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Simple Summary: We reviewed characterization and the role of DNAs derived from extracellular
vesicles focusing on its use for identifying biomarkers. Extracellular vesicles contain double-stranded
genomic DNA reflecting the mutational status and methylation profile of the parental tumor cells.
Many studies demonstrated higher stability, sensitivity, and specificity of extracellular vesicle DNAs
in comparison to cell-free DNAs, demonstrating a high potential for clinical application as a source
for liquid biopsy. Moreover, the horizontally transfer ability of extracellular vesicle DNAs could be
utilized in therapeutics.

Abstract: Extracellular vesicles (EVs) carry RNA, proteins, lipids, and diverse biomolecules for
intercellular communication. Recent studies have reported that EVs contain double-stranded DNA
(dsDNA) and oncogenic mutant DNA. The advantage of EV-derived DNA (EV DNA) over cell-free
DNA (cfDNA) is the stability achieved through the encapsulation in the lipid bilayer of EVs, which
protects EV DNA from degradation by external factors. The existence of DNA and its stability make
EVs a useful source of biomarkers. However, fundamental research on EV DNA remains limited, and
many aspects of EV DNA are poorly understood. This review examines the known characteristics of
EV DNA, biogenesis of DNA-containing EVs, methylation, and next-generation sequencing (NGS)
analysis using EV DNA for biomarker detection. On the basis of this knowledge, this review explores
how EV DNA can be incorporated into diagnosis and prognosis in clinical settings, as well as gene
transfer of EV DNA and its therapeutic potential.

Keywords: extracellular vesicle; exosome; microvesicle; EV DNA; liquid biopsy; next-generation
sequencing; methylation; gene transfer

1. Introduction

In light of recent developments in targeted therapies [1], immunotherapies [2], and
precision medicine [3], the importance of liquid biopsy for detecting cancer DNA and
biomarkers has become obvious [4]. Liquid biopsy can utilize all fluids produced by
humans, such as blood [5], urine [6], saliva [7], cerebrospinal fluid [8], ascites [9], and
pleural effusion [10]. Currently, blood biopsy is the most frequently utilized diagnostic
method for almost all cancers [11]; however, sensitivity can be increased by using specific
liquid samples that are related to specific cancers [12], for example, the urine for bladder
cancer [13], saliva for head and neck cancer [14], and bronchoalveolar lavage fluid (BALF)
for lung cancers [15]. For liquid biopsy, the cell-free nucleic acids (cfNA), circulating tumor
cells (CTCs), and extracellular vesicles (EVs) that exist in these specimens are isolated using
high-tech equipment, and the isolated materials are further analyzed using next-generation
sequencing (NGS), real-time PCR, digital PCR, and/or bioinformatics (BI) for the screening
and early detection of cancer [16,17]. Furthermore, the information can be helpful in
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deciding a targeted therapy as a companion diagnostic and in the monitoring of treatment
response, drug resistance, recurrence, and metastasis [18–21].

EVs, a diverse population of biological particles with sizes ranging from approximately
30 to 1000 nm, emerged into the spotlight as an important source for liquid biopsy [22–25].
The characteristics of EVs include the representation of their original host through their
cargo, showing their potential as biomarkers [15,26], and through the transfer of cellular
components between cells [27,28]. Depending on their origin, biogenesis, and size, EVs
are categorized into exosomes, microvesicles, microparticles, and apoptotic bodies [29,30].
However, the term EV is more commonly used in a broader sense, as isolating one specific
subcategory remains technically difficult [31].

Early studies have found that EVs are more abundantly shed by cancer cells than
normal cells [32]. The same pattern was observed in the plasma of ovarian cancer [33] and
non-small-cell lung cancer (NSCLC) patients [34]. EVs carry RNA, DNA, proteins, lipids,
and diverse bioactive materials [29]. Initially, studies were predominantly focused on EV
RNAs; however, recently, EV-derived DNA (EV DNA) has garnered attention. EV DNAs
largely consist of large genomic DNA (gDNA) and tumor-specific oncogenic mutant DNA,
unlike fragmented cell-free DNA (cfDNA) [15,35,36]. Plasma cfDNA has been the go-to
biomarker for diagnosis and prognosis by liquid biopsy because of its easy obtainability;
however, the low sensitivity of this approach, because of the short half-life of plasma
cfDNA, poses a challenge in its application [37,38]. In contrast, the structural stability of
EVs renders EV DNA a more ideal subject than free-floating cfDNA, as the lipid bilayer of
EVs protects EV DNA from degradation by external factors [39]. Recent publications in
NGS studies have demonstrated that EV DNA can serve as a good cancer biomarker [40,41].
This review summarizes the current state of understanding of the traits of EV DNA, the
DNA loading mechanism, and the application of EV DNA to NGS.

2. History of Extracellular Vesicles

Before the first publication that identified and used the term microvesicles in 1975
by Dalton AJ [42], the existence of EVs and their functions were recognized early in
several studies, including studies on thromboplastic protein [43], platelet dust [44], and
globules [45]. The description and properties of EVs were determined primarily using
ultracentrifugation, electron microscopy (EM), and functional studies. Chargaff E. and
West R. [43], in 1946, showed that high-speed centrifugation at 31,000× g for 150 min signif-
icantly extended the clotting time of the supernatant. Wolf P [44] visualized small vesicles
originating from platelets and termed them “platelet dust” using electron microscopy,
while Bonucci E [45] observed the calcifying property of EVs in the bone matrix.

By the 1980s, the shedding of EVs by tumor cells [46] and EV formation during
reticulocyte maturation were recognized, and these vesicles were named exosomes [47,48],
advancing the understanding of EV release. Researchers began identifying the contents
and functions of EVs, beginning with the study by Ceccarini Met al. [49] in the late 1980s,
which identified RNA-containing EVs, and a study in the 1990s that demonstrated immune
cells secreting antigen-presenting EVs, which implied a transfer of information between
cells [50].

In the 2000s, studies reported that EVs containing RNAs such as mRNA and mi-
croRNA have the ability to be transferred from cell to cell [51,52]. The identification of
DNA associated with EVs and their possible functions began relatively early, with reports
on EV and DNA binding in 1979 [53], resistance of the EV–DNA complex to DNase, and
transfer of DNA via EVs in bacteria in 1982 [54]. Subsequently, through studies that showed
the ability of EVs to transport their DNA cargo into host cells [55,56], others have reported
that double-stranded DNA (dsDNA) in exosomes can be used as a biomarker in cancer
detection [26,57].

Following the identification of EVs as carriers of DNA, RNA, and protein, the literature
on EVs expanded substantially, with considerable attention given to the protein and RNA
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cargos. More recently, EV DNA, another important EV biomolecule, has emerged as a
relevant and valuable material for cancer biology.

3. Characteristics of Extracellular Vesicle-Derived DNA

EVs exist in various forms, such as single vesicles, double vesicles, double-membrane
vesicles, and multilayer vesicles [58,59]. EV DNAs exist in both single strand [60] and
double-strand forms [61,62], along with the nuclear protein histone [63], enclosed in EVs
(Figure 1). The presence of dsDNA in single vesicles and multilayer vesicles was observed
using immuno-EM (Figure 2). Genomic DNA, mitochondrial DNA (mtDNA), and plasmid
DNA have all been identified inside exosomes, microvesicles, and apoptotic bodies [63–68].
Apart from DNA enclosed within EV, it can be attached to the outer surface of EV, or
both [35,63,64,69] (Figure 1). EV DNA can be detected in almost all body fluids, including
the blood [57], urine [70], saliva [71], pleural effusion [10], BALF [15], ascites [72], and
gastric juice [73] (Figure 3). The presence of dsDNA in EVs is well established; however,
some reports have suggested that exosomes do not carry DNA [74]. This inconsistency
in the results on the presence and absence of DNA can be attributed to the preparation
method and size of the isolated EVs. If the isolation method is too rigorous, it may cause
the loss of DNA-containing vesicles, leading to low DNA detection [75]. DNA is unlikely to
exist inside an EV in the naked form; it exists in a nucleosome or supercoiled form, which
would enable the packaging of large dsDNA into EVs such as oncosomes. In addition,
considering that the size of the nucleosome is 11 nm [76], it is reasonable to assume that long
dsDNA would likely not be present in EVs smaller than 50 nm in diameter. Several studies
have utilized immuno-EM with anti-dsDNA to evaluate EVs isolated using size-based
methods, and have identified them as exosomes [26,77]; basing the identification only on
size (smaller than 200 nm) may not be correct. In a 2017 study by Takahashi et al. [78], DNA
was observed in intraluminal vesicles (ILVs) inside multivesicular endosomes (MVEs) and
not exosomes. Therefore, the presence of DNA in excreted exosomes remains controversial
and will continue to be controversial until the development of a method for isolating pure
exosomes or microvesicles.

Figure 1. Characterization of DNA-loaded EVs. (A) DNA can be enclosed within EVs, (B) attached to the outer surface of
EV, or (C) enclosed and attached to the outer surface. EV—extracellular vesicle.
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Figure 2. Detection of dsDNA in BALF EVs using immuno-EM. (A) Single vesicle and (B) multilayer
vesicle. The solid black dots indicate DNA (indicated by red arrows). dsDNA—double-stranded
DNA; BALF—bronchoalveolar lavage fluid; EV—extracellular vesicle; EM—electron microscopy.

Figure 3. Body fluids as a source of DNA derived from EV. EV—extracellular vesicle; BALF—
bronchoalveolar lavage fluid.

Nonetheless, it is clear that DNA extracted from all categories of EVs is the latest and
most promising biomarker for identifying tumor presence and complexity [79,80]. The
size of dsDNA found in EVs ranges from ~100 bp to ~20 kbp [79], which can represent the
entire genome and reflect the mutational status of tumor parental cells [15,26,81]. The EV
nucleic acid (EV NA) population includes DNA and RNA of mutant or wild-type, and from
this population, the target biomarker EV NA is detected more efficiently [82]. In addition,
not using DNase in the DNA extraction process would increase the overall detection of
mutant DNA, as this would include mutants from EV DNA and residual cfDNA in the
sample [83–85].
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Different studies and research teams have used various methods of EV isolation and
DNA extraction that could impact DNA extraction efficiency. According to one study,
adding polyethylene glycol improved general EV DNA isolation [86]. Additionally, the
development of a microfluidic platform demonstrated that a new method can be used
to successfully isolate EV DNA and monitor the residual or recurrent tumor presence in
pancreatic cancer [87].

4. Extracellular Vesicle-Derived DNA Stability and Mutant Detection

EVs have been proven to increase the stability of their contents by protecting them
from digestive enzymes and other biological fluids until the contents reach their target;
hence, they play a role in enhancing the availability of bioactive compounds. [88,89].
Osteikoetxea X et al. [90] showed that EVs are resistant to detergent lysis owing to a liquid-
ordered phase membrane. The stability of EVs extends beyond the isolation process, as
they are in their optimal state even after isolation, as demonstrated by several studies.
Isolated EVs can be safely stored for up to one year at temperatures below −80 ◦C with
no coagulation [91,92] and up to 3 months at −0 ◦C [93]. In addition, almost all types of
exosomes contained in biofluids can be stored for up to 5 days at 4 ◦C in a glass bottle [91].
Kumeda et al. [94] showed that the integrity of isolated exosomes was stable for up to
20 months when stored at 4 ◦C and 28 days when stored at 4 ◦C as whole saliva.

Moreover, the EV DNA from the serum remained stable for 1 week at 4 ◦C, 1 day
at room temperature, and even after repeated freeze−thaw cycles [39]. In contrast, free-
floating and circulating DNAs in body fluids, cfDNAs, undergo non-specific degrada-
tion [37,38]. The stability and abundance of EV DNA make it a good source for highly
sensitive detection of DNA mutations by liquid biopsy [10,15,95–97]. EGFR genotyping
using EV DNA derived from pleural effusion in lung cancer is a good example. Com-
pared with cfDNA liquid biopsy and tissue genotyping, EV DNA genotyping resulted in
100% agreement in EGFR-tyrosine kinase inhibitor (TKI)-naïve patients. When detecting a
biomarker EGFR mutation for EGFR-TKI resistance, T790M, using EV DNA even surpassed
cell blocks or cfDNA in detection sensitivity [10]. In another study, the sensitivity and speci-
ficity of BALF EV-based EGFR genotyping were high and showed an even better mutation
detection rate than tissue- or cytology-based typing of patients with lung cancer [98].

Collectively, these results show the stability and sensitivity of EV DNA-based geno-
typing and demonstrate that the highly promising liquid biopsy method is particularly
efficient for patients that require repeated diagnosis throughout the disease progression.
However, one must not forget that although EVs and their DNAs are stable, the structural
and physicochemical properties could change because of several external factors such as
pressure, freeze−thaw cycles, nature of the solvent, and storage duration [88].

5. Methylation of Extracellular Vesicle-Derived DNA

Apart from tumor-specific changes in its sequence, tumor DNA exhibits distinctive
epigenetic marks and changes in DNA methylation [99]. Analysis of specific patterns of
DNA methylation is attracting attention as a potential biomarker for the detection and
diagnosis of diseases such as cancer [100,101]. Several studies have evaluated the methy-
lation of EV DNA and demonstrated similarities in methylation profiles between gDNA
and EV DNA in murine melanoma cells [26]; the gastric juice in patients with gastric can-
cer [73,102]; and the serum in patients with breast cancer and melanoma [103], metastatic
castration-resistant prostate cancer [104], diffuse large B-cell lymphoma [105], and glioblas-
toma [106] (Table 1). These studies have revealed differences in the methylation of cancer
cells and normal cells, and suggested methylation as a biomarker. Specifically, studies in
patients with gastric cancer demonstrated methylation in SOX17 [73] and BARHL2 with a
high sensitivity and specificity [102]. EV DNA purified from the serum of patients with
breast cancer and melanoma cancer was hypomethylated compared with that from normal
patients [103]. In addition, the significant genes in metastatic castration-resistant prostate
cancer, GSTP1, RASSF1A, and SLFN11, were identified to be DNA methylated in both CTCs
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and exosomes [104]. In the case of diffuse large B-cell lymphoma, the promoter regions of
CDKN2A and CDKN2B were determined to be methylated in both plasma exosomes and
primary tumor tissue [105]. A study on glioblastoma demonstrated that EVs with an origin
close to their corresponding cells are more likely to correctly identify the methylation class
of the parental cells and original tumors [106].

Table 1. Summary of methylation analysis performed with EV DNA.

Source of EV (Sample Size) EV Type (Size) Isolation Method of EV Methylation Analysis (Gene) Reference

Murine melanoma cell B16-F10 Exosome Differential ultracentrifugation
and filtration Dot blot analysis [26]

Gastric juice from patients with
gastric cancer (n = 20) Exosome (30–100 nm) ExoQuick-TC Bisulfite pyrosequencing

(SOX17) [73]

Gastric juice, gastric cancer
(n = 20), and non-gastric cancer

(n = 10)
Exosome ExoQuick-TC Bisulfite pyrosequencing

(BARHL2) [102]

Serum; normal (n = 7), breast
cancer (n = 5), and melanoma

(n = 4)
EV (30–250 nm) Total Exosome isolation

reagent

ELISA-based global DNA
methylation analysis and

microelectrode device
[103]

Saliva from patients with gingivitis
(n = 7) and healthy individuals

(n = 5)
Small EV (<200 nm)

Differential ultracentrifugation
and filtration or size exclusion

chromatography

Quantitative
methylation-specific PCR

(IL−6, TNF-α, IL−1β, IL−8,
and IL−10)

[71]

Plasma from patients with prostate
cancer (n = 62) and healthy

individuals (n = 10)
Exosome exoRNeasy Maxi kit

Real-time methylation-specific
PCR (GSTP1, RASSF1A, and

SLFN11)
[104]

Plasma from patients with
lymphoma (n = 21) and healthy

individuals (n = 21)
Exosome (40–120 nm) Differential ultracentrifugation

and filtration

Methylation-specific PCR
(CDKN1A, CDKN1B, CDKN2A,

and CDKN2B) or dot blot
analysis

[105]

Glioblastoma stem-like cell (n = 8) EV
Differential ultracentrifugation
and filtration or size exclusion

chromatography

Infinium methylation EPIC
arrays [106]

Saliva from patients with gingivitis
(n = 7) and periodontitis (n = 8)
and healthy individuals (n = 7)

Small EV (<200 nm) Size exclusion
chromatography

Global DNA methylation
assay [107]

EV—extracellular vesicle; EV DNA—EV-derived DNA.

Gingivitis-related methylation has been evaluated using ultracentrifugation and size
exclusion chromatography for EV DNA derived from the saliva; no significant difference
was observed between the healthy and gingivitis samples [71]. In another study on gingivi-
tis and periodontitis, periodontitis-associated EV DNA exhibited significantly increased
global 5-methylcytosine (5mC) and N6-methyl-2’-deoxyadenosine (m6dA) modification
in the DNA, while the gDNA showed no difference between the gingivitis and normal
samples [107].

These findings suggest that the methylation analysis of EV DNA can serve as a useful
biomarker for the detection of various diseases, especially in the diagnosis of cancer.
However, the source of EV DNA, sample collection, DNA extraction method, and the type
of disease appear to affect methylation detection.

6. Mechanism of DNA Loading onto EV and Transfer of EV-Derived DNA

Several functional reasons have been suggested for the loading of DNA onto EVs. For
instance, cells can excrete harmful cytoplasmic DNA using EVs containing chromosome
fragments to maintain cellular homeostasis and prevent viral hijacking of the cellular
machinery [78]. In normal cells, gDNA is mainly confined to the cell nucleus, and gDNA
generally does not interact with the cytoplasmic multivesicular bodies (MVB) that produce
exosomes [78]. Conversely, EVs contain gDNA and nuclear proteins [72], as well as
contents associated with cell senescence and stimulation of the STING inflammatory
pathway [78]. The inhibition of exosome secretion results in the accumulation of nuclear
DNA in the cytoplasm, thereby activating the cytoplasmic DNA-sensing machinery [78].
The detection of gDNA predominantly in EVs derived from cancer cells rather than healthy
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cells could be caused by the loading of nuclear components, including micronuclei, into
EVs [72]. Although this phenomenon is relatively well known, the mechanisms remain
poorly understood.

To confirm the presence and quantify the amount of gDNA in exosomes, tetraspanins
are most often used as protein markers for sorting out exosomes, and dsDNA-binding dye
is used for quantifying the percentage of DNA-positive exosomes [72]. A previous study
illustrated the involvement of micronuclei—extra-nuclear bodies that contain damaged
chromosome fragments or whole chromosomes generated when the cell nucleus fails to
properly segregate nuclear material. This result shows that micronucleus-originated DNA
are loaded into exosomes through a CD63-mediated DNA shuttle. They knocked down
CD63 in ovarian cancer cells, which prevented the loading of micronucleus-originated DNA
into exosomes [72]. An earlier study suggested another pathway involving the depletion of
the nuclear envelope protein emerin, a well-known feature of cancer, which causes nuclear
shape instability and shedding of nuclear-derived EVs that contain genomic material as
a possible EV DNA-loading mechanism [108] (Figure 4). In addition, the biogenesis of
oncogenes containing EVs in brain tumor cells may be independent of Rb/TP53 and acid
sphingomyelinase (ASMase) pathways [62], both of which are vesiculation pathways of
exosomes [109] and microvesicle biogenesis [110], respectively.

Figure 4. DNA loading into EVs via various mechanisms. DNA can be loaded into EVs through a CD63-mediated DNA
shuttle or emerin-mediated nucleus instability and shedding. Other possible unknown mechanisms could include the
loading of cytosolic DNA that originated from the nucleus and mitochondria by oxidative stress. EV—extracellular vesicle.

An additional possibility is the loading of DNA into tumor-derived exosomes in a
manner similar to the mechanism of early vital NETosis, a form of neutrophil-specific cell
death characterized by the expulsion of DNA that forms web-like structures referred to as
neutrophil extracellular traps (NETs) against bacterial infection [111]. The mechanisms of
dsDNA loading onto EVs and the secretion of EVs appear to be similar to the loading and
secretion of virus dsDNA via EVs [112,113].
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One of the functions of EVs is the transmission of signals from donors, provid-
ing a mechanism that can directly alter signaling in the recipient cell, leading to the
exchange of complex information [114,115]. Although EVs vary in size, composition, and
abundance, they often contain functional transmembrane proteins, lipids, mRNAs, and
microRNAs [30,116]. Several reports have raised doubts about the direct loading of nucleic
acids into EVs and their functionality when taken up by recipient cells. These studies
showed that siRNA transfection into EVs by electroporation induces the formation of
insoluble siRNA aggregates [117], and EVs loaded with plasmid DNAs by electroporation
delivered DNA to recipient cells; however, they were not functionally active [118]. In addi-
tion, testing with human embryonic kidney cell-derived exosomes, transfected mRNAs,
siRNAs, and plasmid DNA failed to induce or downregulate the protein expression in
recipient cells [119].

Conversely, many recent studies have shown EV-mediated intercellular communi-
cation by horizontal gene transfer (HGT) with pre-existing mutations, demonstrating
that EV DNAs are functional when transferred to recipient cells [120] (Table 2). Recipi-
ent cells receive genes through the fusion or internalization of EVs, and the biomaterial
contents of EVs are transported into the nuclear compartment through nuclear envelope
invagination-associated late endosomes [121,122]. This would require interactions between
tumor cells and the microenvironment, including the composite of heterogeneous cells
that populate the tumor. According to previous reports, other types of EVs can mediate
ssDNA and dsDNA transfers. Most intercellular transfer of oncogenic DNA has been
attributed to the uptake of exosomes, microvesicles, and apoptotic bodies [60,62,123]. For
example, integrated viral genes are horizontally transferred by the uptake of DNA from
apoptotic bodies [124]. Tumor DNA is horizontally transferred by the uptake of apoptotic
bodies. The phagocytosis of apoptotic bodies derived from oncogenic H-ras- and human
c-myc-transfected rat fibroblasts resulted in the development of a tumorigenic phenotype
in mouse cells undergoing malignant transformation. The DNA transfer was confirmed by
fluorescence in situ hybridization analysis, which showed the presence of donor DNA in
the recipient cells [123]. A study demonstrated that donor cell EV gDNA can be transferred
to recipient cells, and it can increase the mRNA and protein expression and even change
function. Moreover, the transferred EV gDNA has pathophysiological significance, as a
BCR/ABL hybrid gene involved in the pathogenesis of leukemia could be transferred
from leukemia cells to human embryonic kidney cells or neutrophils through EVs [61].
Another study showed that the human H-ras oncogene in rat epithelial cells increased the
production of EVs, which can be transiently transferred to recipient cells, increasing the
recipient-cell proliferation [62]. In addition, mouse cardiomyocyte EV DNA transfer into
target fibroblasts was proven, where DNA stains were observed in the fibroblast cytosol
and nucleus. A total of 333 gene expressions were altered in the fibroblasts transfected
with EVs [125].

Bacterial outer membrane vesicles (OMVs) can deliver DNA to other bacteria over
long distances [55]. OMVs even have the ability to deliver DNA into other species of
bacteria and eukaryotic host cells [56]. A study using bone marrow-derived mesenchymal
stromal cells (MSCs) and foreign DNA of Arabidopsis thaliana demonstrated that EVs
were capable of HGT between MSCs [126]. Furthermore, in patients with breast cancer,
cancer-associated fibroblasts (CAFs) package mtDNA into EVs, which can contribute to the
upregulation of mitochondrial genes required for oxidative phosphorylation when taken
up by hormone therapy (HT)-resistant breast cancer cells. Specifically, the treatment of
HT-naive cells or HT-treated metabolically dormant cells with CAF-derived EVs harboring
mtDNA promoted an escape from metabolic quiescence and the development of drug
resistance both in vitro and in vivo [127]. This shows that EV-mediated HGT was not
limited to gDNA. The first study exploring the mechanism of HGT by exosomes suggests
that HGT occurs in double-strand break repair through genome editing [128]. These
results suggest that the EV-mediated lateral transfer of DNA between eukaryotic cells may
result in aneuploidy and the accumulation of genetic factors, leading to tumor formation,
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which is a driving force behind mammalian genome evolution. Further investigation
into the molecular mechanisms of EV-DNA-mediated gene transformation could open up
several opportunities for cancer biology and therapeutics, and warn us of new risks for the
leading-edge technology.

Table 2. Research on the transfer of EV DNA.

Donor Cells Recipient Cells EV Type (Size) Isolation
Method of EV

Method of EV
Transfer

Effect of EV DNA
Transfer Reference

EBV-carrying
transformed

lymphoid cells

Human fibroblast,
macrophage, or

bovine aortic
endothelial cell

Apoptotic body Co-culture
EBV-DNA and gDNA

transfer to recipient cells
via apoptotic bodies

[124]

H-ras and c-myc
transformed rat

embryonic
fibroblasts

Mouse embryonic
fibroblast Apoptotic body Co-culture

Oncogenes of donor cell
(H-ras and c-myc) cause
transformation of the

recipient cells via
apoptotic bodies

[123]

Mouse
cardiomyocytes

HL-1

Fibroblasts NIH
3T3 Microvesicle Differential ultra-

centrifugation

Incubation of
fibroblasts with

EV

EV DNA transfer to
fibroblasts [125]

AT1 receptor
transfected

HEK293 cells or
VSMC or

leukemia cells,
K562

HEK293 or
human

neutrophil
EV (30–1000 nm) Differential ultra-

centrifugation

Incubation of
HEK293 or

human
neutrophils with

EVs

AT1 receptor or BCR/ABL
hybrid gene transfer via

EV and expression on
recipient cells

[61]

H-ras
transformed rat
epithelial cells,

RAS-3

Rat fibroblasts
RAT-1 EV (100 nm)

Differential ultra-
centrifugation
and filtration

Incubation of
fibroblasts with

EVs

Transfer of oncogenes of
donor cells to recipient

cells via EV
[62]

Arabidopsis
thaliana-plasmid-

transduced
hMSC

hMSC Small EV
(50–150 nm)

Differential ultra-
centrifugation

Incubation of
hMSC with EVs

Horizontal plant DNA
transfer to eukaryotic cells

via EV
[126]

Pseudomonas
aeruginosa

Human
adenocarcinoma

A549
OMV (~20 nm)

Differential ultra-
centrifugation,
filtration, and

density gradient
ultracentrifuga-

tion

Incubation of
lung epithelial

cells with OMV

OMV-derived DNA is
detected in the nuclear

fraction of epithelial cell
[56]

Murine
cancer-associated
fibroblasts from

xenograft

Hormonal
therapy-naïve

breast cancer cell
EV (~140 nm) Differential ultra-

centrifugation

Injecting mCAF
EV into

tumor-bearing
mouse or

incubation of
breast cancer cells

with EV

Transfer of therapy
resistance to

therapy-sensitive cells via
mtDNA from EV in vivo

and in vitro

[127]

EV—extracellular vesicle; EV DNA—EV-derived DNA; EBV—Epstein-Barr virus; VSMC—vascular smooth muscle cells; hMSC—human
mesenchymal stem cell; OMV—outer membrane vesicles; mCAF—murine cancer-associated fibroblasts; mtDNA—mitochondrial DNA.

7. NGS Analysis Using Extracellular Vesicle-Derived DNA

In 2014, three independent studies profiled dsDNA isolated from EVs using NGS,
verifying the possibility for clinical use for the first time [26,57,62]. Since then, several
research groups have performed whole-genome sequencing (WGS), whole-exome sequenc-
ing (WES), and targeted NGS for the last seven years (Table 3). The revolutionary finding
that EVs contain protected dsDNA opened new opportunities for their application as a
more concentrated and better-preserved source of cancer-derived genomic material, as an
alternative to cfDNA [129]. Moreover, EVs contain gDNA originating from long dsDNA,
and NGS analysis is possible without the need for deep sequencing or barcoding NGS [41].
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Table 3. Summary of NGS analysis performed with EV DNA.

NGS Type Source of EV (Sample
Size) EV Type (Size) Isolation Method

of EV
Mean
Depth

Subjects of
Comparison

Number of
Targeted

Genes
Reference

WGS Plasma of healthy
humans (n = 30) EV Differential

ultracentrifugation [61]

WGS
Serum of patients with
pancreatic cancer (n =

2)
Exosome

Differential
ultracentrifugation

and filtration
4×

CNV of tumor
DNA and
exoDNA

[57]

WGS Murine melanoma cells,
B16-F10 Exosome

Differential
ultracentrifugation

and filtration

CNV of
exoDNA [26]

WGS

Human H-ras
transformed rat

intestinal epithelial
cells, RAS-3

EV (100 nm)
Differential

ultracentrifugation
and filtration

~7× CNV of EV
DNA [62]

WGS

Pleural effusion (n = 1)
and plasma (n = 2) of

patients with
pancreaticobiliary

cancer

Exosome
Differential

ultracentrifugation
and filtration

12–35×

CNV, SNV,
gene fusions,

and mutational
signature of
tumor DNA
(tissue) and

exoDNA

[40]

WGS
Human bone

marrow-derived MSC
(n = 2)

Small EV
(50–150 nm)

Differential
ultracentrifugation

CNV of EV
DNA [126]

WGS
Malaria

parasite-infected
human red blood cells

EV
(50–350 nm)

Differential
ultracentrifugation,

filtration, and
density gradient

ultracentrifugation

CNV of
malaria gDNA
and EV DNA

[130]

WGS Human fibroblasts,
TIG-3 Exosome

Differential
ultracentrifugation,

filtration, and
density gradient

ultracentrifugation

RPKM of
genomic DNA
and EV DNA

[78]

WGS
Urine of patients with

urothelial bladder
carcinoma (n = 9)

Exosome ExoQuick-TC 0.6×

CNV of tumor
DNA and

urinary DNA
(cfDNA and

exoDNA)

[70]

WGS

Serum of patients with
pheochromocytoma
and paragangliomas
and rat cells, PC12

Exosome Differential
ultracentrifugation

SNP of tumor
DNA and
exoDNA

[131]

WGS Human prostate cancer
cells, PC3

Large EV
(1.0–5.5 µm)

Differential
ultracentrifugation

and density
gradient

ultracentrifugation

~1.4×

CNV and
genomic rear-
rangements of
gDNA and EV

DNA

[35]

WGS

Human
erythroleukemic cells,
TF-1, and mast cells,

HMC-1

Small EV
(~120 nm)

Differential
ultracentrifugation

and density
gradient

ultracentrifugation

9.25–
15.88 ×

CNV of EV
DNA [63]

WGS

Plasma and ascites of
patients with ovarian

cancer (n = 3) and
human ovarian cancer

cells, OVCAR-5

Exosome
Differential

ultracentrifugation
and filtration

20×

CNV and SNV
of tumor DNA

(tissue) and
exoDNA

(plasma and
ascites)

[72]

WGS Maternal plasma
(n = 20) EV (30–50 nm) ExoQuick 0.25× cfDNA and EV

DNA [132]
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Table 3. Cont.

NGS Type Source of EV (Sample
Size) EV Type (Size) Isolation Method

of EV
Mean
Depth

Subjects of
Comparison

Number of
Targeted

Genes
Reference

WGS
Plasma of patients with

breast cancer (n = 1,
serial samples (X3))

EV
(30–600 nm)

Differential
ultracentrifugation 1×

CNV of tumor
DNA (FFPE),
ctDNA, and

EV DNA

[133]

WGS

Plasma of patients with
tongue base squamous
cell carcinoma (n = 3)

and cutaneous
squamous cell

carcinoma (n = 2)

EV (215 nm) Differential
ultracentrifugation 0.5–1×

CNV of tumor
DNA (FFPE)
and EV DNA

[134]

WES

Pleural effusion (n = 1)
and plasma (n = 2) of

patients with
pancreaticobiliary

cancer

Exosome
Differential

ultracentrifugation
and filtration

133–490×

SNV and
mutational
signature of
tumor DNA
(tissue) and

exoDNA

[40]

WES Plasma of patients with
neuroblastoma (n = 19) Exosome

Exo-RNeasy
serum/plasma

midi kit
110×

SNV and TMB
of tumor DNA

(FFPE) and
exoDNA
(plasma)

[135]

Targeted
NGS

Plasma of patients with
advanced cancers

(n = 43)
Exosome ExoLution Plus

Isolation kit

SNV of tumor
DNA (tissue)
and exoNA

3 [83]

Targeted
NGS

Urine of patients with
urothelial bladder
carcinoma (n = 9)

Exosome ExoQuick-TC 102–4909×

SNV of tumor
DNA (tissue),
cfDNA, and

exoDNA

9 [70]

Targeted
NGS

Plasma of PDAC
patients Exosome

Differential
ultracentrifugation
and cancer-specific
exosome capture

SNV of tumor
DNA (tissue)
and exoDNA

275 [136]

Targeted
NGS

BALF of patients with
lung adenocarcinoma

(n = 20)

EV
(207.0 ± 48.3 nm)

Differential
ultracentrifugation 190–755×

SNV of tumor
DNA (FFPE)
and EV DNA

375 [41]

Targeted
NGS

Plasma of patients with
acute myeloid

leukemia (n = 4)

EV
(30–150 nm)

Differential
ultracentrifugation

SNV of tumor
DNA and EV

DNA
54 [137]

Targeted
NGS

Glioblastoma stem-like
cells (n = 8) EV

Differential
ultracentrifugation

and filtration or
size exclusion

chromatography

SNV of tumor
DNA (tissue
and cell) and

exoDNA

47 [106]

NGS—next-generation sequencing; EV—extracellular vesicle; EV DNA—EV-derived DNA; WGS—whole-genome sequencing; CNV—
copy number variation; exoDNA—exosome-derived DNA; SNV—single nucleotide variant; MSC—mesenchymal stromal cell; gDNA—
genomic DNA; RPKM—reads per kilobase per million mapped reads; cfDNA—cell-free DNA; SNP—single nucleotide polymorphism;
FFPE—formalin-fixed paraffin-embedded; WES—whole-exome sequencing; TMB—tumor mutation burden; PDAC—pancreatic ductal
adenocarcinoma; BALF—bronchoalveolar lavage fluid.

7.1. WGS and WES

Cai J et al. [61], using WGS, observed a minimum of 16,434 gDNA fragments in EVs
from the plasma of healthy humans. Kahlert’s team [57] used exosome-derived DNA
(exoDNA) from the serum of patients with pancreatic cancer and tumor DNA to map
approximately 96% of the human genome using NGS. The properly paired percentage read
~92% between tumor gDNA and exosome gDNA. Their analysis showed that the DNA
found in exosomes isolated from the serum was uniform across all chromosomes [57]. In
another study, WGS and comparative genomic hybridization analysis with the exoDNA of
murine melanoma cells revealed the entire genome coverage of exoDNA without bias. In
addition, no specific fragments were enriched or depleted in the exoDNA pool compared
to gDNA [26]. Lee et al. [62] investigated the copy number variation (CNV) of human
H-ras-transformed rat intestinal epithelial cell EV-associated DNA. While the CNV research
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suggested an increase in the contribution of certain loci, they did not detect any genomic
regions that would be selectively included in EVs. Indeed, over 90% of the cellular genome
has been found in EVs [62]. A study with PC12 cells demonstrated that exoDNA covered
98% of the single nucleotide polymorphisms (SNPs) of the parent cell with WGS. They
examined driver susceptibility gene mutations in exoDNA and found that the concordance
rates of mutations in the exosome and tumor tissue DNA in patients with pheochromocy-
toma or paraganglioma were as high as 98–100% [131]. Interestingly, WGS analysis using
exoDNA from the plasma and ascites of patients with ovarian cancer identified gene muta-
tions related to DNA repair, and revealed a similarity to the primary tumor in CNV only
with ascite exosomes, but not plasma exosomes [72]. Several studies have demonstrated the
potential of EV DNA for WGS, and have shown that EV DNA represents the whole genome
of parental cells [63,78,126,130]. A study used exoDNA from the pleural effusion and
plasma of patients with pancreatic biliary cancer for analyzing the CNV, SNV, gene fusions,
and mutational signature using WGS and WES. In addition, exosome RNA (exoRNA) was
used for transcriptome sequencing, and WES using exoDNA covered 95–99% of the target
regions. In this case, exoDNA was used for identifying mutant KRAS through WGS, WES,
and transcriptome sequencing of pancreatic ductal adenocarcinoma [40]. Another study
used large EV DNA isolated from the human prostate cancer cell PC3 to identify genomic
rearrangements [35]. While CNV was not identified in normal blood samples, urinary
cfDNA and exoDNA samples presented a similar pattern of CNV with tumor samples
of urothelial bladder carcinoma [70]. In addition, fetal trisomy and single gene disease
were identified by EV DNA in the maternal plasma. This study demonstrated that the
GC content of the plasma EV DNA was 1.2 times higher than that of cfDNA. Moreover,
mtDNA was detected in EVs using NGS, and the read percentage of mitochondrial EV
DNA was, on an average, 2.2 times higher than that of cfDNA [132].

However, in a contradictory study, the EV DNA results were highly variable between
patients with very limited overlapping regions, even when the EV DNA CNV profiles
were compared to the CNV profile of formalin-fixed paraffin-embedded (FFPE)-derived
DNA [134]. This difference could be due to the difference in DNA degradation during
storage in FFPE tissue blocks [138,139]. In another study, only one case presented a
lower sensitivity to tumor driver CNVs of breast cancer with EV DNA compared with
ctDNA [133].

With neuroblastoma, a comparison of exoDNA and the corresponding tumor DNA
using WES showed a higher overall number of somatic single nucleotide variants (SNVs).
The difference in SNVs could arise from the different origins of exoDNA and tumor DNA,
suggesting spatial genetic heterogeneity. In addition, the median tumor mutation burden
(TMB) of exoDNA and tumor DNA was calculated. The higher TMB value observed in the
exoDNA was probably because there were more exoDNA somatic SNVs than tumor DNA
SNVs [135].

7.2. Targeted NGS

Many studies have tested the compatibility of EV DNA from different types of body
fluids in various diseases for targeted NGS (Table 3). Evaluation of BALF EV DNA for the
detection and quantification of mutations comparably identified lung adenocarcinomas
with tissue DNA using targeted NGS. The DNA yield from BALF EV has been demon-
strated to be 100 times higher than that from tissue samples. The median depth of coverage,
median sequencing uniformity, and tumor purity were higher in the DNA from the tissue
than in the BALF EV DNA. However, the estimated library size was not significantly
different between the two samples, and the median DNA fragment length was slightly
longer in the BALF EV DNA than in the tissue DNA. EGFR variants were the most com-
monly detected alterations, totaling 580 alterations in 175 genes. Furthermore, the overall
mutation concordance between the two samples was high (81%) for clinically significant
mutations. In addition, the TMB of the BALF EV DNA was correlated with that of the
tissue DNA [41].
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A study performed on urine samples of patients with urothelial bladder carcinoma
identified all 17 somatic mutations by analyzing cfDNA and exoDNA [70]. The compat-
ibility was also demonstrated in a glioblastoma study comparing DNA from EVs, cells,
and matching tissues; the study determined the variant allele frequencies (VAFs) to be
similar [106].

Several studies have used plasma-derived EV DNA for NGS analyses. One study
explored the plasma of patients with advanced cancer (colorectal cancer, melanoma, and
NSCLC) to identify common hotspot mutations such as BRAF, EGFR, and KRAS to yield a
very good overall sensitivity (95%) with exoDNA and exoRNA compared with the standard
testing of archival FFPE samples obtained from the tumor tissue. This high sensitivity of
plasma exoDNA and exoRNA was similar to that of simultaneously tested plasma cfDNA
with ddPCR and BEAMing (92% and 97%, respectively) [83].

For tumor exosome enrichment, using the plasma of pancreatic ductal adenocar-
cinoma (PDAC) patients, surface exosomal proteins were profiled to identify PDAC-
specific biomarkers using proteomic analysis, which led to an augmentation of mutant
genomic equivalents that were suitable for subsequent NGS using a molecular barcoding
approach [136]. In another plasma study of acute myeloid leukemia patients, EV DNA ana-
lyzed for leukemia-specific mutations using NGS mirrored the leukemia-specific mutations
found in the gDNA obtained from the primary leukemia cells in most cases [137].

These studies demonstrated that EV DNA in patients with cancer can be a reliable
source for targeted NGS for the identification of genetic alterations using diagnostic values
with a high clinical feasibility and utility. For clinically reliable and suitable NGS analysis
in the future, standardization and clinical verification are necessary.

8. Challenges of Studying Extracellular Vesicles

The heterogeneity of EVs and the presence of non-vesicular extracellular nanoparticles
in fluid samples pose major obstacles to our understanding of the composition and func-
tional properties of the secreted EV components [74,140]. In particular, in EV DNA research,
the use of DNase to remove outer DNA and non-vesicular extracellular nanoparticles, as
well as other appropriate separation methods, should be considered. EVs are most often
categorized according to their size. Exosomes are the smallest vesicles with sizes ranging
between 30 and 150 nm, microvesicles typically range between 0.1 and 1 µm, and apoptotic
bodies tend to have larger diameters of 50–5000 nm [29]. However, some microvesicles are
smaller than 100 nm, such as the recently identified arrestin domain-containing protein
1-mediated microvesicles, which are relatively on the smaller side, 40–100 nm [141,142].
Therefore, most isolation protocols are based on differences in size and buoyant den-
sity, such as gradient centrifugation, sediment centrifugation, ultracentrifugation, and
size exclusion chromatography. Unfortunately, these approaches cannot differentiate the
population of EVs with diameters ranging between 50 and 200 nm, meaning that a pure
population of exosomes, small apoptotic bodies, or microvesicles cannot be obtained using
current methods. Consequently, most analyses are performed on EVs as a whole rather
than on a pure exosomal population. Most studies use differential ultracentrifugation
for the isolation of EVs, and some still prefer to use the term exosome. However, pure
exosomes cannot be obtained by ultracentrifugation alone, and accordingly, it would be
more appropriate to call them small EVs. To solve this problem, distinct surface markers
can distinguish exosomes from other types of EVs [143].

Tetraspanins, CD63, CD81, and CD9 are most often used as specific markers for
identifying exosomes; however, they are not a definite indication, as these proteins are
abundantly expressed on the cell surface, including other types of EVs that are generated
by budding from the plasma membrane [144,145]. Moreover, these markers of exosomes
are not present in all cases; alternatively, some of the presumed components of exosomes
were absent in the exosomes expressing these markers [74,146,147]. Therefore, a single
marker cannot be used to identify all EVs within a population. Moreover, there is no
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method for isolating only a pure population of exosomes or microvesicles without traces of
complex mixtures of EVs and other components from bio-fluids [29,148].

A method capable of isolating pure exosomes or microvesicles needs to be developed.
Although limitations to absolute differentiation between these types of EVs still exist, EVs
isolated according to their size could be categorized as small or large EVs, or those isolated
by the difference in their densities could be called either high-density or low-density EVs.
Additional tests of certain protein markers and the identification of isolated EVs as marker-
positive EVs, such as CD63 + EV, could be supplemented for supporting the categorization
of EVs [31]. In summary, one should always clarify the method of EV isolation and define
the characteristics before choosing the right nomenclature for isolated EVs.

9. Discussion

EVs are nanoparticles of 30–1000 nm in size, and are found almost everywhere in
bodily fluids [115]. They are shed by various types of cells, but are most abundantly
released by cancer cells and carry not only RNAs and proteins, but also DNA, including
ssDNA and dsDNA, which originate from the gDNA and mtDNA of the parent cell [65].
Several recent studies have discovered that EVs hold dsDNA, including oncogenic mutant
DNA studies performed with EVs derived from the plasma [95], pleural effusion [10], and
BALF [98] of patients with cancer. These studies demonstrated that EV DNA presents a
strong potential as a biomarker.

The application of NGS for clinical use has led to a new era of precision medicine
powered by targeted therapies for cancer. Especially in lung cancer, various targeted
therapies have been developed, ranging from EGFR-TKIs and BRAF, ALK, ROS, RET, MET,
TRK1, and HER2 inhibitors [149], to more recent developments in KRAS inhibitors [150].
For immune therapy, assessing TMB using NGS has received attention as a biomarker [151].
In dealing with patient samples, separately identifying the biomarkers and diagnosis
would consume time and resources; however, using NGS would save specimens and
time [152,153].

Unfortunately, in several cancers, small biopsy samples have become an obstacle for NGS.
In reality, 30% of NSCLC patients face the problem of insufficient biopsy samples [154,155]. In
addition to the small biopsy sample problem, other challenges faced in NGS are tumor
heterogeneity [156] and artificial mutation of the fundamental FFPE tissues [157]. These
shortcomings can be overcome through active clinical study of liquid NGS using plasma
ctDNA [158,159], which is clinically applicable as liquid NGS lung cancer panels have
become commercially available [160]. The biggest advantage of using plasma ctDNA is
its easy access; however, its fundamental limitation is its instability, with a half-life of
approximately 2 h [161], which indicates that it does not live up to the high expectations.
In fact, liquid biopsy currently plays a supporting role in cases where tissue biopsy fails
or when the location of a tumor renders it difficult to remove a tissue sample. Larger
size genomic dsDNA within the EVs of cancers, including human glioblastoma, prostate
cancer, ovarian cancer, and lung cancer, has been verified, and it was found in the serum,
plasma, pleural effusion, urine, ascites, and BALF of patients with cancer. These studies
verified that WGS, WES, and targeted NGS analysis using EV DNA are all possible (Table 3).
Furthermore, targeted NGS using BALF EV DNA showed that NGS was possible without
the molecular barcoding approach, and the results were highly consistent with somatic
mutations in the tumor DNA [41]. The liquid biopsy method is moving away from
conventional PCR and expanding into NGS; with the use of EV DNA, it could expand
much further. In the liquid biopsy field, NGS using EV DNA will become clinically useful
in cancer diagnosis, companion diagnostics, and prognosis in the near future.

In addition, the methylation of EV DNA from the serum, plasma, saliva, and gastric
juice has been studied (Table 1), and similarities between gDNA and EV DNA results have
been verified, which suggests that the methylation analysis of EV DNA can serve as a
useful biomarker for the detection of various diseases, especially cancer. However, as some
results lead to doubts about using EV DNA for methylation analysis [71,107], the EV DNA
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source, sample collection, DNA extraction methods, and the disease appear to affect the
detection of methylation.

Although most current research on EV DNA has focused on cancer, non-cancer studies
also present the potential for exploration. In particular, BALF can be a useful source for
identifying the biomarkers of diseases, including idiopathic pulmonary fibrosis (IPF) and
chronic pulmonary obstructive disease (COPD) [162].

EV DNA is involved in intercellular communication, pathological communication of
diseases, and genomic evolution. For example, in cancer, oncogenes of donor cells can be
transformed into recipient cells by apoptotic bodies or the BCR/ABL hybrid gene in EVs,
and then expressed on recipient cells. Horizontal plant DNA transfer in eukaryotic cells
is also mediated by EVs. Transfer from bacteria to eukaryotes by OMV-derived DNA has
been identified in the nuclear fraction of epithelial cells. Furthermore, cells that become
resistant to therapy can transfer mtDNA by EVs to other non-resistant cells and exhibit
therapy resistance both in vivo and in vitro (Table 2). This transfer of EV DNAs suggests
the potential of EVs as carrier vesicles and for other therapeutic uses.

Currently, most research and clinical studies on EV DNA have focused on discovering
biomarkers for liquid biopsy and its horizontal gene transferability. The biggest problem
for the clinical application of EV DNA is the lack of basic research and characterization.
To advance our understanding of EV DNA, we must establish the (1) intracellular pro-
cesses involved in the loading mechanism of DNA onto extracellular vesicles, (2) specific
cellular signals that load DNA onto EVs, (3) the mechanism of DNA transfer to recip-
ient cells via EV, and (4) an EV-DNA-specific optimized isolation and analysis method
for removing non-vesicular extracellular nanoparticles. Once a full understanding of EV
DNA has been established, it would become valuable in many aspects as a clinical tool for
diverse functions.

10. Conclusions

While there is a wealth of research examining EVs and EV DNAs, our understanding
of the basics and definite characterization remains low. As the benefit of utilizing EV
DNA for liquid biopsy is unquestionable, further research is required in establishing a
reliable method of EV and EV DNA purification, exploring diseases other than cancer,
and performing clinical research. In addition, verification of horizontal EV DNA transfer
suggests the possibility of EVs as carrier vesicles and for other therapeutic uses, where a
rigorous study of EV DNA loading and transfer mechanism is needed.
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