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Abstract
Due to spatial scaling effects, there is a discrepancy in mineral dissolution rates measured 
at different spatial scales. Many reasons for this spatial scaling effect can be given. We 
investigate one such reason, i.e., how pore-scale spatial heterogeneity in porous media 
affects overall mineral dissolution rates. Using the bundle-of-tubes model as an analogy 
for porous media, we show that the Darcy-scale reaction order increases as the statistical 
similarity between the pore sizes and the effective-surface-area ratio of the porous sample 
decreases. The analytical results quantify mineral spatial heterogeneity using the Darcy-
scale reaction order and give a mechanistic explanation to the usage of reaction order in 
Darcy-scale modeling. The relation is used as a constitutive relation of reactive transport 
at the Darcy scale. We test the constitutive relation by simulating flow-through experi-
ments. The proposed constitutive relation is able to model the solute breakthrough curve 
of the simulations. Our results imply that we can infer mineral spatial heterogeneity of a 
porous media using measured solute concentration over time in a flow-through dissolution 
experiment.

Keywords  Reactive transport · Mineral dissolution · Upscaling · Reaction rate law

1  Introduction

Geochemical reactions such as mineral dissolution play an essential role in determining 
water chemistry, soil formation, biogeochemical cycling, and global climate (Wen and Li 
2017). Mineral reactions can also occur by injecting CO2 in subsurface reservoirs during 
geothermal energy extraction (Randolph and Saar 2011; Adams et al. 2021; Ezekiel et al. 
2022) or calcite mineralization (Pogge von Strandmann et al. 1983). One of the most sig-
nificant obstacles to understanding the geochemical reactivity of natural subsurface envi-
ronments stems from the multitude of spatial scales that have to be considered (Noiriel 
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et al. 2012). Due to spatial scaling effects, mineral dissolution rates are known to be 3–6 
orders of magnitude lower in the field than when measured in the laboratory (White and 
Brantley 2003; Navarre-Sitchler and Brantley 2007; Maher 2010; Moore et al. 2012). The 
deviation in mineral dissolution rates strongly limits the extrapolation of kinetic dissolution 
models and parameters characterized at the laboratory to natural systems (Li et al. 2020).

Many factors are responsible for the spatial scaling effects of mineral dissolution rates. 
This work focuses on how pore-size distribution—which contributes to hydraulic heteroge-
neity—and spatial mineral distribution causes such spatial scaling effects. Li et al. (2007) 
performed simulations with various settings of spatial mineral distribution and concluded 
that spatial mineral distribution has a significant scaling effect when the reactive miner-
als are of small but typical proportions. Experimental studies using a column packed with 
quartz and magnesite have confirmed the significant role of spatial heterogeneities in sub-
surface reactive transport and can be used to quantify the effect of spatial mineral distribu-
tion on dissolution rates (Salehikhoo et al. 2013; Li et al. 2014; Li and Salehikhoo 2015). 
X-ray micro-tomography provides observations of the impact of physical and chemical het-
erogeneity on reaction rates in multimineral porous media (Tutolo et al. 2015; Luhmann 
et al. 2017; Al-Khulaifi et al. 2017, 2018, 2019; Menke et al. 2016, 2018). Fischer et al. 
(2014) and Fischer and Luttge (2017) studied how mineral surface roughness at the nanom-
eter scale affects surface reaction rates and proposed to upscale the mineral reaction rate 
using Monte Carlo simulations. Ma et  al. (2019, 2021) quantified the accessible surface 
area of minerals in a sandstone using scanning electron microscopy (SEM) images and 
Brunauer–Emmett–Teller (BET) surface area measurements.

Regarding the influence of hydraulic heterogeneity, Wen and Li (2017) and Jung and 
Navarre-Sitchler (2018a) performed reactive transport simulations on stochastically gener-
ated permeability fields and studied how hydrologic heterogeneity affects mineral dissolu-
tion rates. Using Monte Carlo simulations, Jung and Navarre-Sitchler (2018b) further stud-
ied the time dependency of mineral dissolution rates, and Wen and Li (2018) developed an 
upscaled rate law for mineral dissolution in heterogeneous media under variable residence-
time and length-scale conditions. Li et al. (2020) upscaled mineral dissolution rates in a 
porous medium with a random permeability field using the fluid travel-time distribution 
function. The works mentioned above used the transition state theory (Lasaga 1998) to 
model mineral dissolution rates, with a macroscale reaction order of unity (n = 1) . This 
is reasonable since there are no physical explanations why this macroscale reaction order 
should not be one (Lasaga 1998; Brantley and Conrad 2008).

However, there are rate models with a macroscale reaction order of 2 in kinetics of crys-
tal growth (Nancollas 1968; Reddy 1975, 1977). Such second-order kinetics are used for 
modeling surface spiral growth (Nielsen 1984). Considering calcite as our mineral of par-
ticular interest, fitting experimental data using a reaction order larger than 1 is common, 
especially when the saturation is close to equilibrium (Plummer and Wigley 1976; Plum-
mer et al. 1978; Palmer 1991; Svensson and Dreybrodt 1992). A higher reaction order is 
also observed in modeling calcite dissolution in seawater (e.g., Subhas et al. 2015; Naviaux 
et al. 2019).

In this work, we use analytical techniques to develop a constitutive relation of min-
eral dissolution kinetics in porous media based on models with a reaction order n > 1 . 
We characterize hydraulic heterogeneity and mineral spatial heterogeneity by the lon-
gitudinal dispersivity and the reaction order. We use the bundle-of-tubes analogy to 
show how the reaction order relates to both hydraulic and spatial mineral heterogene-
ity in porous media. Furthermore, we simulate experimental scenarios involving advec-
tive and dispersive transport using such a constitutive relation. Our results show how 
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concentration breakthrough curves of the reactive species reveal information of both the 
hydraulic and chemical heterogeneity of porous media.

2 � Materials and Methods

This section first introduces reactive transport models at the pore scale and the Darcy 
scale. Then, we lay out statistical distributions of pore sizes and effective-surface-area 
ratios. Such distributions can thus define the volume-averaged concentration. Constitu-
tive relations based on the Darcy-scale reaction order is established using Taylor series 
expansions. We check the applicability of the constitutive relations by comparing the 
modeled concentration and the volume-averaged concentration using a goodness-of-fit 
measure, the Jensen–Shannon divergence. Finally, we explain how one can apply the 
proposed constitutive relation using a flow-through experiment.

2.1 � Reactive Transport at the Pore Scale

At the pore scale, we model the transport of a mineral-forming solute by

where C∗ is the solute concentration in the fluid (mol m −3 ), u⃗ is the fluid velocity (m s −1 ), 
D is the molecular diffusivity (m2 s −1 ). In Eq. (1), we consider C∗ as the unknown variable, 
and the fluid velocity, u⃗ , is given. The heterogeneous reaction is defined as

where n̂ is the unit normal vector pointing outwards from the fluid to the solid surface, and 
Rhet is the rate of the heterogeneous reaction per surface area (mol m −2 s −1 ) as a function 
of C∗ . Since we consider a bundle of capillary tubes as a model of a porous medium, we 
introduce Eq. (1) described in cylindrical coordinates:

and the boundary condition, Eq. (2),

where r is the radius of the capillary tube (m). We assume fully developed axisymmetric 
fluid flow, ur = u� = 0 , constant molecular diffusivity, and axisymmetric solute concentra-
tion. Furthermore, we assume the heterogeneous reaction causes negligible change to the 
tube radius and the mineral surface area. Regarding dissolution and precipitation reactions 
leading to changes in the pore geometry of porous media and fractures, we refer the reader 
to the works of Sallés et al. (1993), Békri et al. (1995, 1997) for further discussion. Follow-
ing Arce et al. (2005), the area-averaged concentration of the capillary tube is

(1)
𝜕C∗

𝜕t∗
+ u⃗ ⋅ ∇C∗ − ∇ ⋅ (D∇C∗) = 0,

(2)n̂ ⋅ D∇C∗ = Rhet (C
∗),

(3)
�C∗

�t∗
+ uz

�C∗

�z∗
− D

[
1

r∗
�

�r∗

(
r∗
�C∗

�r∗

)
+

�2C∗

�z∗2

]
= 0,

(4)D
�C∗

�r∗
= Rhet (C

∗) at r∗ = r,
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To develop an area-averaged or upscaled equation, we perform area-averaging of Eq. (3) 
to obtain

Evaluate the integral and rearrange:

Following Paine et  al. (1983), we further expand the convective term using Gray 
(1975)’s representation:

where ũz and C̃∗ are the spatial deviation terms of the fluid velocity and solute concentra-
tion, respectively. Considering only transport, Paine et al. (1983) showed that the disper-
sive transport term can be represented by the Taylor–Aris theory of dispersion:

with the constraints ⟨uz⟩r∕D ≫ 1 and Dt∗∕r2 ≫ 1 . Ananthakrishnan et al. (1965) deline-
ated dispersion effects for ⟨uz⟩r∕D = O(1) and introduced a time-dependent dispersion 
coefficient (m2 s −1 ) to model dispersion in the regime not covered by the Taylor–Aris dis-
persion. We utilize the time-dependent dispersion coefficient obtained by the method of 
moments (Barton 1983) and asymptotic techniques (Vrentas and Vrentas 1988)

where jn is the nth root of Bessel function of the first kind of order 1 (Meng and Yang 
2017). The time-dependent term in DL serves as a correction term for Taylor–Aris disper-
sion. Such a definition of dispersive transport is suitable for simple initial conditions, e.g., 
injecting a pulse of solute. Considering general initial conditions under steady flow condi-
tions, one has to include source terms to address the complexity of dispersive transport 
in a cylindrical tube (Taghizadeh et al. 2020). Since the averaged convection term can be 
described by averaged quantities, we divert our focus to the source term on the right-hand 
side of Eq. (7):

The heterogeneous reaction term depends on the solute concentration at the solid–fluid 
boundary in the radial direction. For reaction–diffusion systems in a cylindrical tube with a 

(5)⟨C∗⟩ = 1

�r2 ∫
r

0

2�r∗C∗dr∗ =
2

r2 ∫
r

0

r∗C∗dr∗.

(6)
�⟨C∗⟩
�t∗

+
�⟨uzC∗⟩
�z∗

−
2D

r2 ∫
r

0

�

�r∗

�
r∗
�C∗

�r∗

�
dr∗ − D

�2⟨C∗⟩
�z∗2

= 0.

(7)
�⟨C∗⟩
�t∗

+
�⟨uzC∗⟩
�z∗

− D
�2⟨C∗⟩
�z∗2

=
2D

r

�C∗

�r∗
����r∗=r.

(8)
𝜕⟨uzC∗⟩
𝜕z∗

= ⟨uz⟩𝜕⟨C
∗⟩

𝜕z∗
���������

convective transport

+
𝜕⟨ũz�C∗⟩
𝜕z∗

�����
dispersive transport

,

(9)
𝜕⟨ũz�C∗⟩
𝜕z∗

= −
⟨uz⟩2r2
48D

𝜕2⟨C∗⟩
𝜕z∗2

(10)DL =
⟨uz⟩2r2
48D

−
64⟨uz⟩2r2

D

∞�
n=1

e−j
2
n
Dt∗∕r2

j6
n

,

(11)
2D

r

�C∗

�r∗
||||r∗=r =

2

r
Rhet (C

∗|r∗=r).
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linear irreversible heterogeneous reaction, Rhet = −kC∗|r∗=r , Arce et al. (2005) performed 
an order-of-magnitude estimate and claimed that when kr∕D ≪ 1 , the solute concentration 
on the boundary can be approximated by

where k is a rate constant (m s −1 ). The constraint kr∕D ≪ 1 gives us a good range of k, 
since the pore radius is usually some tens of micrometers. Combining Eqs.  (7)–(12), the 
area-averaged solute transport equation in a cylindrical pore reads

This is an ad hoc approach of developing the averaged model. Though not perfect, such 
a one-dimensional (1D) expression does represent reactive transport in a pore throat in 
many pore-network models (Algive et al. 2010; Raoof et al. 2012, 2013; Varloteaux et al. 
2013a, b; Qin and Hassanizadeh 2015; Bekri et al. 2015; Gostick et al. 2016; Xiong et al. 
2016; Esteves et al. 2020). Rigorous upscaling of reactive flow in thin geometries has been 
performed with the following considerations: general mass action kinetics (van Duijn and 
Pop 2004), dominant Péclet and Damköhler numbers (Mikelić et al. 2006; van Duijn et al. 
2008), changes in pore-scale geometry (van Noorden 2009b; Kumar et al. 2011), changes 
in pore-scale geometry with non-isothermal effects (Bringedal et al. 2015, 2016), changes 
in pore-scale geometry with two-phase flow (von Wolff and Pop 2021), and coexisting 
homogeneous reactions (Boso and Battiato 2013). For perforated porous media, rigorous 
upscaling of reactive flow involving dissolution or precipitation processes has been per-
formed (Kumar et  al. 2016), with considerations of changing pore-scale geometry (van 
Noorden 2009a) as well as multiphase reaction–diffusion systems (Redeker et al. 2016).

The dimensionless number, kr/D, is often identified as the pore-scale Thiele modulus 
squared �2 or the Damköhler number Da. Balakotaiah et al. (1995) used the invariant mani-
fold expansion for advection and heterogeneous reaction in a cylindrical tube and showed 
that when 𝜙2 ≪ 1 , dispersion effects can be modeled by the Taylor–Aris theory. For reac-
tion–diffusion systems in porous media, Valdés-Parada et al. (2017) showed that the con-
straint 𝜙2 ≪ 1 can be loosened to �2 ≤ 1 by modifying the effective diffusivity and the 
effective reaction rate constant at the macro scale, and Bourbatache et al. (2020) recovered 
classical homogenized diffusive equations for small values of Damköhler numbers (defined 
by the length scale of the representative elementary volume).

2.1.1 � Second‑Order Dissolution Kinetics

Throughout this work, the heterogeneous reaction of interest is mineral dissolution. A com-
mon mineral dissolution model is of second order:

where kd is the dissolution rate constant (mol m −2 s −1 ) and kII
p
 is the precipitation rate con-

stant of second-order kinetics (mol−1 m 4 s −1 ). We assume the solution is dilute, such that 
the activity coefficient of the solute is unity. We relate the dissolution model with a more 
prevalent formulation involving the solubility product constant, Ksp , and the ion activity 
product, IAP:

(12)C∗�r∗=r = ⟨C∗⟩,

(13)
�⟨C∗⟩
�t∗

+ ⟨uz⟩�⟨C
∗⟩

�z∗
−
�
D +DL

��2⟨C∗⟩
�z∗2

=
2

r
⟨Rhet⟩(⟨C∗⟩).

(14)Rhet = kd − kII
p
C∗2,
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One can switch between the two forms by stating IAP = C∗2 and Ksp = kd∕k
II
p
 . Using 

calcite as an example, when pH> 5.5 , the dominant dissolving species at the diffusion 
boundary layer are Ca2+ and CO2−

3
 (Sjöberg and Rickard 1984). Thus, at intermediate 

pH values, IAP = C∗

Ca2+
C∗

CO2−
3

 . The assumption of electroneutrality close to the mineral 
surface yields IAP = (C∗

Ca2+
)2 , which results in second-order dissolution kinetics (Ebigbo 

et  al. 2012; Levenson and Emmanuel 2013). For magnesite dissolution at neutral to 
alkaline pH regimes, such second-order kinetics is also suitable (Salehikhoo et al. 2013; 
Wen and Li 2017). Second-order dissolution/precipitation kinetics also appears in 
upscaling reactive transport processes in porous media with attention to moving 
solid–fluid interfaces (Ray et al. 2019; Bringedal et al. 2020; Gärttner et al. 2020). Com-
bining Eqs. (13) and (14) yields

We relate the dimensional and nondimensional quantities by

where t is the nondimensional time, z is the nondimensional space, C is the nondimen-
sional solute concentration, and Lz is the length of the cylindrical pore (m). Then, we non-
dimensionalize Eq. (16) by the following scaling of time and concentration

where [t] is the diffusive time scale (s). The variables in square brackets remove the physi-
cal dimension of the starred variables and refer to characteristic quantities. Thus we have a 
nondimensional equation of reactive transport

where � is the aspect ratio, Pe is the Péclet number, and Da is the Damköhler number. In 
Eq.  (20), we further relate Da to � and the pore-scale Thiele modulus (of second-order 
reactions), denoted as r

√
kdk

II
p
∕D , to show that for such a definition of the Damköhler num-

ber, Da > 1 does not necessarily break the assumption of a small Thiele modulus. For a 
slender cylindrical pore, 𝜖 ≪ 1 , and a controlled flow rate, Pe 𝜖 ≪ 1 , we neglect the effect 
of dispersion. The exp

(
−j2

n
�−2 t

)
 term in the dispersion correction term also indicates such 

a correction term vanishes rapidly over time. Hence, the nondimensional reactive transport 
equation reads

(15)Rhet = kd

(
1 −

IAP

Ksp

)
.

(16)
�⟨C∗⟩
�t∗

+ ⟨uz⟩�⟨C
∗⟩

�z∗
−
�
D +DL

��2⟨C∗⟩
�z∗2

=
2

r

�
kd − kII

p
⟨C∗2⟩

�
.

(17)t∗ = [t] t, z∗ = Lz z, ⟨C∗⟩ = [C]C,

(18)[t] =
L2
z

D
, [C] =

√
kd

kII
p

,

(19)
�C

�t
+ Pe

�C

�z
−

(
1 +

(Pe �)2

48
− 64(Pe �)2

∞∑
n=1

e−j
2
n
�−2t

j6
n

)
�2C

�z2
= Da(1 − C2),

(20)� =
r

Lz
, Pe =

⟨uz⟩Lz
D

, Da =
2

r

L2
z

√
kdk

II
p

D
=

2

�2
r
√
kdk

II
p

D
,
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2.1.2 � First‑Order Dissolution Kinetics

First-order-kinetic models are uncommon, since chemical reactions often involve two 
reagents (Cussler 2009). If one wanted to make use of first-order kinetics, one would 
have to assume the concentration of a mineral-forming ion is in excess or constant 
(Meile and Tuncay 2006) or limit the usage of first-order kinetics to low solute concen-
trations (Kaufmann and Dreybrodt 2007). Nonetheless, we introduce the model of first-
order mineral dissolution

where kI
p
 is the precipitation-rate constant of first-order kinetics (m s −1 ). First-order dis-

solution kinetics is utilized to model evolution of karst aquifers (Gabrovšek and Dreybrodt 
2001). They apply to dissolution rates of various minerals such as gypsum, rocksalt, cal-
cium carbonate, and quartz (Jeschke and Dreybrodt 2002). Considering a general surface 
reaction, first-order kinetic models resemble adsorption and desorption kinetics studied by, 
e.g., Zhang et al. (2017), as well as the Noyes–Whitney model of drug dissolution (Doko-
umetzidis and Macheras 2006). First-order kinetics is also applied to heterogeneous reac-
tions between living cells and extracellular fluids (Santos-Sánchez et al. 2016). Combining 
Eqs. (13) and (22) and ignoring dispersion effects, we scale time and concentration by

such that the Péclet and the Damköhler numbers are

Notice the pore-scale Thiele modulus squared, �2 = kr∕D , appears in the form of 
the precipitation-rate constant, kI

p
 . Since �2 is proportional to Da �2 , the assumption of 

𝜙2 ≪ 1 is fulfilled, similar to the relation between the Damköhler number and the pore-
scale Thiele modulus of second-order kinetics. The nondimensional reactive transport 
equation of first-order kinetics is therefore

As for other possible models of heterogeneous kinetics, Qiu et al. (2017) provided a 
comprehensive review of upscaling reactive transport processes in porous media, e.g., 
Michaelis–Menten-type kinetics (Wood et al. 2007; Dadvar and Sahimi 2007), Monod-
type kinetics (Heße et  al. 2009), nonlinear kinetics that reduce to first-order kinetics 
when the reaction order is 1 (Guo et al. 2015).

We define the average velocity in a cylindrical pore using the Hagen–Poiseuille 
equation

(21)�C

�t
+ Pe

�C

�z
−

�2C

�z2
= Da(1 − C2).

(22)Rhet = kd − kI
p
C∗,

(23)[t] =
L2
z

D
, [C] =

kd

kI
p

,

(24)Pe =
⟨uz⟩Lz
D

, Da =
2

r

L2
z
kI
p

D
=

2

�2

kI
p
r

D
.

(25)�C

�t
+ Pe

�C

�z
−

�2C

�z2
= Da(1 − C).
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where � is the dynamic viscosity of the fluid (Pa s) and ΔP is the pressure difference 
between the inlet and the outlet (Pa).

2.2 � Reactive Transport at the Darcy Scale

We use the bundle-of-tubes analogy to model reactive transport at the Darcy scale (Kozeny 
1927). We define the specific mineral surface area (m−1 ) of the porous medium as

where A is the mineral surface area, V is the bulk volume of the porous media (m3 ), � is 
the ratio between mineral surface area and the total surface area of a pore, and N is the 
total number of pores. We assume that the pores have the same length, Lz , as the porous 
medium, such that the tortuosity is 1. The porosity of the porous medium is

where Vf is the fluid volume. Dividing Eq. (27) by Eq. (28), we obtain

Recall the Damköhler number for first-order kinetics, Eq. (24), the Damköhler number at 
the Darcy scale is therefore

where the characteristic length L is chosen to be the length of the porous medium, Lz . The 
Darcy-scale Damköhler number for second-order kinetics is

Since we consider the porous medium as a bundle of tubes, the seepage velocity of the 
porous medium can be defined using a volume-averaged velocity,

Hence, the Péclet number at the Darcy scale is

(26)⟨uz⟩ = r2

8

ΔP

�Lz
,

(27)S =
A

V
=

2Lz�
∑N

i=1
�iri

V
,

(28)� =
Vf

V
=

Lz�
∑N

i=1
(ri)

2

V
,

(29)
S

�
=

A

Vf

=
2
∑N

i=1
�iri∑N

i=1
(ri)

2
.

(30)Dad =
S

�

L2
z
kI
p

D
.

(31)Dad =
S

�

L2
z

√
kdk

II
p

D
.

(32)ū =

∑N

i=1
⟨ui⟩(ri)2∑N

i=1
(ri)

2
=

∑N

i=1
(ri)

4

8
∑N

i=1
(ri)

2

ΔP

𝜂Lz
.

(33)Ped =
ūLz

D
.



515Relating Darcy‑Scale Chemical Reaction Order to Pore‑Scale…

1 3

Dispersion effects arise when the pore sizes are not uniform (Carbonell 1979; Arri-
aza and Ghezzehei 2013; Meng and Yang 2017). Therefore, we introduce a longitudinal 
dispersion coefficient (m2 s −1),

where �L is the longitudinal dispersivity with the unit of length (m). We derive the longitu-
dinal dispersion coefficient using the spatial moments of the averaged solute concentration 
of the bundle of tubes model

The shape factor f(r) abbreviates the expression of pore sizes in Eq.  (35). Detailed 
derivations are presented in “Appendix 1”. The longitudinal dispersivity is

where z̄ is the center of mass of an instantaneous source injected in the porous domain. 
The spatial moment analysis showed that the longitudinal dispersivity increases linearly as 
the distance traveled of an instantaneous source, which is reasonable in an infinite domain. 
In recent studies based on pore-network modeling, Mahmoodlu et al. (2020) observed the 
longitudinal dispersivity increases as travel distance increases.

By scaling the longitudinal dispersion coefficient by the molecular diffusivity yields 
the nondimensional reactive transport model at the Darcy scale,

where qd is the reaction term that is yet to be defined. Such a Darcy-scale model resembles 
the upscaled formulation of heterogeneous reaction systems including convective transport 
in porous media, which incorporates the effect of pore geometry in the dispersivity tensor 
and the effective reaction-rate constant (Wood et  al. 2007; Battiato et  al. 2009; Battiato 
and Tartakovsky 2011; Valdés-Parada et al. 2011; Guo et al. 2015; Qiu et al. 2017). Our 
proposed model assumes the reaction term does not contribute to the overall dispersion 
coefficient. The flow-through experiment introduced in Sect. 2.7 circumvents such effects 
by eliminating spatial variation of solute concentration. Note that when all pores have the 
same radius and effective-surface-area ratio, Eq. (37) reduces to the equation for a single 
pore. In the next section, we discuss statistical distributions of pore sizes and effective-
surface-area ratios.

2.3 � Statistical Distributions of Pore Sizes and Effective‑Surface‑Area Ratios

The pore sizes of porous media usually follow a log-normal distribution (Shi et al. 1991; 
Hefny et  al. 2020). The probability density function of log-normally distributed pore 
sizes, r, is

(34)DL = 𝛼Lū,

(35)DL = ū2t

⎛⎜⎜⎜⎝

∑N

i=1
(ri)

6
∑N

i=1
(ri)

2

�∑N

i=1
(ri)

4

�2
− 1

⎞⎟⎟⎟⎠
= ū2t f (r).

(36)𝛼L = ūt f (r) = z̄ f (r),

(37)�C

�t
+ Ped

�C

�z
−
(
1 + (Ped)

2t f (r)
)�2C
�z2

= qd,
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where � and � are the mean and standard deviation of the variable’s natural logarithm, 
respectively. The sum of pore sizes raised to the power of m can be described by a raw sta-
tistical moment,

If the pore-size distribution is known, the intrinsic permeability, kI , of the bundle can be 
calculated as

Using the moments of the lognormal distribution, we can now clarify the shape factor,

Since we are interested in not only the pore-size distribution but also the effective sur-
face area of the reactive minerals, we utilize the effective-surface-area ratio, � , which has 
a value between zero and one. A convenient choice for modeling the distribution of a vari-
able bounded by zero and one is the beta distribution. The probability density function of 
the beta distribution is

where Γ(⋅) is the gamma function. Variables a and b shape the beta distribution.
The specific surface area over porosity, S∕� , which is a part of the Darcy-scale Dam-

köhler number, Eqs. (30) and (31), can be defined as

Such a definition of S∕� depends on the pore geometry. Inferring from Hussaini and 
Dvorkin (2021)’s compilation of specific surface area versus porosity using digital images 
of natural rocks, S∕� can range from 0.15 (Fountainebleau sandstone) to 0.7 (Kentucky 
sandstone) when E (�) = 1.

2.4 � A Constitutive Relation for Reaction at the Darcy Scale

A constitutive relation is an additional equation that specifies properties of a material. For 
example, the longitudinal dispersivity describes the dispersion of solute introduced by vari-
ations in fluid velocities in a porous material. In this section, we develop a constitutive 
relation that models the average solute concentration of a porous medium with varying 
reaction rates in pores.
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2.4.1 � First‑Order Kinetics

Before we approach the full reactive transport problem—Eq. (37)—we start with a single pore 
involving only mineral dissolution,

where C0 is the initial concentration of the mineral-forming solute in the pore. We consider 
an aspect ratio, r∕Lz , small enough such that a volume-averaged concentration is repre-
sentative. Using Eq. (24), the Damköhler number in a cylindrical pore is

where 2�∕r defines the pore-scale geometry and L2
z
kI
p
∕D defines the physics of the prob-

lem. In this work, we focus on analyzing how pore-scale geometry affects solute concentra-
tion and reaction rate over time, assuming constant L2

z
kI
p
∕D . We abbreviate L2

z
kI
p
∕D to Dap . 

The solution for the single-pore reaction problem is

We define the volume-averaged solution as

The bounds of the integral over pore size, r, should correspond to the bounds of the pre-
scribed pore-size distribution. Consider C0 = 0 and expand the volume-averaged solution 
using a Taylor series around t = 0:

(44)
dC
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Let us now describe the Darcy-scale reaction in the same manner as we did for a single 
pore, Eq. (44). In this case, the definition of the Darcy-scale Damköhler number,

leads to a first-order approximation of the volume-averaged concentration. To better 
approximate Cavg , we propose a nonlinear reaction-rate model as a constitutive relation,

where n is the reaction order (Lasaga 1998). Many researchers have attempted to explain 
values of the reaction order in terms of dissolution or precipitation processes (Blum and 
Lasaga 1987; Teng et  al. 2000). However, attributions of a process on the basis of this 
exponent are generally not defensible without further observations (Brantley 2008). For 
further discussion, see Brantley (2003, 2008).

The solution to the nonlinear reaction-rate model, Eq. (54), is

Its Taylor series expansion around t = 0 while C0 = 0 is

We observe that the Darcy-scale Damköhler number, Eq. (53), still matches the first-order 
term of the volume-averaged solution, Eq. (52). If we define

then the nonlinear reaction-rate model approximates the volume-averaged concentration 
to the second order with respect to time. By Cauchy–Schwarz inequality, we infer n ≥ 1 , 
which agrees with experimental observations. The inverse square root of this definition 
of the reaction order, n, is also known as Tucker’s congruence coefficient, which assesses 
similarity between two variables (Lorenzo-Seva and ten Berge 2006).

Figure  1 shows scatter plots of pore sizes and effective-surface-area ratios. Each point 
represents an observation of the pore size and the effective-surface-area ratio in a porous 
sample. Tucker’s congruence coefficient, rc , measures the similarity between pore size and 
effective-surface-area ratio. From the leftmost figure to the rightmost figure, the congruence 
coefficient decreases as the observations become less similar, or more heterogeneous. Since 
the reaction order, n, is the squared inverse of the congruence coefficient, the reaction order 
increases as the heterogeneity increases. Such a definition of the reaction order is a function of 
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the geometric variables � and r. Thus we can use the reaction order to infer pore-scale spatial 
heterogeneity of minerals.

2.4.2 � Second‑Order Kinetics

We model the single-pore problem with second-order kinetics by

where the solution is

Using Eq. (20), the Damköhler number in a cylindrical pore is

where L2
z

√
kdk

II
p
∕D , which we abbreviate to Dap , defines the physics of the problem for 

second-order kinetics. The volume-averaged concentration is defined using Eq.  (47), and 
we apply Taylor series expansion to the volume-averaged concentration,

where B2k is the Bernoulli number (Oldham et al. 2009). The Taylor series expansion of the 
hyperbolic tangent function, Eq. (60), converges for Da t < 𝜋∕2 , which is not of concern 
since we utilize only the derivatives of Cavg(t = 0).
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Fig. 1   This figure shows scatter plots of pore sizes and effective-surface-area ratio. The title of each plot 
shows the reaction order, n, and Tucker’s congruence coefficient, rc
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We propose the following constitutive relation that describes the solute concentration at the 
Darcy scale,

We do not attempt a solution for C . However, we can still expand C around t = 0 with Tay-
lor series:

See “Appendix 2” for detailed derivations. Comparing the third-order term of Eq. (64) with 
that of Eq. (66) yields

One can utilize the quadratic formula to explicitly determine n,

where we consider only the larger value of n as a solution. Note that the reaction orders for 
first- and second-order kinetics are non-dimensional and, most importantly, independent of 
the length scale and the reaction rate constants.

2.5 � Goodness of Fit Between the Pore‑Scale and the Darcy‑Scale Concentrations

There exists a variety of goodness-of-fit measures between models and experimental observa-
tions. For example, the coefficient of determination, R2 , is often used to determine the kinetic 
rate law when applying the integral method (Brantley and Conrad 2008; Zhao and Skel-
ton 2014). The mean-squared error is also a goodness-of-fit measure, and the least-squares 
approach tends to minimize such a metric. We use another goodness-of-fit measure, the 
Jensen–Shannon divergence, which is based on the Kullback–Leibler divergence (Kullback 
and Leibler 1951). The Kullback–Leibler divergence between some unknown distribution, 
p(x), and an approximating distribution, q(x), is:

The Kullback–Leibler divergence satisfies KL(p‖q) ≥ 0 with equality if, and only if, 
p(x) = q(x) (Bishop 2006). Although KL(p‖q) ≥ 0 , it may diverge to infinity depending on 
the underlying densities (Nielsen 2020). Thus we use the Jensen–Shannon divergence,
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which is bounded between 0 and 1 when using base-2 logarithms (Lin 1991). Throughout 
this work, we use the Jensen–Shannon distance, which is defined as the square root of the 
Jensen–Shannon divergence.

Such a metric measures the distance between probability distributions (Endres and 
Schindelin 2003; Österreicher and Vajda 2003; Levene and Kononovicius 2019). The fol-
lowing describes how we apply this measure to solute concentration over time, Cavg(t) and 
C(t) . Suppose we regard solute concentration over time as cumulative distribution func-
tions. In that case, we measure the Jensen–Shannon divergence of their derivatives, which 
can be seen as the probability density functions or the reaction rates over time.

When the observed solute concentration is not monotonically increasing over time like 
a cumulative distribution function, we simply use the root mean square error (RMSE) as a 
quality measure of the constitutive relation,

2.6 � Determination of the Darcy‑Scale Damköhler Number, Da
d
 , and the Reaction 

Order, n, using power series

We test the constitutive relation using the volume-averaged concentration Cavg(t) , which is 
an analogy of solute concentration measurement from a dissolution experiment. Assume 
the solute concentration can be described by the constitutive relation within a certain error. 
Then we can use the Taylor series expansions, Eqs. (57) and (66), to obtain the Darcy-scale 
Damköhler number,

which is the initial rate of reaction. When the kinetics is of first order, the reaction order is 
obtained by differentiating Eq. (57) twice,

Differentiating Eq. (66) thrice and rearranging yields the reaction order for second-order 
kinetics,

This method of determining Dad and n utilizes power-series expansion and requires only 
the derivatives of concentration at t = 0 , given Cavg(t = 0) = 0.

We consider three sets of log-normally distributed pore sizes, R1 , R2 , and R3 , which 
have S∕� ≈ 0.6 but different variances. The pore sizes are chosen such that they range 
from 10 to 80 μ m (Gong et al. 2020). Likewise, we assume the effective surface area fol-
lows the beta distribution, where Ω1 considers most pores are fully reactive, Ω2 assumes 
a larger variance of mineral surface area in the pores, and Ω3 implies that the reactive 
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mineral constitutes a small portion of the porous sample. Figure 2 shows the details of the 
aforementioned probability distributions.

The products of the random variables R and Ω form nine scenarios of the bundle-of-
tubes model, which can be used as benchmarks for our power-series approach to obtain 
the Darcy-scale Damköhler number and the reaction order. We compare this method with 
a goodness-of-fit minimization using both Dad and n as unknowns, similar to the ideas 
of nonlinear least-squares model fitting (Fogler 2016). Initially, the pores are filled with 
dissolving fluid with no solute concentration, C = 0 . Then the mineral starts to dissolve 
into the fluid, such that the solute concentration increases. We assume we can observe the 
average concentration, Cavg , without transport effects. To capture the full reaction behavior, 
the simulation ends when concentration Cavg is larger than 0.99. The physics-related param-
eters, Dap , is set as 50, such that the Darcy-scale Damköhler numbers of the scenarios are 
at a similar scale.

2.7 � Flow‑Through Experiment

In the previous section, we test the constitutive relation considering only mineral reaction. 
To measure the solute concentration of the fluid in a porous sample, one has to push the 
fluid out of the porous sample. We now discuss the full reactive transport problem. Con-
sider a flow-through experiment, i.e., injecting fluid that dissolves the mineral in a porous 
sample. We collect the fluid from the outlet and measure the solute concentration over 
time. Before the experiment, the porous sample should be saturated by the dissolving fluid, 
which will result in an initial concentration of the solute in the fluid. Then we start the 
flow-through experiment by injecting fluid without solute under high Péclet number. This 
process aims to flush out all residual concentrations, such that the initial condition of the 
concentration corresponds to the upscaling approach considering only reaction. We take 
fluid samples from the outlet and measure the solute concentration. Since we are injecting 
fluid with zero solute concentration, we expect the measured solute concentration at the 
outlet to decrease over time. When the outlet concentration is close to zero, we reduce the 
Péclet number to 0.1–1% of the original Péclet number in order to observe an increase of 
the outlet solute concentration. The flow-through experiment creates a V-shaped curve of 
outlet concentration over time.

Fig. 2   This figure shows the probability density functions of the distribution of pore sizes and effective-sur-
face-area ratio. The legends state the essential parameters for generating the probability density functions. 
The definitions of the probability density functions are defined in Eqs. (38) and (42)
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We use FEniCS (Alnaes et al. 2015) to solve the transient initial boundary value prob-
lem of each pore and apply Eq. (47) to obtain the average concentration. We discuss two 
types of porous samples, namely the combinations of the pore-size distribution and the 
effective-surface-area ratio, R1Ω3 and R3Ω3 . We test the porous samples for the low and 
high Damköhler-number cases, described in the following subsections. In all cases, we 
consider the molecular diffusivity, D, as 5 × 10−9 m2 s−1.

2.7.1 � The Low Damköhler‑Number Case, Dad = 0.1

The Darcy-scale Damköhler number, Eq. (53), is proportional to the length scale squared. 
This case is suitable when the mineral has low reaction rates or when the porous domain is 
short (small length scale), e.g., a 5  cm rock sample in a laboratory. We consider this as our 
“small length-scale scenario” for which the outlet solute concentration can be measured. 
Since the Damköhler number is low, the solute concentration during injection of the dis-
solving fluid should be far from chemical equilibrium. Therefore, we assume the reaction 
is of first order.

Following the procedure of the flow-through experiment, we set the initial Péclet num-
ber as 10, and the Darcy-scale Damköhler number is 0.1. We reduce the Péclet number to 
0.01 at 0.15 nondimensional time. The simulation ends at 1.5 nondimensional time, which 
for the 5 cm rock sample mentioned above would correspond to about 8.7 days.

The solute concentration over time at the outlet of the porous sample is collected from 
the simulation data. Knowing the Péclet number and that the mineral reaction is of first 
order, we fit the observed concentration over time with the reactive transport model,

The shape factor, f(r), is defined using Eq. (35). Utilizing the optimization procedures 
in SciPy (Virtanen et al. 2020), we find Dad and n by minimizing the RMSE between the 
observation and the model.

Another method of fitting Dad and n is to utilize a part of Cavg(t) , where the diffusion 
effects are dominant enough ( Ped ≪ 1 ) such that we can treat the concentration as con-
stant over space. Owing to the divergence theorem and the boundary condition C(0, t) = 0 
results in

Then, we can perform the least-squares fitting on the left-hand side to determine Dad 
and n. Figure 3 shows the outlet concentration of the flow-through experiment and high-
lights the region in which we consider diffusion to be dominant. Such an approach relies 
heavily on the strong-diffusion assumption and is therefore not suitable for the high Dam-
köhler-number case, discussed in the next section.

2.7.2 � The High Damköhler‑Number Case, Dad = 4 × 104

Consider a field experiment in an aquifer, where the length scale is on the order of meters. 
Here, a fluid is injected in one well and produced at another well. In this case, it may not 
be possible to observe a concentration breakthrough at the outlet. Thus, we perform simula-
tions of a flow-through experiment and measure the concentration at the inlet over time. The 
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Darcy-scale Damköhler number is 4 × 104 . We assume a second-order kinetics model for the 
mineral reaction, and our reactive transport model is

We consider three cases of initial Péclet numbers, 4 × 103 , 8 × 103 , and 8 × 104 . The injec-
tion stops at 2 × 10−6 dimensionless time, and the simulation ends at 1 × 10−5 dimensionless 
time, which is roughly 231.5 days considering a 100 m simulation domain.

Though it is practically not possible to observe the inlet concentration during the injection 
phase, we perform the fitting of Dad , n, and f(r) using all information of Cavg at the inlet. In the 
latter phase when injection stops (rising limb of the curve in Fig. 3), the concentration at the 
inlet can be determined by sampling the fluid in the injection well.

3 � Results

In this section, we show the benchmarks of the power-series approach and the simulations of 
flow-through experiments. Then, we discuss the results in Sect. 4.

3.1 � Benchmark of the Power‑Series Approach

We benchmark the power-series approach that obtains the reaction order, n, and the Darcy-
scale Damköhler number, Dad , using a bundle of tubes characterized by the distributions of 
pore sizes and effective-surface-area ratio described in Sect. 2.6.

Figures  4 and 5 show the benchmark of the first-order kinetics and second-order kinet-
ics, respectively. In the upper part of the figures, we plot the contour lines of log-scaled 
Jensen–Shannon distance between Cavg and C . The red points indicate the approximation of 
Dad and n using the power-series approach. In an ideal case, the red points should be in the 
minimum of the Jensen–Shannon distance. In the lower part of the figures, we plot the con-
centration over time of all scenarios.

(78)�C
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�z
−
(
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= Dad(1 − C
2
)n.

Fig. 3   The outlet concentration 
over time of the low Damköhler-
number problem. The orange line 
shows the part where we apply 
the least-squares fitting technique 
Eq. (77). The vertical dashed line 
indicates the time, t = 0.15 , when 
the injection rate is reduced
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3.2 � Flow‑Through Experiment

Figure 6 shows the observed concentration, Cavg , and the modeled concentration, C . Table 1 shows 
the Darcy-scale Damköhler number, the reaction order, and shape factor obtained by direct calcu-
lation [Eqs. (53), (58), and (68)], and by RMSE minimization of the low and high Damköhler-
number cases ( Dad = 0.1 and Dad = 40,000 , respectively) corresponding to the R1Ω3 and the 
R3Ω3 distributions. In the low Damköhler-number scenarios, we use the least-squares curve fitting 
method, Eq. (77), to obtain Dad and n. The results of the least-squares curve fitting are Dad = 0.1 , 
n = 1.38 for the R1Ω3 scenario, and Dad = 0.1 , n = 1.63 for the R3Ω3 scenario.

Fig. 4   The upper part of the figure shows the contours of the log-scaled Jensen–Shannon distance between the 
observed concentration and the modeled concentration of first-order reactions using the constitutive relation. The red 
points are the Darcy-scale Damköhler number and the reaction order approximated by the power-series approach 
(Eqs. (73) and (74)). The legend shows the value of the log-scaled Jensen–Shannon distance using a grayscale, cor-
responding to the brightness of the colored contour lines. The lower part of the figure shows the concentrations over 
time Cavg and C of all pore sizes and effective-surface-area ratios scenarios
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4 � Discussion

4.1 � Benchmark of the Power‑Series Approach

In Fig.  4, we observed that the power-series approach obtains Dad and n close to the 
minimum Jensen–Shannon distance. The connections between nonlinear fitting of the 
parameters, Dad and n, and the geometric information of the porous medium are estab-
lished since the power-series approach is exact for retrieving expected values of the 
pore-size and the effective-surface-area distributions.

Fig. 5   The upper part of the figure shows the contours of the log-scaled Jensen–Shannon distance between the 
observed concentration and the modeled concentration of second-order kinetics using the constitutive relation. 
The red points are the Darcy-scale Damköhler number and the reaction order approximated by the power series 
approach [Eqs.  (73) and (75)]. The legend shows the value of the log-scaled Jensen–Shannon distance using a 
grayscale, corresponding to the brightness of the colored contour lines. The lower part of the figure shows the con-
centrations over time Cavg and C of all pore sizes and effective-surface-area ratios scenarios
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In Fig.  5, we observed general agreement of Dad and n obtained by the power-
series approach to those at the minimum Jensen–Shannon distance. As the variance 
of the pore-size increases, the obtained Dad and n (red points) stray from the mini-
mum Jensen–Shannon distance. In the concentration plots of the R3Ω1 , R3Ω2 , and R3Ω3 
cases, the modeled concentration fits well when C < 0.5 . Some discrepancy between 
C and Cavg is present when C > 0.5 . Comparing to the results of first-order kinetics, 
where C fits Cavg well throughout all concentrations, our averaged model of second-
order kinetics can only fit reactions far from equilibrium (e.g., C < 0.5).

The power-series approach of obtaining Dad and n suffers from the fact that: 

1.	 reaction rates at zero concentration can be hard to obtain, and
2.	 numerical differentiation of higher-order derivatives can yield spurious results.

Therefore, we require other nonlinear fitting methods by minimizing the divergence 
between models and observations. In the next section, we discuss the intricacies of 
nonlinear fitting of solute concentration during flow-through experiments.

Fig. 6   The figures show the concentration Cavg (solid lines) and the modeled concentration C (dashed lines) of the 
low Damköhler-number cases on the top panel. The high Damköhler-number cases are summarized in the middle 
and the bottom panel. The left and right panels show the R1Ω3 and the R3Ω3 cases, respectively
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4.2 � Flow‑Through Experiment

4.2.1 � The R
1
Ä

3
 Scenario

The top-left panel of Fig.  6 shows the low Damköhler-number, first-order-kinetics case, 
where both the RMSE minimization and the least-squares fitting method fit the outlet con-
centration Cavg . Both methods of obtaining Dad and n are accurate within 15% relative error 
as confirmed by direct calculation from pore-size and effective-surface-area distributions. 
The good agreement can be attributed to the fact that the solute can be mostly flushed out 
from the porous domain, due to the low Damköhler number. Hence, the solute concentra-
tion in each tube goes down to almost zero, and spatial gradients of the solute concentration 

Table 1   This table summarizes 
the Darcy-scale Damköhler 
number, Da

d
 , the reaction 

order, n, and the shape factor, 
f(r), obtained by fitting the 
concentration-over-time curve 
using the constitutive relation 
with the RMSE metric

The values of the direct calculation are the result of prescribing Dap , 
the R

1
Ω

3
 distribution, and the R

3
Ω

3
 distribution. In the low Dad case, 

we assumed first-order kinetics. Hence we use Eq.  (58) to calculate 
the reaction order. We assumed second-order kinetics for the high Dad 
case, and Eq. (68) is used for calculating the reaction order for second-
order kinetics. The direct calculation of f(r) uses Eq. (41). The results 
of the least-squares curve fitting are Dad = 0.1 , n = 1.38 for the R

1
Ω

3
 

scenario, and Dad = 0.1 , n = 1.63 for the R
3
Ω

3
 scenario

*The fitting in this case does not yield reasonable results

R3Ω3

Initial Pe
d

10 4000 8000 40,000
Direct calculation
 Dad 0.1 40,000
 n 1.40 1.77
 f(r) blank 4.081 × 10

−2

Minimum RMSE
 Dad 0.1 52,528 45,154 38,464
 n 1.57 1.57 1.66 1.30

Minimum RMSE with shape factor fitting
 Dad 0.1 50,887 42,049 38,950
 n 1.68 1.55 1.59 1.53
 f(r) 2.39 × 10

−2 1.402 × 10
−
1 1.222 × 10

−1
3.168 × 10

−2

R
3
Ω

3

Direct calculation
 Dad 0.1 40,000
 n 1.74 2.60
 f(r) 1.718

Minimum RMSE
 Dad 0.13 25,376 24,691 10

−6*
 n 4.60 1.0 1.43 4.89*

Minimum RMSE with shape-factor fitting
 Dad 0.12 35,791 25,025 29,111
 n 3.87 1.56 1.0 1.0
 f(r) 16.8 2.091 1.433 0.463
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in the z direction are negligible. This creates a situation similar to the problem considering 
only reaction effects, which is not the case for the scenarios of high Damköhler-number, 
second-order kinetics.

Focusing on the high Damköhler-number scenarios, we observe general agreement of 
fitted parameters. For the case of initial Ped = 4000 , the error in Dad can be attributed to 
the fact that the volume injected is not enough, such that the dissolution in smaller pores 
is not observed in Cavg . The case of initial Ped = 8000 approximated Dad closer to the pre-
scribed value than the previous case. The third case of initial Ped = 40,000 , performed the 
best in retrieving Dad . This may be caused by, similar to the low Damköhler-number case, 
that the initial solute concentration of all pores is pushed out from the porous domain, such 
that Cavg is close to zero. The purpose of comparing these three cases is to emphasize that 
the inversion of parameters is influenced by how we perform the injection test, namely, by 
the selection of the initial Péclet number.

Furthermore, we performed a fitting in all cases considering the shape factor as 
unknown. For the low Damköhler number case, we have a good fit of f(r) within an order 
of magnitude. However, the obtained value for n exhibits a bigger error. This signals the 
vagueness of the reaction order and the shape factor in minimizing RMSE, where increas-
ing or decreasing either one of the variables leads to similar RMSE. For the high Dam-
köhler number cases, the obtained Dad improved slightly comparing to the cases with a 
prescribed shape factor. All fitted shape factors are within an order of magnitude compared 
to the theoretical calculations. In particular, for the case of initial Ped = 40,000 , we observe 
a good fit of the retrieved shape factor.

4.2.2 � The R
3
Ä

3
 Scenario

This scenario tests how effective the pore structure can be inferred in a more dispersive 
setup. Table 1 summarizes the obtained Dad and n for both the low and high Damköhler-
number cases. For the low Damköhler-number case, the minimum RMSE methods do not 
yield decent approximations of Dad , n, and f(r). The top right panel of Fig. 6 shows that 
all methods failed to fit the V-shaped region ( t < 0.3 ), where dispersive effects matter the 
most. The pore-size distribution R3 mainly consists of smaller pores, as compared to R1 , 
which means that the solute to be harder to flush out. This dispersion effect is also dem-
onstrated in the right panel of Fig. 8, where the dispersion model fails to capture the long-
tailed concentration profile. However, the least-squares fitting method yields exact Dad , 
and reasonable n within 10% relative error. The least-squares fitting method performs well 
for the low Damköhler number in both the R1Ω3 and R3Ω3 cases.

For the high Damköhler-number scenarios, fitting the averaged concentration using the 
model, Eq. (78), does not recover pore-scale information in general. In Fig. 6, the concen-
tration profile of the initial Ped = 40,000 with a prescribed shape factor does not fit the 
averaged concentration. Compared to the results with shape-factor fitting, the prescribed 
shape factor yields too much dispersion for the given Péclet number. Recall that the longi-
tudinal dispersion coefficient is defined as (Ped)2t f (r).

The case of initial Ped = 4000 with shape-factor fitting gives us the best result in retriev-
ing the model parameters. As shown in both Figs. 6 and 7, the initial Péclet number is not 
enough to flush out the solute in all pores. However, the dispersion effect is not as pro-
nounced as the initial Ped = 40,000 case, due to the lower initial Péclet number. The key to 
better knowledge of the model parameters and pore-scale information is to control the ini-
tial Péclet number for less dispersion. We demonstrate that the rate of injection influences 
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the parameter fitting of the averaged model, due to dispersion caused by the variance of 
pore sizes. How to properly choose the initial injection rate for inference of pore-scale 
information could be the subject of future studies.

Figure  7 shows the concentration in pores, the averaged concentration, and the mod-
eled concentration of the high Damköhler number scenarios. When the injection stops, the 
increase of the inlet solute concentration is not only due to the reaction, but also due to the 
diffusion of solute from the reservoir to the inlet. We attribute the underestimated n to our 
reactive transport model, Eq. (78), not being able to capture the averaged diffusion effects 
in each pore, which results in a lower reaction order. Certainly, this situation is not as ideal 
as the low Damköhler-number situation, which decouples transport and reaction by flush-
ing out almost all of the residual concentration. The modeled concentration, C , still repre-
sents the average behavior of the pore concentrations.

To summarize, although imperfect, our method of parameter estimation using a solute 
concentration breakthrough curve is useful for modeling the average behavior of reactive 
transport in porous media. The results suggest it is possible to infer pore-scale information 
using the inversion of averaged parameters.

In all of the flow-through experiments, we considered only one observation point, either 
the fluid inlet or the fluid outlet. This work serves as a demonstration of the base case with 
only one observation. To improve the fitting of the reaction order of the high Damköhler-
number cases (especially the ones with R3Ω3 distribution), one can incorporate more 
observation points, spatially distributed within the domain.

Fig. 7   This figure shows the concentration of the pores, C, the averaged concentration, Cavg , and the mod-
eled concentration, C , of the selected scenarios with shape factor fitting. The left panel shows the solute 
concentration in the porous domain during fluid injection. The middle panel shows the solute concentration 
after fluid injection has stopped. The right panel shows the last time step of the simulation, as indicated by 
the increasing inlet concentration
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4.3 � The Applicability of the Constitutive Relations

By adding an exponent to the pore-scale reaction model, the Darcy-scale reaction model 
effectively describes the averaged behavior of reactions taking place independently in 
different pores of the porous medium under a specific flow-through experiment. We 
examine the applicability of the simple approach using the averaged concentration of 
first-order kinetics as an example. The averaged concentration, Eq. (48), can be consid-
ered as a continuous mixture of exponential distributions,

where � is a parameter that characterizes the exponential distributions. The finite mixture 
is known as the hyperexponential distribution, which is utilized for fitting long-tail distri-
butions (Feldmann and Whitt 1998; Okada et al. 2020). If � is a gamma distribution, then 
Cavg(t) is a Pareto distribution (Balakrishna and Lai 2009). The concentration of our pro-
posed model, Eq. (55), has the following form when C0 = 0,

which is the cumulative distribution function of the Pareto distribution, also called the 
Lomax distribution. There exists a particular ratio distribution of the effective surface area 
and the pore sizes, Ω∕R , that satisfies C = Cavg . Such an existence contributes to the effec-
tiveness of the constitutive relation for the first-order kinetics.

In contrast, the theoretical basis of constitutive relations for second-order kinetics is 
less distinct. We simply followed the derivations of first-order kinetics and exploited the 
oddity of Cavg and C to obtain a second-order approximation. The solution for second-
order kinetics in a single pore, Eq. (60), can be recast into

which is a cumulative distribution function of a scaled logistic distribution. If we consider 
time a semi-infinite domain [0,∞) , such a distribution is also known as the half logistic 
distribution (Balakrishnan 1985). Though we did not find or derive the relationships of the 
logistic distribution mixture, we denote the possibility of approximating such a mixture 
using the Pareto distribution, Eq. (80), since the hyperbolic tangent function can be repre-
sented by a Laurent series

which is a mixture of exponential distributions. Such expansion techniques would avoid 
relying on derivatives around C = 0 as is done in this study, which may be advantageous 
but requires more research.

(79)Cavg(t) = 1 − ∫
∞

0

e−�tp(�)d�,

(80)C(t) = 1 −
[
1 + Dad(n − 1) t

]1∕(1−n)
,

(81)C = tanh (Da ⋅ t) =
1 − e−2Da⋅t

1 + e−2Da⋅t
,

(82)tanh (t) = 1 − 2

∞∑
k=0

(−1)ke−2t(k+1), t > 0,
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4.4 � Limitations and Outlook

The main limitation of this study is that the reaction model we considered is simple and 
may not be adequate to describe complex geochemical processes, e.g., a rock sample 
which consists of multiple dissolving minerals. We also assumed the amount of dis-
solved mineral is minimal such that the geometry of the pores is not affected. Though 
we considered two common models of first- and second-order kinetics, we treat the rate 
constant, kd and kp , as constant, and indeed, kd and kp may change as temperature, pH, or 
ionic strength changes.

Moreover, the assumption that chemical reactions in each tube occur independently 
of the other tubes is idealized. A better approach is utilizing pore-network models. In 
pore-network modeling, the porous medium is discretized as a network of pore bodies 
and pore throats, and the coordination number is defined as number of connections to 
each pore body. Experimental studies have reported that the average coordination num-
ber of a sandstone is ∼ 4 (Ioannidis and Chatzis 2000; Øren and Bakke 2003; Hefny 
et al. 2020). Our bundle-of-tubes model has an average coordination number of 0 (or 1, 
if one considers the pore bodies reside at the fluid inlet and outlet boundaries), which 
is the base case for pore-network modeling. For this base case, the reaction order does 
not depend on Ped or Dad . The dependence of the reaction order on Ped or Dad for larger 
coordination numbers requires further studies.

Nonetheless, our simple model reveals a possible mechanistic explanation to the 
usage of the Darcy-scale reaction order larger than one, and how it can reveal geomet-
ric information of the porous medium using the solute breakthrough curve. We suggest 
considerations of the aforementioned limitations as potential topics for future research.

We propose another possible application of this work in view of energy conservation 
in a porous sample, where there is only one definition of temperature of the fluid, T∗

f
 and 

the porous solid, T∗
s
 . A special case of energy conservation without pressure work and 

viscous heating is analogous to Eq. (13):

where Df is the thermal diffusivity of the fluid, and qT is a heat source introduced by the 
porous solid. Usually, such an energy conservation model of heat tracer tests assumes ther-
mal equilibrium between the fluid and the porous solid, Tf = Ts , (Shook 2001; Anderson 
2005; Saar 2011). However, studies and modeling on thermal disequilibrium between fluid 
and solid phases have gained interests lately (Karani and Huber 2017; Koch et al. 2021). If 
we consider a heat tracer test where we create a breakthrough curve like those in Fig. 3, we 
can model the behavior by

where D is a certain average of thermal diffusivity of the porous media, and L∗ is a charac-
teristic length that defines the heat flux between the solid–fluid boundary. The formulation 
is similar to our study of reactive transport with first-order kinetics. Therefore, it is possible 
to apply the same techniques described in this work to obtain the “reaction order” and infer 
pore-scale information.

(83)
�T∗

f

�t∗
+ ⟨uz⟩

�T∗
f

�z∗
− Df

�2T∗
f

�z∗2
= qT ,

(84)
�T∗

f

�t∗
+ ⟨uz⟩

�T∗
f

�z∗
− Df

�2T∗
f

�z∗2
=

DA

Vf

(T∗
s
− T∗

f
)

L∗
,
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5 � Conclusion

Mineral reaction kinetics defined at the pore scale are not necessarily valid at the Darcy 
scale. We utilize a bundle-of-tubes model to study the modeling of dissolution kinetics in 
porous media at the Darcy scale. By adding an exponent, n (i.e., the Darcy-scale reaction 
order), to first- and second-order kinetics, the resulting constitutive relation approximates 
the average dissolution rate of the bundle-of-tubes model under specific experimental con-
ditions. Using the pore-size and the effective-surface-area ratio distributions to character-
ize the tube bundles, we expand the solute concentration of dissolving species with Taylor 
series and thus relate the Darcy-scale Damköhler number, Dad , and reaction order with 
the distribution moments. The Taylor series expansions show that the Darcy-scale reaction 
order of first-order kinetics is the inverse square root of Tucker’s congruence coefficient 
(also known as the cosine similarity) between the pore sizes and effective-surface-area 
ratios. Therefore, an increase of reaction order indicates an increase of pore-scale heteroge-
neity. Such a relation gives a mechanistic meaning to the reaction order.

Furthermore, we simulate flow-through experiments of dissolving porous media at the 
laboratory as well as the field scale and discuss how one can utilize the constitutive relation 
by fitting a solute concentration breakthrough curve with Dad and n as unknowns. As an 
additional benefit, we discuss cases of the flow-through experiments where the shape factor 
of longitudinal dispersivity is also considered as a fitting parameter. The inversion is suc-
cessful, and the fitted parameters are close to the prescribed parameters calculated by the 
moments of pore-size and effective-surface-area ratio distributions. We infer that: 

1.	 detailed pore-scale information (characterized by functions of moments) can be inferred 
using averaged Darcy-scale quantities (such as solute concentration), and

2.	 by analyzing the solute concentration of dissolving minerals over time using flow-
through experiments, we can acquire the Darcy-scale reaction order and the dispersion 
coefficient, which represent heterogeneity at the pore scale.

The relations we derived provide us a quantitative approach to measure the spatial hetero-
geneity of a porous domain using the Darcy-scale reaction order and reveal a mechanistic 
explanation for n > 1.

Appendix 1: Derivation of the Longitudinal Dispersivity Using Spatial 
Moment Analysis

We introduce an advection equation of solute concentration in a pore

The velocity, ⟨uz⟩ , is defined using Eq. (26)

When injecting a solute pulse at z = 0 , the center of mass of the solute is located at

(85)
�C∗

�t∗
+ ⟨uz⟩�C

∗

�z∗
= 0.

(86)
�C∗

�t∗
+

r2

8

ΔP

�Lz

�C∗

�z∗
= 0.
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Similar to the volume averaging procedure, Eq. (47), we define the center of mass in 
a bundle of tubes system

Following the procedures of spatial moment analysis (Goltz and Roberts 1987; Dentz 
and de Barros 2013; Lee et al. 2018; Natarajan and Kumar 2018), the mean velocity is

which is the volume averaged velocity, Eq. (32). The change of spatial variance over time 
is

The longitudinal dispersion coefficient is

which concludes the derivation of Eq. (35). The nondimensional solute transport equation 
is

Following Crank (1975), the fundamental solution of the aforementioned transport 
equation is

(87)z
∗(t∗; r) = r

2 ΔP

8�Lz
t
∗
.

(88)z̄∗(t∗) =
∫

∞

0

z∗(t∗;r)r2p(r)dr

∫
∞

0

r2p(r)dr

=
E(r4)

E(r2)

ΔP

8𝜂Lz
t∗.

(89)ū =
dz̄∗

dt∗
=

E(r4)

E(r2)

ΔP

8𝜂Lz

(90)𝜎2
z
=

∫
∞

0

(z∗(t∗;r))2r2p(r)dr

∫
∞

0

r2p(r)dr

− (z̄∗(t∗))2

(91)=

(
E(r6)

E(r2)
−

E2(r4)

E2(r2)

)(
ΔP

8�Lz
t∗
)2

(92)=

(
E(r6)E(r2)

E2(r4)
− 1

)(
E(r4)

E(r2)

ΔP

8�Lz
t∗
)2

(93)=

(
E(r6)E(r2)

E2(r4)
− 1

)
(ūt∗)2

(94)DL =
1

2

d𝜎2
z

dt
=

(
E(r6)E(r2)

E2(r4)
− 1

)
ū2t∗,

(95)�C

�t
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�C

�z
−
(
1 + (Ped)

2t f (r)
)�2C
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We test the validity of the dispersion coefficient by comparing with the volume-averaged 
solute concentration. We consider two cases of pore size distributions R1 and R2 with initial 
injection at z0 = 0 and Ped = 10.

Figure 8 shows the comparison between C and Cavg at different time steps. When the travel 
distance increases, the difference between C and Cavg increases. Such effect is more pro-
nounced when � is larger, as shown in the right panel of Fig. 8. The higher-order method of 
moments is employed for better modeling of dispersion effects (Chatwin 1970; Zhang et al. 
2008; Vikhansky and Ginzburg 2014; Jiang and Chen 2019). However, we limit our analysis 
to second order to focus on the topic of Darcy-scale reaction order.

Appendix B Taylor Series of the Averaged Second‑Order Kinetics Model

The averaged second-order kinetics model, Eq. (65), is

We show derivations of expanding Eq. (97) using a Taylor series. A Taylor series expan-
sion of C around t = 0 is

which consists of derivatives of C . Differentiate Eq. (97)

The initial condition, C(0) = 0 , leads to C
��
(0) = 0 , which corresponds to the second-order 

term in Eq. (64). Instead of performing further differentiation, we rearrange Eq. (97)

Applying the binomial approximation to (1 + C)n yields

Since we are interested in derivatives around t = 0 and given the initial condition C(0) = 0 , 
and since n = O(1) , the constraint of |nC| ≪ 1 is valid. Differentiate Eq. (101)

which retains the property C
��

(0) = 0 . Further differentiate and omit C
′′

(96)C(z, t) =
1√

4�(t + (Pedt)
2∕2)

exp

�
−
(z − z0 − Pedt)

2

4(t + (Pedt)
2∕2)

�
.

(97)C
�
= Dad

(
1 − C

2
)n

.

(98)C(t) = C(0) + C
�
(0)t +

C
��
(0)

2
t2 +

C
���
(0)

6
t3 + O(t4),

(99)C
��
= −2Dadn
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Hence,

Therefore, the Taylor series with an approximated third-order derivative is
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Fig. 8   Comparison of the volume-averaged solute concentration and the modeled concentration. The left 
panel shows the case of pore size distribution R1 , and the right panel shows the case of pore size distribu-
tion R2
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