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Abstract

The effect of multi-modal vs uni-modal prior stimuli on the subsequent processing of a simple flash stimulus was studied in
the context of the audio-visual ‘flash-beep’ illusion, in which the number of flashes a person sees is influenced by
accompanying beep stimuli. EEG recordings were made while combinations of simple visual and audio-visual stimuli were
presented. The experiments found that the electric field strength related to a flash stimulus was stronger when it was
preceded by a multi-modal flash/beep stimulus, compared to when it was preceded by another uni-modal flash stimulus.
This difference was found to be significant in two distinct timeframes – an early timeframe, from 130–160 ms, and a late
timeframe, from 300–320 ms. Source localisation analysis found that the increased activity in the early interval was localised
to an area centred on the inferior and superior parietal lobes, whereas the later increase was associated with stronger
activity in an area centred on primary and secondary visual cortex, in the occipital lobe. The results suggest that processing
of a visual stimulus can be affected by the presence of an immediately prior multisensory event. Relatively long-lasting
interactions generated by the initial auditory and visual stimuli altered the processing of a subsequent visual stimulus.
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Introduction

When a brief flash stimulus is accompanied by two brief sounds,

the single flash is sometimes perceived as two discrete flashes. This

phenomenon has been termed the ‘fission’ illusion [1]. The illusion

has since been shown to be robust to temporal delays of up to

approximately 100 ms between the auditory and visual stimuli [2],

spatial separation of the auditory and visual stimuli across the

visual midline [3], and even accuracy feedback on each trial

specifically designed to reduce its strength [4].

Several neuro-imaging studies [5–8] have shown that the

perception of the fission illusion is correlated with increased

activity in the primary visual cortex. These studies generally

support the hypothesis that the illusion results from the integration

of auditory and visual information, rather than the possible

introduction of response biases. Similarly, two flashes presented

with a single sound can ‘fuse’ into a single flash percept. Neural

correlates of the fusion illusion, measured using functional

magnetic resonance imaging (fMRI) [9,10] and event-related

potentials (ERPs) [6], are correspondingly reduced in the same

areas. More recently, a trans-cranial direct current stimulation

(tDCS) study showed that perception of illusory flashes increases

with anodal (excitatory) stimulation of temporal areas, and

decreases when occipital areas are stimulated [11]. Disruption of

the right angular gyrus in parietal cortex by trans-cranial magnetic

stimulation (TMS) also reduces susceptibility to the illusion [12].

Thus, the perception of illusory flashes may be dependent on

cortical temporal-occipital interactions.

Together, the findings reviewed above that describe increased

activity in primary visual areas during perception of illusory extra

flashes (fission) and reduced activity in the same areas during

illusory reduction of flashes (fusion) strongly suggest that the

illusion occurs as a result of modulation of activity in primary

visual cortex by neural processes related to the auditory stimulus.

That the illusion can be enhanced or degraded by stimulation or

disruption of parietal and temporal areas also suggests that these

higher-order regions have a possible role to play, although the

mechanism by which this might occur is not currently understood.

The flash-beep illusions obviously do not occur when a single beep

is presented alone. As Meylan & Murray [13] have suggested, the

context (the preceding stimuli) thus has a role to play in the

generation of the illusion.

In this study, we presented fission and fusion illusion stimuli as

well as a number of visual-only and congruent audio-visual control

stimuli which were very similar to the illusion stimuli but where

illusions did not occur. EEG was recorded during the presentation

of the stimuli to examine the brain’s responses to the second flash

stimulus depending on whether it was preceded by a uni-sensory

or multi-sensory stimulus.
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Methods

Ethics statement
The protocol was approved by the Swinburne University

Human Experimentation Ethics Committee, and written, in-

formed consent was obtained from all participants.

Participants
Eleven participants were recruited from the student body at the

Brain Sciences Institute at Swinburne University. Age ranged from

22–32 years (M = 28.6, SD = 3.5), and four were male.

Stimuli and apparatus
The stimuli and apparatus were the same as those used in Innes-

Brown and Crewther [3], except that the refresh rate of the

monitor was increased to 75 Hz, and the timing of the auditory

and visual stimuli were slightly adjusted such that they occurred

simultaneously, rather than with the 23ms delay used previously.

The delay between auditory and visual stimuli is not critical to the

perception of the illusion. Shams et al [2] found that illusion

reports remained strong when the beep stimulus was presented

within 115 ms either side of the flash stimulus, with maximum

illusion strength at approximately 0 ms (no delay). This stimulus

timing of 0 ms (no delay) is simpler to implement and interpret,

especially in the context of ERP analysis, and has been used

successfully in fMRI [8] and ERP [13] investigations of the flash-

beep illusion.

The experiment was conducted in a quiet, sound-treated, and

electrically shielded room. The background sound level was

approximately 39 dB SPL (A-weighted). The visual stimulus

consisted of a white disk, which flashed once or twice at full

brightness and approximately 100% contrast on a 15-inch cathode

ray tube monitor (CRT: Philips 107E) with a black background, in

a darkened room. The disk subtended 3u of visual angle and was

located 7.5u below a fixation cross, which was positioned 2.5u
above the centre of the screen. Each flash consisted of two refresh

periods (26.67 ms, see Figure 1). On selected trials, short beeps

were presented simultaneously with the flashes, from a speaker

placed centrally under the CRT. The beep was a 3500 Hz, 83 dB

SPL (A-weighted) sine wave of 8 ms duration, with 3 ms rise and

fall times. Participants sat in a comfortable chair with their head

100 cm from the CRT. A keyboard rested on a desk at a

comfortable distance directly in front of the CRT. The auditory

and visual stimuli were controlled using Presentation 10.1

(Neurobehavioural Systems). Using a cathode-ray oscilloscope,

photo-diode and microphone, the average delay between the

visual flash stimulus and the first measurable peak of the auditory

stimulus was.3 ms, with no measureable standard deviation for 20

repetitions.

Procedure
Multi-modal fission and fusion illusion stimuli were presented,

along with uni-modal visual control stimuli (a single or double

flash), and congruent multi-modal stimuli, where the number of

flashes and beeps was equal. In each trial, there was either a single

or double flash, along with zero, one, or two beeps. Trial types will

be henceforth referred to using a code indicating the number of

flashes followed by the number of beeps – ‘2F2B’ thus refers to a

trial with two flashes and two beeps. The six possible trials types

were therefore 1F0B, 1F1B, 1F2B (fission illusion), 2F0B, 2F1B

(fusion illusion) and 2F2B. In trials with multiple flashes or beeps,

the time between the onsets of successive beeps or flashes was 66.7

ms, corresponding to 5 CRT refresh periods. There was always a

flash at 0 ms – therefore if the number of flashes and beeps was not

equal (1F2B and 2F1B), there was always a combined flash/beep,

followed by either a single flash or a single beep. An example of a

2F2B trial is shown in Figure 1.

The fixation cross was displayed alone for an interval that varied

randomly in each trial between 1200 and 1500 ms. This random

variation was introduced in order to reduce the possibility of

participants predicting the stimulus onset and responding too

quickly, and to reduce the possibility of readiness or contingent

negative variation potentials occurring in the pre-stimulus EEG

[14,15]. The flash/beep sequence then began. Following the

sequence was another short randomly varied interval (1200 to

1500 ms), after which the text ‘‘How many flashes did you see?’’

was displayed in place of the fixation cross. This text remained in

place until the participant made a response on the keyboard, or

until 2.5 seconds passed, after which time the response was

deemed invalid. Participants were instructed to keep their gaze on

the fixation cross during each trial and count the number of flashes

that would appear whilst ignoring the beeping sounds. The

response was made after each trial by pressing keys labelled ‘1’ or

‘2’ on a keyboard.

The six possible flash/beep stimuli were presented in pseudo-

random order 20 times each in a single block. This block was

repeated 5 times (with trials re-randomised each time). Each

stimulus was thus presented 100 times. Keyboard responses were

recorded for each stimulus presentation. Each block ran for an

average duration of 10 minutes and breaks could be taken between

each block. The total testing time was approximately 1.5 hours,

including breaks and instruction time.

Electrophysiological recordings
The continuous EEG was recorded from 60 sintered silver/

silver-chloride electrodes mounted in an elastic cap according to

the international 10–20 system. The continuous EEG was

amplified, filtered with a bandpass of 0.1–100 Hz, and digitised

at a sampling rate of 1000 Hz using a Synamps II EEG amplifier.

Analysis and Results

Behavioural data
Accuracy scores were analysed in order to firstly determine

whether participants could accurately count the visual flash stimuli

either in the absence of an auditory stimulus or with a congruent

number of beeps, and secondly to determine the extent of fission

and fusion illusions reported in trials where an illusion was

expected. SPSS version 17 was used for all statistical analyses.

Figure 1. Flash beep stimulus timing. Shown is an example of a
2-flash, 2-beep (2F2B) trial.
doi:10.1371/journal.pone.0084331.g001
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For each of the six stimulus types, accuracy scores were

calculated by dividing the number of correct responses by the total

number of responses made, so that non-responses (when the

participant took longer than 2.5 seconds to respond) were not

counted as incorrect. Non-responses were rare (.9%). For the non-

illusion trials (1F0B, 1F1B, 2F0B, 2F2B), the accuracy scores

reflected the degree to which participants were able to accurately

count the visual flash stimuli with no beeps or with a congruent

number of beeps. Conversely, for the illusion trials, low accuracy

scores indicated the presence of illusory perception. In fission trials

(1F2B), low accuracy indicated that more flashes were reported than

were presented, and in fusion trials (2F1B), low accuracy indicated

that less flashes were reported than were presented.

Figure 2 shows mean accuracy scores for each stimulus type. In

general, all participants responded with a high level of accuracy for

all non-illusion stimuli, suggesting that the visual stimuli were not

ambiguous and that the visual flashes could be counted relatively

easily. This was the case both in the visual-only uni-modal trials

(1F0B and 2F0B) as well as in multi-modal congruent trials where

the number of auditory and visual stimuli were equal (1F1B and

2F2B). However, accuracy was lower and variability higher for

both types of illusion trials (fission – 1F2B, and fusion – 2F1B).

The significance of these effects was assessed using a repeated

measures analysis of variance (ANOVA) with within-subjects

factors for Nflash (1 flash, 2 flashes), and Nbeep (0 beeps, 1 beep, 2

beeps). There were significant main effects of Nflash, F(1,10)

= 10.8, p = .008, g2 = 52, and Nbeep, F(2,20) = 8.3, p = .002,

g2 = .45, as well as a significant Nflash x Nbeep interaction,

F(2,20) = 17.7, p,.001, g2 = .64. Accuracy in the illusion trials

compared to the corresponding non-illusion trials was examined

by decomposing the interaction using simple effects analysis [16].

Pairwise comparisons with Sidak adjusted alpha levels are reported

throughout. In one-flash trials, accuracy scores were lower in

fission illusion trials compared with both the uni-modal (1F0B),

p = .003, and congruent multi-modal control trials (1F1B),

p = .002. In two-flash trials, accuracy in the illusion trials (2F1B)

was lower than in the congruent multi-modal trials (2F2B), p = .02,

but not compared to the uni-modal trials (2F0B), p = .06.

As the number of males (N = 4) and females (N = 7) were

unequal, 2-sample t-tests were performed on accuracy scores for

each stimulus type, in order to test for any bias in accuracy based

on gender. Accuracy scores were not significantly different

between males and females for any stimulus.

Thus, both the flash-beep fission and fusion illusions were

present, although the fusion illusion was weak, and performance in

the 2F1B condition (where the fusion illusion might be expected to

occur) was over 80% on average.

EEG data
Summary of methods. The analysis partly followed the

methods described in Meylan and Murray [13]. In this approach,

only four stimulus types were analysed – uni-modal stimuli, which

were the 1F0B and 2F0B stimuli, and multi-modal stimuli, which

were the 1F1B and 2F1B stimuli. The response to the second flash

only was isolated by defining UNI and MULTI difference waves

as follows: UNI = 2F0B – 1F0B, and MULTI = 2F1B – 1F1B. In

this way, the effect of either a uni-modal or multi-modal preceding

context on the response to the second flash could be determined.

For subtractions involving the 2F1B stimulus (which could

potentially evoke a ‘fusion’ llusion), only correct (non-illusory)

responses were analysed.

Both the UNI and MULTI difference waves represent the

neural response to only the second flash. The comparison of the

UNI and MULTI difference waves was therefore designed to

determine the possible timing and location of statistically

significant differences between the UNI and MULTI difference

waves. Rather than focus on the identification and measurement

of ERP components (such as the N1, P2, etc), the analysis sought

firstly to determine time points at which statistically significant

differences between the UNI and MULTI difference waves

occurred, and secondly to use source localisation methods to

locate the parts of the brain in which these differences were likely

to have occurred.

The global field power (GFP) was also calculated. GFP is a

measure of the overall electrical field response at the scalp for each

time point. It has the advantage that it is not affected by the choice

Figure 2. Mean accuracy for counting flashes (± SEM) for each stimulus type. In fission illusion trials (1F2B), participants often reported
more flashes than were present; in fusion illusion trials (2F1B), participants sometimes reported less flashes than were presented.
doi:10.1371/journal.pone.0084331.g002
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of reference electrode, and the corresponding disadvantage that it

provides no information about the possible neural sources

underlying the electric field measured at the scalp. Hence in the

current study, it was used to determine time periods at which the

overall electrical response to the UNI and MULTI stimuli differed

from each other, without requiring any prior assumptions of

electrode location, reference configuration, or neural source

location. The sources underlying the electric response in these

time periods were then estimated using source localisation

techniques constrained to the relevant time periods.

EEG pre-processing procedures. The continuous EEG

was filtered using a second-order bi-directional (zero-phase-shift)

Buttterworth bandpass filter with cutoff frequencies of.1–45 Hz

and slopes of 12dB/oct. Following filtering, the EEG was re-

sampled at 500 Hz, and epochs from –200 to 800 ms post-stimulus

were constructed. Once segmented, artefact rejection and

correction procedures were applied. A three-step approach was

taken: 1) EEG epochs and channels containing artefacts were

rejected. Only artefacts that were considered to be severe, or of a

unique ‘stereotyped’ nature likely to cause an unsuccessful

independent components analysis (ICA) decomposition were

rejected [17] as implemented in EEGLAB [18]. 2) ICA was run,

and components representing ocular or other artefacts were

marked and removed using the ‘ADJUST’ plugin [19]. 3) The

independent component time-courses were re-projected back into

EEG epochs, and previously deleted channels re-interpolated.

Finally, the average of all trials (the ERP) for each electrode, and

the standard deviation across electrodes (equivalent to the mean

global field power – GFP [20]) was calculated for each participant

and stimulus-response combination.

When - determining time periods when statistically
significant differences occurred. Although the final deter-

mination of time intervals was calculated using the GFP, the scalp

ERP data for the four stimuli, as well as the UNI and MULTI

differences waves, were also visualized to allow comparison with

previous work.

The analysis focussed first on visualising differences in the

timing, magnitude, and topography of ERPs in response to the

uni-modal and multi-modal stimuli used to calculate the UNI and

MULTI difference waves. The statistical significance of differences

between the ERPs in each condition were visualised by using

point-wise non-parametric multiple permutation tests with 2000

permutations (as implemented in the EEGLAB functions ‘std_stat’

and ‘statcond’ [21]), for each time point and electrode. Through-

out, similar permutation tests were used to test for statistically

significant differences between pairs of waveforms. This method

allowed the visual identification of periods of statistically significant

differences between waveforms in a manner more conservative

than standard parametric t-tests, as no assumptions of normality

were required. In addition, only periods of significant differences

longer than 10 samples (20 ms) were considered reliable[22]. This

approach was used for visualisation purposes only, and has been

used in similar studies previously [23–25], but could be under-

conservative as the procedure was applied without an exact

estimate of the first-order autocorrelation and with the whole

epoch length rather than a small segment as the original technique

was intended to be used. We emphasize that these analyses are

intended only to provide visualisation of the effects within the data,

and our main analysis was based principally on the reference-

independent GFP data, where additional measures were taken to

control for the false-discovery rate inherent in mass-univariate

testing.Figure 3 shows the grand average ERPs at six electrode

sites, calculated for the uni-modal (1F0B and 2F0B) and multi-

modal (1F1B and 2F1B) stimuli. The periods of time where the

two waveforms significantly differed are highlighted with grey

boxes. Visual inspection, combined with the exploratory permu-

tation tests, showed that the grand average waveforms for the uni-

modal stimuli (1F0B and 2F0B) show the expected visual evoked

potential (VEP) morphology, with strong N1 and P1 peaks visible,

especially at the occipital electrodes (Figure 3). Note that these

data are displayed with the average reference, rather than the nose

reference often used in VEP studies. Also visible are differences

between the 1F0B (light/red) and 2F0B (heavy/green) ERPs.

Differences likely reflecting the response to the second flash at 66.7

ms occurred in central, parieto-occiptal and fronto-central sites

from around 220-300 ms post-stimulus.

ERPs in response to the multi-modal stimuli (1F1B and 2F1B)

showed a similar overall morphology to the uni-modal stimuli,

although overall amplitudes were larger, probably reflecting the

summation of auditory and visual ERPs (Figure 3). There were

again differences between the waveforms at similar latencies to the

uni-modal stimuli, as well as at earlier latencies. The spatial

pattern of significantly different intervals appeared more broadly

spread in time than with the UNI stimuli, extending both earlier

and later. It should be noted that no attempt was made to control

for multiple comparisons among electrodes in these statistical

displays. The statistical display is intended only to aid visual

inspection.

Comparison of ‘UNI’ and ‘MULTI’ difference waves.
In order to compare responses to the second flash as a function of

the preceding uni-modal or multi-modal stimulus, the UNI and

MULTI difference waveforms were calculated. Figure 4 shows the

UNI and MULTI difference waveforms at six electrodes, averaged

across all participants. Recall that both waveforms represent the

isolated response to the second flash, with the only difference being

the immediately prior stimulus. The UNI waveform shows the

response to the second flash when it was preceded by another flash

stimulus, while the MULTI waveform shows the response to the

second flash when it was preceded by a multi-modal flash/beep

stimulus. Any differences between these two waves were thus due

to the differential effect of the preceding stimulus. Among the six

electrodes shown in Figure 4, differences were present at around

200 ms at fronto-central sites, whereas earlier differences were

present at parieto-occipital sites. There was a complex pattern of

early and late differences across the entire electrode array.

In order to simplify the display of the UNI and MULTI ERP

data across all electrodes, the t-statistic from a point-wise

permutation t-test between the UNI and MULTI waves for each

electrode was plotted on a common axis. Figure 5 (top panel)

shows the results. Only t-values larger than the critical t-value for

df = 10 and extending over at least 10 consecutive time points (20

ms) are shown. This display is essentially a repeat of the data

shown in Figure 4, but all electrodes are shown on a common

x-axis, and critical t-values testing the difference between the

waveforms are shown rather the separate voltages for each

waveform.

As can be seen, there were three main intervals over which

differences occurred. The first was a very early difference from 0–

40 ms at central and lateral sites. These differences were before the

presentation of the second flash (at 67 ms) and were not analysed

further. From 120–250 ms there followed a large number of

differences across many electrodes. At frontal sites the UNI

waveform was mostly larger than the MULTI waveform (red

clusters), whilst the opposite was the case at more parietal

electrodes (blue clusters). There were also later differences,

particularly a cluster of occipital sites where the MULTI response

was larger than the UNI response.

Neural Responses to Prior Multisensory Stimuli
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However, it should be emphasized that both the ERP voltage

plots and t-statistic intensity plot only provided information

regarding the time periods and scalp electrodes at which

differences were found using the particular reference configuration

in this study (the average reference), and are not generalizable.

In order to determine appropriate time periods in which to

localize the cortical sources of the differences, the reference-free

GFP measure was used. The GFP was determined for each

participant by calculating the standard deviation across all

electrodes at each time point. This is equivalent to the sum of

squares of potential differences at all possible electrode combina-

tions, and indicates the overall strength of the electric field at the

scalp at each time point. In order to more strictly determine the

time intervals over which significant differences between the GFP

related to the UNI and MULTI difference waves occurred, the

false-discovery rate method (FDR [26], as implemented in the

‘FDR.m’ EEGLAB function [18]) was used to control for the

possibility of Type I errors caused by the large number of

permutation tests used.

The grand average GFP for the UNI (red line) and MULTI

(green line) difference waves is shown in the middle panel of Figure

5. The bottom panel shows the p-values (only those with greater

than 10 consecutive significant tests) from the point-wise

permutation test between the two GFP waveforms. In addition,

the black line shows when the FDR-corrected p-values are

significant. There are two features of note. First, it is clear that

Figure 3. Grand average ERPs for UNI (top panel) and MULTI (bottom panel) stimuli. Significant differences between the waveforms are
marked with grey boxes (permutation test, p ,.05). The x-axis represents time relative to the first flash. The time of the second flash (67 ms) is marked
on the x-axis.
doi:10.1371/journal.pone.0084331.g003
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the MULTI difference wave showed larger overall response

strength than the UNI difference wave. Secondly, the differences

were significant using the Guthrie & Bachwald [22] criteria in two

main intervals – an early interval from 120–190 ms, and a later

interval from 300–320 ms. However, when the stricter FDR

criterion was applied, the differences were only significant in the

first interval. Thus, the overall electric field measured at the scalp

in response to the second flash was significantly larger in two

specific intervals when it was preceded by a multi-modal flash/

beep stimulus compared to when it was preceded by a flash alone,

although only the first interval survived the stricter FDR-based

correction for multiple comparisons. Both intervals were submitted

to the subsequent source analysis (detailed below), but results from

the second interval must be interpreted with caution.

Where - source analysis of statistically significantly
different time periods. In order to determine the most

probable locations of cortical generators underlying the differences

found in electrical field strength measured at the scalp, Standard-

ised Low-Resolution Electromagnetic Tomography (sLORETA)

[27,28] was used to estimate the cortically-constrained current

source density of the UNI and MULTI difference waves for each

participant.

sLORETA solutions for all time points and all participants were

first calculated for the UNI and MULTI waves. Average

sLORETA images were calculated for the UNI and MULTI

waves for each participant in the two time segments that were

revealed as significant by the GFP permutation test. Figure 6

shows sLORETA CSD maps plotted on the MNI template brain

[29] for the UNI and MULTI responses in the late interval (only

the late interval is displayed for brevity), as well as the difference

between the two (MULTI - UNI). The main sources for both were

in the parietal and occipital lobes, and the CSD values for the

MULTI responses were generally higher than for UNI responses.

The differences were mainly focussed in the occipital lobes.

To determine the statistical significance of differences between

localisations for the UNI and MULTI difference waves, ‘Statistical

non-Parametric Mapping’ (SnPM) was used, as implemented in

the sLORETA software [27]. SnPM performed voxel-wise

randomisation tests (5000 permutations), and calculated critical

thresholds and p-values corrected for the number of comparisons

involved in the voxel-wise test. The log ratio of averages (similar to

the F-statistic) was calculated for every voxel, and thresholded with

alpha level of.05 (see Holmes et al [30] and Nichols et al [31]). The

pseudo F-statistics for voxels with significant differences were

plotted in their appropriate locations in Talairach space on the

MNI ‘Colin27’ T2 template brain [29]. Figure 7 shows these

statistical difference maps for the early (top row) and late (bottom

row) time intervals. The MNI co-ordinates of the location of the

maximum or minimum pseudo-F statistic was converted to a brain

region using the Talairach map [32], and are listed in Table 1. It

should be noted that neither individual MRI images nor exact

electrode positions were available and so were not used to

calculate the EEG sources. Using sLORETA and a similar

template brain model and standard electrode positions, Valdez-

Hernandez et al [33] found mean locatisation errors of approx-

imately 6.4 mm.

In the early timeframe (130–160 ms post-stimulus), sources in

the post-central gyrus of the superior parietal lobe (Brodmann area

5) were significantly more active for the MULTI difference wave

compared to the UNI difference wave (Figure 7, top row). The

second-largest difference was found in the inferior parietal lobule

(Brodmann area 40).

In the late timeframe (300–320 ms post-stimulus), sources in the

occipital lobes (Brodmann areas 18 and 17 had the highest and

second-highest pseudo-F values, respectively) were significantly

Figure 4. Grand averages for UNI (red) and MULTI (green) difference waves. Grey boxes show time points at which a permutation test
indicated a significant difference between the waveforms. The x-axis represents time relative to the first flash. The time of the second flash (67 ms) is
marked on the x-axis.
doi:10.1371/journal.pone.0084331.g004

Neural Responses to Prior Multisensory Stimuli
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Figure 5. Results from statistical testing of UNI vs MULTI difference waves. The x-axis on all plots represents time relative to the first flash.
The grey line at 67 ms indicates the time of the second flash. TOP: t-values from point-wise permutation testing between the UNI and MULTI
difference waves at every electrode. Electrodes are arranged in bands separated by grey horizontal lines from the frontal (top of plot) to occipital
(bottom of plot) regions. Within each band, electrodes are arranged from left-most (top of band) to right-most (bottom of band). The midline
electrode in each band is shown on the y-axis. For example, in the lowest (occipital) band, the three electrodes shown are O1, Oz and O2. MIDDLE:
The mean (across participants) global field power (MGFP) calculated across all electrodes for UNI and MULTI difference waves. The MULTI waves
shows increased activity in early and late time windows. BOTTOM: p-values from a point-wise permutation test between the two GFP waveforms
show that the MULTI difference waveform is larger for a very short period at around 50 ms, and extended periods from 100–200 ms, and from 300–
350 ms. Time points where false-discovery rate thresholding of the p-values was significant are indicated with the blue line.
doi:10.1371/journal.pone.0084331.g005
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more active for the MULTI difference wave compared to the UNI

difference wave (Figure 7, bottom row).

Discussion

The experiment found that the electric field strength related to a

flash stimulus was stronger when it was preceded by a multi-modal

flash/beep stimulus, compared to when it was preceded by

another uni-modal flash stimulus. This difference was found in two

distinct timeframes – an early timeframe, from 130–160 ms, and a

late timeframe, from 300–320 ms. The differences in the later time

interval did not survive strict controls over the false-discovery rate

due to the large number of multiple comparisons and hence should

be interpreted with caution. However, source localisation analysis

found that the increased activity in the early interval was localised

to an area centred on the inferior and superior parietal lobes,

whereas the later increase was associated with stronger activity in

an area centred on primary and secondary visual cortex, in the

occipital lobe. The results suggest that processing of a visual

stimulus can be affected by the presence of an immediately prior

multisensory event. Relatively long-lasting interactions generated

by the initial auditory and visual stimuli altered the processing of a

subsequent visual stimulus.

Involvement of the parietal lobe
In the early interval (130–160 ms), increased activity in inferior

and superior parietal lobes was found. The parietal lobes have

traditionally been considered ‘association cortex,’ where informa-

tion from separate sensory processing pathways is combined to

form a unified sensory space [34]. Imaging studies in humans have

found the area to be both multi-modal, or responsive to

stimulation in more than one modality, as well as an area of

integration, displaying non-linear super- or sub-additive response

characteristics when more than one sensory mode is activated

[35,36].

Direct connections between the parietal and auditory cortex

and the visual cortex have been found using tracer techniques in

primates [37–39]. Reciprocal connections from visual cortex to

caudal auditory areas have also been found more recently [40].

Intra-cranial recordings in awake humans undergoing surgical

planning procedures for intractable epilepsy have provided a

timeline of the visual, auditory, and auditory-visual activity in

these regions [41]. In that study, a detection task using simple

auditory, visual, and audio-visual stimuli was employed. Although

no illusory stimuli were presented, the short combined flash/beep

stimulus was very similar to the multi-modal context stimulus used

in the current study. The accuracy and reaction times to the

audio-visual stimulus in Molholm et al [41] indicated that the

facilitation of behavioural responses was not simply due to the

summation of probabilities of responses for the two uni-modal

stimuli alone. Grid electrodes over the parietal cortex showed

onsets of neural responses to the auditory stimuli at around 30 ms,

and onsets to the visual stimuli at around 75 ms. Non-linear

responses to the audio-visual stimuli (where the response to the

audio-visual stimuli was significantly different than the sum of

responses to the auditory and visual stimulus alone) were found in

the same locations as those activated with the uni-modal stimuli

with onsets from between 120–160 ms.

Together with the neuroimaging data [35,36], the study by

Molhom et al [41] suggests that the parietal lobes are sites of

multisensory integration, and not only co-activation. The results also

provide a timeline of activation in the parietal lobes by auditory,

visual, and audio-visual stimuli. Interestingly, increased MULTI

responses in the early interval from the current study were also

found in the parietal lobes, at a very similar time to that found by

Molholm et al [41]. The initial flash/beep multi-modal context

stimulus in the current study was very similar to the multi-modal

stimulus used in Molholm et al [41], suggesting the possibility that

Figure 6. sLORETA source localisation. Current source density (mA/
mm3) displayed on the MNI Colin-27 T2 template brain for the MULTI
(top row) and UNI (bottom row) waves, in the late interval (300–320
ms). The difference between the two (MULTI-UNI) is shown in the
bottom row. Four views are shown: from left to right these are top,
back, left, and right views.
doi:10.1371/journal.pone.0084331.g006

Table 1. Locations of the maximum difference (maximum pseudo-F statistic) in the early and late time intervals.

Timeframe Location of maximum difference
Location of secondary maximum
difference

Pseudo-F for
UNI ? MULTI p

Early 130–160 ms (–35, –50, –60 mm), BA 5: post-central gyrus,
superior parietal lobe.

BA 40: Inferior parietal lobule,
parietal lobe

2.11 .001

Late 300–320 ms (10, –100, 15mm), BA 18: cuneus, occipital lobe BA 17: cuneus, occipital lobe 1.80 .02

doi:10.1371/journal.pone.0084331.t001
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the increase in activity found in the current study was also

indicative of multi-sensory processes in the parietal lobes, driven

by the combined audio-visual context stimulus.

Timing of interactions found in other flash-beep studies
Figure 8 shows a timeline positioning the results of the current

study (yellow boxes) alongside reported timing of the first neural

responses in A1, V1, and the parietal lobes (PL), as well as multi-

sensory interactions found from various flash-beep illusion studies

to combined flash/beep stimuli (grey boxes). Figure 8 is complex

and each part will be discussed in turn. Before discussion of the

illusion studies, an overview of the networks engaged by the

presentation of a single simultaneous flash/beep stimulus is in

order.

The simplest case is when a single beep is paired with a flash.

This was the stimulus configuration in Molholm et al [41]. The

stimulus used in that study is very similar to the multi-modal

context stimulus in the current study, and this combined flash/

beep stimulus was also present for each of the illusion-capable

stimuli in the current study as well as others - 1F2B and 2F1B

stimuli both contain a combined flash/beep stimulus at 0 ms. In

this simplest case, the green and red dots on the diagram (Figure 8,

labels 1 and 2) show the initial activation of auditory and visual

primary sensory cortex, respectively. As can be seen, the first

activation of auditory cortex is considerably faster, around 10–14

ms [42], than the first activation of visual cortex, around 50 ms

[43]. Although the studies of first neural responses in primary

auditory and visual areas were performed using multi-unit activity

studies in primates, the timing for this discussion has been

extrapolated to human-equivalent times using the ‘3/5ths rule’

[44,45]. Rapidly following each of these primary sensory

activations, there is activation of the parietal lobe (green and red

inverted triangles) [41], firstly by the auditory stimulus, at about 30

ms (Figure 8, label 4), and then by the visual stimulus at around 70

ms (Figure 8, label 5). Feed-forward connections from primary

sensory areas to parietal areas are shown with dotted blue arrows

[46]. As the auditory and visual stimuli were presented together,

there is also a non-linear interaction (Figure 8, label 6) in the

parietal lobe, beginning from around 120–160 ms [41]. Subse-

quent feed-back connections from the parietal lobes back to

primary sensory areas are shown with dotted red arrows [37]. The

parietal lobes are known to have top-down influences on

multisensory processes in other cortical areas, such as the primary

auditory and visual areas, as well as in subcortical areas such as the

superior colliculus [47]. Direct cortico-cortical connections

between A1 and V1 are shown with solid brown arrows [38,39].

In summary, the presentation of a simultaneous flash/beep

stimulus activates the auditory cortex, the visual cortex, and the

Figure 7. sLORETA source localisation. sLORETA statistical image showing significant pseudo-F values from a voxel-wise random permutation
test between MULTI and UNI sLORETA source localisations in the early (130–160 ms) and late (300–320 ms) timeframes. The pseudo F-statistics for
voxels with significant differences were plotted in their appropriate locations in Talairach space on the MNI Colin-27 T2 template brain.
doi:10.1371/journal.pone.0084331.g007
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parietal cortex (and other regions not discussed here). Multi-

sensory interactions occur in the parietal cortex beginning from

approximately 120–160 ms after the presentation of the multi-

modal stimulus. Feedback connections may be active from parietal

areas to primary sensory areas, as well as between primary sensory

areas.

Although ERP responses to the fission illusion stimuli were not

tested in this study, the fission illusion stimulus (1F2B, or a

combined flash/beep followed by another beep) has an onset with

the same characteristics (a combined flash/beep) as the multi-

modal context stimulus in the current study, and similar

characteristics to the multi-modal stimulus in Molholm et al

[41]. As single beeps presented in isolation are not known to elicit

flash illusions, the effect of the multi-modal stimulus preceding the

second beep in the fission illusion stimulus is likely to be involved in

triggering the second beep to elicit an illusory flash sensation, in

the same way that the multi-modal stimuli in the present study

affected subsequent processing of the second flash. The findings

suggest multiple mechanisms by which the illusion may operate:

these include direct cortico-cortical connections between A1 and

V1, feedback connections from the parietal cortex, or by some

combination of the two. There may also be networks involving

cortico-thalamic loops [48,49], but these possibilities are difficult

to address with the EEG measures used in the current study.

Figure 8 shows hypothetical activation of the auditory cortex by

the second beep in the 1F2B illusion stimulus (Figure 8 label 3, open

green circle at 80 ms) and the approximate time at which the

illusory flash might be expected to occur (Figure 8, red star, label

16). As the timing of the perception of the illusory flash has not

been experimentally determined, this position is speculative, and is

based on the timing of activation reaching V1 from a second ‘real

flash,’ if one were to occur simultaneously with the second beep.

Given this caveat, however, it is interesting to compare this

proposed timing of the illusory flash with the multi-sensory

interactions found in the parietal lobe elicited by the initial flash/

beep stimulus (Figure 8 label 6) [41], as well as the results from the

current study, where increased activation of the parietal lobes was

found in isolated responses to the second flash at the same time

(Figure 8, point 7). The fact that ERP responses to the second flash

in our 2F1B stimuli were modulated by the presence of the initial

multi-modal context stimulus, in the same timeframe and in the

same brain areas where multi-sensory interactions to the initial

flash/beep context stimulus were found by Molholm et al (2006),

suggests that processing of the second flash was affected by

continuing multi-sensory processes in the parietal lobes that were

most likely triggered by the initial multi-modal context stimulus.

Illusions and involvement of the occipital lobe
The results reviewed above describe the effect of a single multi-

modal stimulus on subsequent uni-sensory processing. By com-

paring the responses to 1F2B stimuli to the sum of 1F0B and 0F2B

responses, a number of flash-beep illusion studies have also found

non-linear interactions related to the perception of the illusory

second flash in the same ,110–160 ms timeframe and in similar

brain regions. This interaction waveform is commonly referred to

in the literature, and is usually written as AV– (A + V). Selected

results from these studies are depicted using grey rectangles in

Figure 8. For instance, the MEG study of Shams et al [50] found

illusion stimulus interactions at both parietal and occipital MEG

sensors in the same 120–160 ms timeframe as the multi-sensory

interactions from Molholm et al [41] and the current study found

in the parietal lobes only (Figure 8, labels 12 and 13). Mishra et al

[6] also found interactions in the same timeframe: an increase of

ERP activity localised to V1 just prior to the expected time of the

illusory flash was found by these authors, but only in a subset of

participants who were pre-disposed to the illusion (Figure 8, label

9). Prior to the increased activity in V1, an enhanced negativity

localised to A1 was also found, this time in trials where the illusion

actually occurred compared to those where it did not occur (Figure

8, label 10). While activation of V1 (30–60 ms after the second

beep) was necessary but not sufficient for perceiving the illusory

flash, the earlier negativity in A1 (only 20–40 ms after the second

beep) in illusion trials only appeared to be the obligatory trigger for

the illusion. These authors proposed that rapid interplay at least

partly via direct cortico-cortical connections between A1 and V1

was responsible for perception of the illusory flash.

Figure 8. Timing Diagram. Diagram showing various responses to a simultaneous flash/beep stimulus at time zero. A1 – Primary Auditory Cortex,
V1 – Primary Visual Cortex, PL – Parietal Lobes. See text for explanation of numbered points.
doi:10.1371/journal.pone.0084331.g008
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Shams et al [7] investigated the effect of auditory stimuli on the

flash visual-evoked potential (VEP), using a slightly altered version

of their original flash-beep paradigm. ERPs were examined by

comparing the 1F2B responses to the sum of the flash alone (1F0B)

and beeps alone (0F2B) stimuli. Using t-tests, the amplitude of

each point in the average waveforms was then compared against

zero. When the stimuli were presented in the visual periphery, an

‘early’ interaction was found at occipital electrodes between 170

and 200 ms, and a ‘late’ interaction from 260 to 360 ms (Figure 8,

labels 14 & 15). The early time interval corresponded to ,90–140

ms after the second beep – the stimulus that is presumably

responsible for the generation of the illusion. The authors

therefore interpreted this effect as an indication that the second

beep ‘activated’ the primary visual cortex, thus generating the

percept of the illusory second flash.

As well as the early differences in the parietal lobes, indications

of stronger activity related to the second flash when it was

preceded by a multi-modal context stimulus were also found in the

current study in the occipital lobes at the relatively late time of

300–320 ms (Figure 8, label 8). The differences between the UNI

and MULTI waveforms in this later time interval did not survive

strict controls over the false-discovery rate due to the large number

of multiple comparisons and hence should be interpreted

cautiously. However, this time and location corresponds with the

finding of ‘late’ interactions (1F2B . (1F0B + 0F2B)) at occipital

electrodes in Shams et al [7] (compare with Figure 8 label 15), as

well as the decreased activity in MULTI compared to UNI

difference waves in Meylan and Murray [13] (compare with Fig 8

label 11). Shams et al [7] compared the 1F2B . (1F0B + 0F2B)

interaction waveform with activity at the same electrode evoked by

a real flash (ie 2F – 1F), and found that the waveforms were

indistinguishable. They therefore concluded that the interaction

waveform reflected modulation of visual-specific processing by the

auditory stimulus. It is also interesting to compare the current

results with those of Watkins et al [8], who found that fMRI

activation in retinotopically-mapped V1 was stronger for 1F2B

stimuli on trials when illusory flashes were reported compared to

when the stimulus was perceived veridically. As has been

previously mentioned, the 1F2B stimulus contains the same initial

multi-modal flash/beep stimulus that was considered as the

‘context’ stimulus in the current study. In the current study, it

was followed by another flash stimulus, and the activity related to

another flash/beep stimulus, but without any following second

flash, was then subtracted, leaving only the response to the second

flash. To follow the analogy, in Watkins et al [8] the multi-modal

flash/beep stimulus was followed by another flash, and it was found

that activity in V1 increased when this extra flash also caused the

perception of an additional beep. As with the current study, the

modulation of visual processing that led to increased activity in V1

in Watkins et al [8] may have been caused either by direct cortico-

cortical connections from A1 to V1, or by the modulation of V1 by

multi-sensory processes set in motion by the initial multi-modal

flash beep stimulus. These possibilities could be further explored in

future research using Granger causality or transfer entropy

measures.

Overall, incorporating the results from the current study with

previous studies showing multisensory interactions in the parietal

lobe following a combined flash/beep stimulus suggests an

involvement of both feedback from parietal to primary sensory

areas, as well as direct connections between primary sensory areas.

Comparison to Meylan & Murray (2007)
The present study was similar in design to Meylan and Murray

[13]. However, there are several important differences in the

results. Firstly, there were small differences in the behavioural

results – while Meylan and Murray [13] report very high accuracy

rates (M = 89%) for the fusion (2F1B) stimulus, accuracy rates were

slightly lower in the current study (M = 77.2%, SD = 29.1),

indicating the presence of fusion illusions on a small number of

trials in the current study. However in both studies, only correctly-

responded trials were analysed. In other respects, the behavioural

results were very similar, with accuracy above 90% for all non-

illusion stimuli in both studies. For the fission (1F2B) stimulus,

mean accuracy was close to 50% in both studies, a figure

consistent with the majority of flash-beep illusion studies.

Meylan and Murray [13] found only one time interval in which

the electric field response for the UNI and MULTI waves (also

measured using the GFP) was different. This interval was from

238–275 ms, directly in-between the two significant intervals

found in the present study. The other major difference lies in the

direction of the result. Whereas Meylan and Murray found the

MULTI GFP waveform to be of overall lower amplitude than the

UNI GFP waveform, and significantly lower in the aforemen-

tioned time interval, the MULTI GFP waveform was consistently

larger than the UNI waveform in the current study.

The differences between the two results may be due either to

participant factors or to experimental methods/analysis factors.

The age ranges were very similar between the two studies,

although while the sample in the current study was predominantly

female (7 females, 4 males), the sample in Meylan and Murray

[13] was predominantly male (6 males, 2 females). However,

accuracy scores for any stimulus in the current sample did not

differ significantly for males and females, making the gender

distribution an unlikely source of the difference in results.

Similarly, there were small differences in the stimulus timing

used. Table 2 shows stimulus details for both studies. While the

duration of the visual stimulus were longer in the current study,

the auditory stimulus was slightly shorter, and the onset times of

the auditory and visual stimuli were identical. Differences in the

stimulus durations are unlikely to account for the differences in the

neurophysiological results, although it is possible that the longer

flash duration and subsequent reduction in the blank inter-

stimulus interval between flashes in the current study may have

rendered the visual double-flash stimulus more likely to ‘fuse’ into

a single flash, thus accounting for the difference in accuracy scores

for the 2F1B trials. Participants in the current study were

instructed to ‘count the number of flashes that they saw while

ignoring the beeping sounds.’ The exact instructions are not

reported in Meylan and Murray (2007), however the procedure

section states that ‘Subjects’ task was to indicate the number of

flashes perceived via a serial response box.’

Differences in the EEG recording setup and analysis are also

unlikely to account for the differences in results. Although Meylan

and Murray [13] used 128 recording sites rather than the 60 used

in the current study, the increase in the number of electrodes is

more likely to affect source localisation accuracy rather than the

GFP measure (although it is acknowledged that the overall

magnitude of the GFP will likely decrease as the number of

electrodes increases due to the central limit theorem). In many

other respects the analysis of EEG data was similar – the average

reference was used, the UNI and MULTI subtractions were

performed in the same way, and the GFP was calculated in the

same way. In short, it is difficult to explain the large differences in

result between the two studies. Individual differences and the

composition of the samples in each case may explain the

differences in results.
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Conclusion

Overall, the results from the current experiment showed that

neural responses related to processing of a visual stimulus were

modulated by prior multisensory stimuli. Specifically, EEG

responses to a flash stimulus were stronger when a flash stimulus

was immediately preceded by a multi-modal flash-beep stimulus

compared to when it was preceded by another uni-modal flash.

The differences were localised to the superior and inferior parietal

cortex from 130–160 ms, and to the primary and secondary visual

cortex from 300–320 ms. The results are supportive of views

implicating the involvement of higher-order multi-sensory associ-

ation regions in uni-sensory processing, but cannot rule out the

involvement of direct cortico-cortical connections between prima-

ry sensory areas.
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