) is displayed
in Table 6, where the best results are shown in bold numbers. And the visual representation of different
dimensional reduction methods of Salinas data set is supplemented in the Appendix A.

5. Conclusions

In this paper, a dimensionality reduction method combining the manifold structure of
high-dimensional data with a linear nearest neighbor relationship was proposed. The method
aimed to keep the data nearest neighbor relationship unchanged when the high-dimensional data were
projecting to the low-dimensional space. Furthermore, the manifold structure of the data combined
the spatial–spectral distance and structural features. To fully verify the superiority of the proposed
method, the data obtained by the ISS-WME method and the six other dimensionality reduction
methods were classified by two common classifiers. The results of several experiments show that the
ISS-WME algorithm improves the ground object recognition ability of hyperspectral data, and the
OA and kappa coefficients also support this conclusion. In the future, the dimensionality reduction
labeling will be further considered to improve the classification effect through the framework of
semi-supervised learning.
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