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Gestational diabetes mellitus (GDM) is closely related to adverse pregnancy outcomes and other diseases. Early intervention in
pregnant women who are at high risk of developing GDM could help prevent adverse health consequences. The study aims to
develop a simple model using the stacking ensemble method to predict GDM for women in the first trimester based on easily
available factors. We used the data from the Chinese Pregnant Women Cohort Study from July 2017 to November 2018. A total of
6,848 pregnant women in the first trimester were included in the analysis. Logistic regression (LR), random forest (RF), and
extreme gradient boosting (XGBoost) were considered as base learners. Optimal feature subsets for each learner were chosen by
using recursive feature elimination cross-validation. Then, we built a pipeline to process imbalance data, tune hyperparameters,
and evaluate model performance. The learners with the best hyperparameters were employed in the first layer of the proposed
stacking method. Their predictions were obtained using optimal feature subsets and served as meta-learner’s inputs. Another LR
was used as a meta-learner to obtain the final prediction results. Accuracy, specificity, error rate, and other metrics were calculated
to evaluate the performance of the models. A paired samples t-test was performed to compare the model performance. In total, 967
(14.12%) women developed GDM. For base learners, the RF model had the highest accuracy (0.638 (95% confidence interval (CI)
0.628-0.648)) and specificity (0.683 (0.669-0.698)) and lowest error rate (0.362 (0.352-0.372)). The stacking method effectively
improved the accuracy (0.666 (95% CI 0.663-0.670)) and specificity (0.725 (0.721-0.729)) and decreased the error rate (0.333
(0.330-0.337)). The differences in the performance between the stacking method and RF were statistically significant. Our
proposed stacking method based on easily available factors has better performance than other learners such as RF.

1. Introduction

Gestational diabetes mellitus (GDM) is defined as glucose
intolerance with onset or first recognition during pregnancy
[1]. Worldwide, the prevalence of GDM varies geographi-
cally and ethnically, ranging from 1% to more than 30%.
Middle Eastern countries and some North African countries
have the highest GDM prevalence, followed by Southeast
Asia and the Western Pacific region. In the Western Pacific
region, the prevalence of GDM in Chinese women is

significantly higher than in other countries [2]. Meanwhile,
Asian women are at higher risk than other ethnic groups
[3, 4]. GDM is significantly associated with short-term and
long-term health consequences for mother and offspring [2].
High maternal glucose levels may increase the risk of
pregnancy complications and adverse pregnancy outcomes
such as preeclampsia, polyhydramnios, and macrosomia.
According to earlier studies, women with GDM were more
likely to develop metabolic syndrome (e.g., type 2 diabetes,
adiposity, hypertension, and dyslipidaemia), cardiovascular
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disease (e.g., ischaemic heart disease and stroke), kidney
disease, and retinal disease [5-9]. In particular, women with
a history of GDM have a nearly 10-fold higher risk of type 2
diabetes than women with normoglycemic pregnancy [10].
For offspring, GDM is also associated with an increased risk
of childhood obesity [11] and glucose intolerance [12].

Generally, GDM screening is recommended at 24-28
weeks of gestation. However, evidence has shown that a high
glucose concentration in early pregnancy may increase the
risk of adverse pregnancy outcomes [13]. Therefore, early
screening for GDM can be beneficial because identifying
women who are at high risk of GDM during the first trimester
may have sufficient time to allow early intervention and
reduce the occurrence of GDM or other related diseases.
Several predictive models have been developed in earlier
research studies to aid in the screening of women who are at
risk of developing GDM. Single learners like logistic re-
gression (LR), k-nearest neighbor (KNN), support vector
machine (SVM), and deep neural network (DNN), as well as
ensemble learning techniques like random forest (RF) and
extreme gradient boosting (XGBoost), are frequently used
algorithms in GDM prediction [14-16]. Recently, researchers
started to focus more on the performance of ensemble
learning in the prediction of GDM as compared to a single
learner. Bagging and boosting are two popular ensemble
learning techniques, but they are often used to integrate
homogeneous base learners, such as decision tree (DT).
Stacking is a suitable method for integrating different types of
base learners, which is less used in GDM prediction. Kumar
et al. proposed a stacked ensemble model with a gradient
boosting classifier and SVM for predicting GDM risk, and
their method achieved great performance with an AUC of
0.93 [17]. Their results demonstrated the effectiveness of
stacking methods, but they used biochemical factors such as
HbAlc, fasting insulin, and triglycerides/HDL ratio. Al-
though various clinical indicators are important for predicting
GDM, they are often difficult to obtain in areas with poor
healthcare resources. Only a few studies have explored pre-
diction models based solely on self-reported sociodemo-
graphic and behavior-related data. Nevertheless, constructing
pregnancy-related predictive models based on these data is
more feasible and practical in areas of severe shortage [18]. It
is necessary to further explore the feasibility of constructing
GDM prediction models based on easily available predictors
such as age, weight, lifestyle, and disease history.

We aim to build a simple model for predicting the risk of
GDM in women in the first trimester based on stacking
methods and easily available predictors. We also use data
from a prospective cohort study of pregnant women to
collect health-related information on sociodemographic
characteristics, physical measurements, lifestyle, behavioral
factors, environmental factors, and more. The importance of
these factors in different machine learning models is ex-
plored to provide some basis for future research.

L1. Related Works. In the past few decades, machine
learning algorithms have been used in various healthcare
domains. Shamshirband et al. [19] discussed the applications
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of state-of-the-art machine learning approaches in health-
care systems. Some mainstream machine learning algo-
rithms, especially the DNN, convolutional neural network
(CNN), recurrent neural network (RNN), deep belief net-
work (DBN), autocoding (AE), and other deep learning
algorithms, have been applied to speech recognition, drug
discovery, disease detection, computer vision, target de-
tection, natural language processing, and other fields. In
addition, some researchers have refined machine learning
techniques for the prediction and identification of genetic
sites and sequences, the prediction of COVID-19 pandemic
outcomes, disease detection based on images, the con-
struction of smart healthcare systems, and clinical expert
systems. Chen et al. [20] and Zou et al. [21] reported dif-
ferent ensemble methods based on the CNN and long short-
term memory (LSTM) to predict the human N6-methyl-
adenosine sites from mRNA sequences. Deif et al. [22] came
up with a deep bidirectional recurrent neural networks
(BRNNs) model that combined with LSTM and GRU to
distinguish between the genome sequence of SARS-CoV-2
and other coronavirus strains. Kumar et al. [23] constructed
two models for predicting COVID-19 by using modified
LSTM and reinforcement learning algorithms. Qummar
et al. [24] reported a deep learning ensemble approach for
diabetic retinopathy detection based on fundus images. Lv
et al. [25] presented a new interactive smart healthcare
prediction and evaluation model based on deep learning
algorithms. Sadeghipour et al. [26] proposed an expert
clinical system by using the XCSR classifier for diagnosing
obstructive sleep apnea. This group of researchers also de-
veloped an intelligent system for diagnosing diabetes based
on the XCSLA system [27].

Diabetes is one of the most common chronic non-
communicable diseases and consists of three main types:
type 1 diabetes, type 2 diabetes, and GDM. Diabetes is
strongly associated with lifestyle behaviors, unhealthy diets,
and other factors, and early intervention in these modifiable
risk factors is of great importance. Early intervention can
prevent more serious disease outcomes in people with di-
abetes or reduce the risk of developing diabetes in those who
are at risk. Machine learning techniques have been dem-
onstrated to be effective in the early diagnosis and pre-
vention of diabetes [28]. Traditional machine learning
techniques such as LR, DT, SVM, NB, and KNN have been
used for the classification and prediction of diabetes in the
past few years [29]. Kumar et al. [30] proposed a multi-
faceted approach based on electronic health records of di-
abetic patients to simultaneously identify type 1 diabetes,
type 2 diabetes, and GDM. They were using RF, LDA, SVM,
KNN, and CART algorithms to learn the data patterns and
predict diabetes. The result showed that RF was the most
suitable algorithm for this dataset and had high accuracy in
the classification of different types of diabetes. For binary
classification, Ye et al. [31] used data from a single-centre
and retrospective cohort study to compare the performance
of various statistical methods and machine learning algo-
rithms in GDM prediction. They used eight machine
learning algorithms, including Gradient Boosting Decision
Tree (GBDT), AdaBoost, LGB, LR, Vote, XGBoost, DT, RF,



Journal of Healthcare Engineering

and two common regressions, including stepwise LR and LR
with RCS. In this study, researchers performed data pre-
processing steps such as missing value imputation and data
standardization. The features of the included models were
screened according to the Pearson correlation coefficient,
and undersampling was performed to deal with imbalanced
data. GBDT was considered to be the most effective machine
learning algorithm, with an average AUC of 0.74.

In general, ensemble methods had better performance
than single learner. Ensemble learning is a promising field,
mainly including bagging, boosting, and stacking. Bagging
and boosting methods are widely used, such as RF, GBDT,
AdaBoost, XGBoost, and so on. These two kinds of methods
mainly integrate the same type of weak learner to form a new
strong learner. Whereas, stacking methods are applied to
different base learners and emphasize the heterogeneity
between base learners. The heterogeneity among base
learners includes not only the use of different machine
learning algorithms but also the application of different
feature subsets and hyperparameter combinations [32, 33].
Ekbal et al. [34] developed a stacking method for entity
extraction based on a different subset of features. They used
genetic algorithms to select the optimal feature subset of
SVM and conditional random field (CRF) models, respec-
tively, and developed SVM and CRF models based on their
teature subsets. The trained SVM and CRF models were used
as base learners for stacking methods. Their methods had
higher performance in the GENETAG and GENIA
benchmark datasets, with F-measure values of 94.70% and
75.17%, respectively. However, more evidence is needed on
the effectiveness of this approach in the prediction and
classification of diabetes, especially GDM.

What is more, how to reduce dimension and select the
optimal feature subset is an important step. Filter methods,
wrapper methods, and embedded methods are three main
feature selection techniques. Filter methods are based on
feature correlation, such as Pearson correlation coefficient,
ANOVA, chi-square, and so on. Both the wrapper method
and the embedded method depend on the algorithm, and the
feature subset that is most suitable for the model is selected
by the coeflicient or feature importance. At present, some
researchers believe that the use of a single feature selection
method has certain limitations. Therefore, He et al. [35]
proposed a feature ranking and dimensionality reduction
tool, MRMD 2.0, which takes into account multiple feature
selection methods and is suitable for datasets in different
situations.

2. Materials and Methods

2.1. Data Source and Participants. The data used in the
present study were obtained from the Chinese Pregnant
Women Cohort Study (CPWCS), which is a multicentre
prospective cohort study. A total of 24 hospitals from 15
representative provinces in China were involved in the
CPWCS, including Beijing, Shandong, Sichuan, Chongqing,
Xinjiang, Jilin, Henan, Shanxi, Jiangxi, Jiangsu, Guizhou,
Inner Mongolia, Guangdong, Anhui, and Hunan. From July
25, 2017, to November 26, 2018, 9,193 pregnant women at

5-13weeks of gestation were recruited. Of them, 2,345
pregnant women without GDM data were excluded, leaving
6,848 eligible participants for final analyses (Figure 1).
Additional information about the CPWCS has been reported
in previous studies [36, 37].

2.2. Ethics Statement. All of the participants were provided
with written informed consent for inclusion before they
participated in the study. The study was approved by the
Ethics Review Committee at the Department of Scientific
Research, Peking Union Medical College Hospital (approval
number: HS1345). The study is registered at Clinical-
Trials.gov (NCT03403543).

2.3. Definition of GDM. In accordance with the Interna-
tional Association of Diabetes and Pregnancy Study Group
criteria, a 75 g oral glucose tolerance test at 24-28 gestational
weeks was employed for GDM screening. GDM was diag-
nosed if any of the following conditions were met: a fasting
plasma glucose (PG) concentration of >5.1 mmol/L, a 1-
hour PG concentration of >10.0 mmol/L, or a 2-hour PG
concentration of >8.5 mmol/L.

2.4. Features of the Prediction Model. Easily available factors
such as sociodemographic, behavioral, and environmental
factors were used to construct the model. Baseline infor-
mation on pregnant women was collected through self-
administered questionnaires, including personal informa-
tion, such as maternal age, body mass index (BMI) before
pregnancy, personal and household annual income, edu-
cation level, and environmental exposures; behavioral fac-
tors, such as physical activity, tobacco consumption, and
alcohol consumption; dietary habits, including intake of
unsaturated fatty acids and dietary supplements; depression
level; sleep quality; family history; abortion history; gyne-
cological disease history; and internal disease history.
Maternal age was categorized into three groups: <25,
25-30, and >30 years. BMI before pregnancy was catego-
rized into three groups: <18.5, 18.5-24.0, and >24.0 kg/m”.
Levels of education included primary school and below,
junior and senior high school, university, and master’s
degree and above. Personal annual income was divided into
three levels using the boundaries of 50,000 CNY and 100,000
CNY, and household annual income was divided into three
levels using the boundaries of 100,000 CNY and 200,000
CNY. The level of physical activity of pregnant women was
classified by its intensity (vigorous, moderate, or mild).
The participants’ dietary habits were assessed using the
qualitative food frequency questionnaire (Q-FFQ) [38]. The
Q-FFQ covered 17 major food groups: roughage, tubers,
vegetables, fruit, meat, poultry, seafood, fish, eggs, dairy
products, soybean milk, other soybean products, nuts, fried
food, western fast food, dessert, and puffed food [36]. In this
study, each food group had eight frequency levels of habitual
consumption (never, 1, 2, 3, 4, 5, or 6 days per week, or daily)
during the previous week. The eight consumption levels
were assigned a score of 1-8. Fried foods, Western fast foods,
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FiGure 1: Flowchart illustrating data cleaning and processing.

desserts, and puffed foods were among the food groups that
scored 8-1, with a higher score representing a lower fre-
quency of intake. The rest of the food groups scored 1-8,
with a higher score representing a higher frequency of in-
take. The scores for all of the food groups were summed up
to obtain the dietary habit score of each participant. The
dietary habits were classified into four categories based on
quartiles: poor (Q-FFQ score of <49), general (Q-FFQ score
of 50-57), better (Q-FFQ score of 58-66), and best (Q-FFQ
score of >67).

The depression level was measured using the Edinburgh
Postnatal Depression Scale (EPDS) [39]. The depression
level score was calculated for each participant according to
the scoring rules of the scale, and an EPDS score of >13 was
considered to indicate possible depression during
pregnancy.

Information on the participants’ sleep quality was col-
lected using the Pittsburgh Sleep Quality Index (PSQI) [40].
The PSQI consists of seven components: subjective sleep
quality, sleep latency, sleep duration, habitual sleep effi-
ciency, sleep disturbances, use of sleeping medication, and
daytime dysfunction, with a total of 19 individual items. The
sum of the scores for the seven components was calculated
for each participant, with a higher score indicating worse
sleep quality. Sleep quality was classified according to the
score achieved: poor (PSQI score of 16-21), general (PSQI
score of 11-15), better (PSQI score of 6-10), and best (PSQI
score of 0-5).

2.5. Data Preprocessing. Outliers can have a major impact on
the performance of machine learning models. First, we dealt
with the outliers in all independent features. Outliers were
identified using the quartile range (IQR) approach. The
difference between the third quartile (Q3) and the first
quartile (Q1) is the IQR. Outliers were defined as values

Journal of Healthcare Engineering

greater than Q3 + (1.5 * IQR) or less than Q1 - (1.5 * IQR) in
this study. Then, using exploratory data analysis, we iden-
tified several inaccurate values as outliers. All outliers in
different features were replaced with missing values and will
be deemed missing values for filling, according to the above
definition of outliers.

Eleven features with more than 15% of missing values
were excluded from the models. The features with fewer
missing values (<15%) were filled using multiple imputation
(MI). MI is an accurate method of filling in missing values
and is recommended for use in studies to construct pre-
dictive models [41, 42]. After missing data processing, all of
the continuous features, including age, BMI, personal an-
nual income, and household annual income, were dis-
cretized into two or more categories. The diet score,
depression score, and sleep quality score were calculated
using the Q-FFQ, EPDS, and PSQI, respectively, and three
categorical features were constructed. A total of 106 cate-
gories were included in the subsequent model building as
predictors.

2.6. Feature Selection. The fundamental goal of feature se-
lection is to find the optimal feature subset to optimize the
machine learning algorithms’ performance. In this study, we
implemented recursive feature elimination cross-validation
(RFECV) methods [43, 44] based on LR, RF, and XGBoost
algorithms. RFE is the representative method of the wrapped
method. This approach relies on specific attributes of the
algorithm (such as coefficients and feature importance). In
the present study, we applied 3-fold cross-validation to
obtain the feature importance ranking of each model. For
each feature, its importance score in each fold dataset was
calculated, and the mean value was computed. The subset of
features with the highest AUC value and the lowest number
of features was considered to be the best. To ensure that the
best combination of features was applicable to the model,
LR, RF, and XGBoost algorithms were combined with
RFECV, respectively. The features selected by each algorithm
were used in the subsequent construction of a model based
on that algorithm.

2.7. Base Learners’ Development. For the LR model, we
processed the features through a sigmoid function and
output a prediction probability, which was transformed into
a binary output, and the parameters of each feature were
calculated using the maximum likelihood method [31]. In
this study, the regularization mode (penalty) and degree (C)
of the LR algorithm will be adjusted to optimize its
performance.

The RF approach is an ensemble learning algorithm
based on bagging. The principle is to use different random
samples to train multiple decision trees and use the voting
method to obtain the final classification result. Compared
with the single decision tree, random forest is more robust,
less likely to overfit, and usually has better performance.
Bagging is mainly used for the integration of weak classifiers
with great heterogeneity, which is a parallel ensemble
method. In a given dataset containing m samples, random
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FiGUre 2: Work flow for the stacking method. (a) The structure of the proposed stacking method. (b) The principle of the stacking method.

sampling is carried out in the way of putting them back.
After m times of random sampling, T training sets con-
taining m samples are obtained. Multiple base learners are
trained based on these training sets, and then, the results of
these base learners are combined. In the present study, the
three parameters, including the number of trees in the forest
(n_estimators), the maximum depth of the tree (max_-
depth), and the minimum number of samples required to
split an internal node (min_samples_split), were searched in
a specific searching space, and the best combination within
this space was obtained to optimize the RF model.
XGBoost is an efficient and extensible ensemble learning
classifier that is based on boosting, which is a further im-
provement to the GBDT, and the base learner of the
XGBoost algorithm used in this study is also a CART de-
cision tree [45]. The objective function of XGBoost is reg-
ularized, which is beneficial to control overfitting and
further improving the model performance. XGBoost can
effectively support parallel computing and improve effi-
ciency. In addition to the same three parameters used with
the RF model, XGBoost also adjusts other parameters, in-
cluding the minimum sum of instance weight needed in a
child (min_child_weight), the minimum loss reduction
required to make a further partition on a leaf node of the tree
(gamma), the subsample ratio of the training instances

(subsample), and the parameter for column subsampling
(colsample_bytree).

2.8. Stacking Ensemble Method. In contrast to bagging and
boosting methods, stacking methods usually intend to use
the heterogeneous learner as the base learner. The principle
of stacking is to train different base learners and use the
predicted results of the base learners as input to train the
meta-learner to get the final result. In the present study, we
used LR, RF, and XGBoost as base learners and a new LR
model as the meta-learner to construct an ensemble model
based on stacking. All the base learners obtained the best
feature subset based on RFECV and they were hyper-
parametric optimizations and evaluations using nested
cross-validation (external repeated 10 times 5-fold and in-
ternal 5-fold), as shown in Figure 2(a).
The following are the main
(Figure 2(b)):

steps of stacking

Step 1. Implement a K-fold cross-validation to separate
the training set in to k-folds.

Step 2. Hold out one of the folds as validation set and
train multiple independent base models to the other
folds.



Step 3. Predict the validation set using the base models.

Step 4. Repeat the above steps to obtain the prediction
results of all the base learners.

Step 5. All the predicted results are combined into a
training set as features, which is used as a new input to
train the meta-learner.

Step 6. Predict the final output using the meta-learner.

2.9. Model Construction. Our work consisted of four sec-
tions altogether. First, we preprocessed the cohort data.
Second, we determined the algorithms to be used according
to previous literature reviews and research purposes, in-
cluding LR, RF, and XGBoost. We constructed these learners
using default parameters and selected the best feature
subsets using RFECV for each learner. Third, we trained,
optimized, and evaluated three learners based on the best
feature subsets for each learner. In the end, we built a
proposed stacking method based on optimized base learners
(Figure 3).

A pipeline was constructed to combine each component
of model construction, including imbalanced data pro-
cessing, model training, hyperparameter tuning, and model
evaluation.

The process of the pipeline is as follows (Figure 4):

Step 1. The data were randomly divided into five folds,
of which four folds were used as the training set and
one-fold was used as the test set.

Step 2. Synthetic minority oversampling technique
(SMOTE) was used to conduct imbalanced data pro-
cessing for each training set.

Step 3. Defined the hyperparametric search space and
used a random-search algorithm with 5-fold cross-
validation to determine the best combination of pa-
rameters for each model.

Step 4. The best combination of parameters was applied
to each algorithm and its effectiveness was evaluated on
a test set.

Step 5. The proposed stacking model was constructed
by models in Step 4, and it was evaluated by a test set.

We evaluated and compared the effects of each base
learner and the proposed stacking method using the same
cross-validation dataset. A paired t-test was used to test the
statistical difference of model performance.

There were two things to note here. First, we used
stratified 5-fold cross-validation to divide the dataset. It was
used to keep the proportion of people with and without
GDM in each fold consistent with the original dataset. In
addition, the data showed that the sample of women with
GDM was far smaller than that of women without GDM,
indicating an imbalanced dataset. Thus, we used SMOTE, an
oversampling approach, to handle this problem. Different
from previous studies that have realized oversampling with
replacement (random oversampling) [46], the SMOTE
changes the distribution of imbalanced data by creating
synthetic samples among minority samples [47]. For
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classifying imbalanced data, the SMOTE not only improves
the performance of the classifier but also alleviates the
overfitting problem. SMOTE has been widely used to solve
the issue of imbalanced data in the field of medicine [48, 49].

Construction and evaluation of all models were per-
formed by the Python 3.7.0 scikit-learn library [50] and the
XGBoost library (https://xgboost.readthedocs.io/en/latest/
python/index.html). The stacking method was based on
mlixtend 0.20.0 library (http://rasbt.github.io/mlxtend). The
paired t-test was based on SPSS.

2.10. Model Evaluation. The effectiveness of the model is
measured by the following metrics, including AUC, accu-
racy, sensitivity, specificity, and error rate. The models’
accuracy, sensitivity, specificity, and error rate were calcu-
lated based on a default threshold of 0.5 and the calculation
formula is as follows:

TN + TP
Accuracy = , (1)
TN + FN + TP + FP
TP
tivity = F_ )
Sensitivity TP+ FN (2)
TN
Specificity = ————, 3
pecificity = s (3)
FP + FN
E = . 4
rrorrate = ¥ FN + TP + FP )

True positive (TP) represents the number of GDM cases
correctly predicted by the model. False positive (FP) rep-
resents the number of cases that the model predicts as GDM
but are actually non-GDM. True negative (TN) is the
number of non-GDM cases correctly predicted by the
model. False negative (FN) represents the numbers of cases
that the model predicts are non-GDM but are actually GDM.

3. Results

3.1. Participants’ Characteristics. Table 1 shows the statis-
tically different characteristics between participants with and
without GDM. A total of 967 (14.12%) developed GDM.
There were significant differences in age (p < 0.001) and BMI
(p<0.001) between the participants with GDM and those
without GDM. Level of education (p = 0.044) and personal
(p <0.001) and household (p = 0.001) annual income were
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different between the participants with and without GDM.
Behavioral factors, such as moderate physical activity, intake
of unsaturated fatty acids, and dietary supplements, also
differed between the two groups (p <0.05). From the per-
spective of disease history and family history, those with
GDM had different histories in terms of GDM, hyperten-
sion, uterine fibroids, hysteroscopic surgery, diabetes mel-
litus in first-degree relatives (FDRs), and stroke in second-
degree relatives (SDRs) than those without GDM (p < 0.05).
However, no significant differences were found in sleep
quality, depression status, dietary habits, vigorous and mild
physical activity, smoking before pregnancy, alcohol intake,
abortion, and parity between the two groups.

3.2. Optimal Features Subset and Models Performances.
The RFECV method based on the LR, RF, and XGBoost
algorithms selected 71, 26, and 5 features, respectively. The
XGBoost model required the least number of features, in-
cluding age, BMI, renovation of the living environment,
gravidity, and SDRs stroke history. The optimal feature
subset of the three models is shown in Table 2.

Figure 5 shows the average performance of the three
models after feature selection and hyperparameter adjust-
ment. In general, the RF and XGBoost models performed
slightly better than the LR model. The RF model had the
highest average accuracy, specificity, and lowest average
error rate among the three base models. The average ac-
curacy and average specificity of the RF model reached 0.638
(95% confidence interval (CI) 0.628-0.648) and 0.683

(0.669-0.698), respectively. The average error rate of RF was
0.362 (0.352-0.372). The XGBoost model had the best av-
erage AUC and sensitivity. The average AUC and sensitivity
of the XGBoost model reached 0.618 (95% CI 0.612-0.623)
and 0.601 (0.582-0.620), respectively.

In order to optimize the effectiveness of the models, we
combined the three models with an additional LR algorithm
by the stacking ensemble method. The stacking ensemble
method was able to consider the best hyperparameters for
the three models as well as the best subset of features.
Figure 5 shows that the simple stacking technique led to an
improvement in the average accuracy and specificity of the
models, reaching 0.666 (95% CI 0.663-0.670) and 0.725
(0.721-0.729).1t had the lowest average error rate of 0.333
(0.330-0.337). To test the statistical significance of differ-
ences among classifiers, a paired samples ¢-test is performed
regarding the RF and stacking method. We selected RF
because it showed the best average accuracy, specificity, and
lowest error rate. Table 3 shows that the differences between
the stacking method and RF were statistically significant
(p<0.001).

3.3. Feature Importance Ranking of the Three Models.
Figure 6 shows the ranking of the top 10 important features
of the LR model and RF model. The importance ranking of
the five features included in the XGBoost model is also
presented in Figure 6. The family history of hypertension in
FDRs, unplanned pregnancy, and family history of stroke in
SDRs were the most important features in the LR, RF, and
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TaBLE 1: Characteristics between gestational diabetes mellitus (GDM) and non-GDM groups, N (%).

Feature Non-GDM group (N=5,881) GDM group (N=967) P value
<25 1,353 (23.0) 101 (10.4)
Age group (years) 25-30 2,957 (50.3) 475 (49.1) <0.001
>30 1,571 (26.7) 391 (40.4)
<185 825 (14.0) 77 (8.0)
Body mass index (kg/mz) 18.5-24.0 3,798 (64.6) 587 (60.7) <0.001
>24.0 1,258 (21.4) 303 (31.3)
Primary school and below 30 (0.5) 6 (0.6)
. Junior and senior high school 2,084 (35.4) 299 (30.9)
Educational level University 3,408 (57.9) 593 (61.3) 0.044
Masters’ degree and above 359 (6.1) 69 (7.1)
Primary school and below 29 (0.5) 10 (1.0)
. Junior and senior high school 2,226 (37.9) 292 (30.2)
Education level of partner University 3.275 (55.7) 589 (60.9) <0.001
Masters’ degree and above 351 (6.0) 76 (7.9)
. No' 1,662 (28.3) 224 (23.2)
Occupation Yes 4219 (71.7) 743 (76.8) 0.001
. No 463 (7.9) 54 (5.6)
Occupation of partner Yes 5,418 (92.1) 913 (94.4) 0.015
<5 3,655 (62.1) 517 (53.5)
Personal annual income (10000 CNY) 5-10 1,754 (29.8) 347 (35.9) <0.001
>10 472 (8.0) 103 (10.7)
<10 3,199 (54.4) 463 (47.9)
Household annual income (10000 CNY) 10-20 1,810 (30.8) 335 (34.6) 0.001
>20 872 (14.8) 169 (17.5)
1-3 3,230 (54.9) 588 (60.8)
Household size 4 1,332 (22.6) 188 (19.4) 0.003
>5 1,319 (22.4) 191 (19.8)
. .. No 5,074 (86.3) 858 (88.7)
Moderate physical activity Yes 807 (13.7) 109 (11.3) 0.043
. . . . . No 3,277 (55.7) 505 (52.2)
Vitamin without vitamin D Yes 2,604 (44.3) 462 (47.8) 0.046
o No 4,480 (76.2) 683 (70.6)
Vitamin D Yes 1,401 (23.8) 284 (29.4) <0.001
. No 4,162 (70.8) 644 (66.6)
Calcium Yes 1,719 (29.2) 323 (33.4) 0.010
L No 4,029 (68.5) 711 (73.5)
Soybean oil intake Yes 1.852 (31.5) 256 (26.5) 0.002
. No 5,338 (90.8) 853 (88.2)
Olive oil intake Yes 543 (9.2) 114 (11.8) 0.015
. No 5,872 (99.8) 959 (99.2)
GDM history Yes 9 (02) 8 (0.8) 0.001
No 4,203 (71.5) 734 (75.9)
3
Unplanned pregnancy Yes 1,678 (28.5) 233 (24.1) 0.005
. No 5,841 (99.3) 951 (98.3)
Hypertension history Yes 40 (0.7) 16 (1.7) 0.003
. . No 5,796 (98.6) 935 (96.7)
Uterine fibroids Yes 85 (1.4) 32 (3.3) <0.001
. No 5,841 (99.3) 954 (98.7)
Hysteroscopic surgery Yes 40 (0.7) 13 (1.3) 0.047
. No 5,689 (96.7) 905 (93.6)
FDRs (diabetes) Yes 192 (3.3) 62 (6.4) <0.001
No 5,838 (99.3) 967 (100.0)
SDRs (stroke) Yes 43 (07) o 0.014

"No, no full-time job; *Unplanned pregnancy, was this pregnancy an unplanned pregnancy?
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TaBLE 2: Optimal feature subsets with three models.

Model

Features’ list

(i) Sociodemographic factors: age, ethnic minority, occupation of partner, and personal annual income.
(ii) Lifestyle and behavioral factors: moderate physical activity, ventilator physical activity, smoking before pregnancy, smoked

within the last month, drinking, cooking, and BMI.

(iii) Environmental factors: living environmental pollution (including sewer, dumpster, and chemical, pesticide) and work
environmental pollution (including noise, high temperature, heavy metal, and hair dye).

(iv) Dietary habit and supplement intake: unsaturated fatty acids (including soybean oil, olive oil, and linseed oil); vitamins
(including vitamin D and other types of vitamins); calcium, iron dietary supplement, and probiotics.

LR

(v) Previous pregnancy status: parity, GDM, hypertensive disorders complicating pregnancy, preeclampsia, placental abruption,
late abortion, small for gestational age, premature delivery, and stillborn fetus.

(vi) Personal disease history: hypertension, hyperlipidemia, hyperthyroidism, anemia, heart disease, chronic
glomerulonephritis, cancer, epilepsy, tuberculosis, viral hepatitis type B, infertility, cervical intraepithelial neoplasia, uterine
fibroids, ovarian cyst, gonorrhea, systemic lupus erythematosus, ulcerative colitis, and Sjogren syndrome.

(vil) Family disease history: FDRs disease history (including hypertension, diabetes, hyperlipidemia, and cancer) and SDRs
disease history (including diabetes, hyperlipidemia, stroke, and cancer).

(vili) Gynecological surgery history: myomectomy, oophorocystectomy, hysteroscopic treatment, extrauterine pregnancy,

diagnostic-curettage, and abortion.

(i) Sociodemographic factors: age, education level, education level of partner, personal annual income, household annual

income, and household size.

(ii) Lifestyle and behavioral factors: mild physical activity, sleep quality, depression level, and BMI.
(iii) Environmental factors: passive smoking, noise pollution of living environment, renovation (working and living

RF environment), and cooking.

(iv) Dietary habit and supplement intake: unsaturated fatty acids (including soybean oil, peanut oil, and sunflower oil), dietary
habit, vitamins (excluding vitamin D), calcium, and probiotics.
(v) Previous pregnancy status: parity, unplanned pregnancy, and gravidity.

(vi) Gynecological surgery history: abortion.

(i) Sociodemographic factors: age
(ii) Lifestyle and behavioral factors: BMI

XGBoost (iii) Environmental factors: renovation (living environment)

(iv) Family disease history: SDRs having stroke
(v) Gynecological surgery history: gravidity

XGBoost models, respectively. Abortion, soybean oil intake,
and probiotic intake were predictive in the LR and RF
models. Renovation of the living environment during the
year was a significant predictor of the RF and XGBoost
models. Only age had a strong predictive effect in all three
models.

4. Discussion

We proposed a stacking ensemble method using LR, RF, and
XGBoost algorithms for predicting GDM risk in women in
the first trimester. We only used the easily available pre-
dictors, such as sociodemographic factors, lifestyle and
behavioral factors, environmental factors, dietary habits,
supplement intake, personal, and family history of disease.
This method is designed to help women who live in areas
with inadequate medical resources or who cannot get regular
prenatal care. The pathophysiology of GDM is complex and
most prior research has relied on biochemical markers
factors to identify those who are at risk of developing the
disease [15, 16, 31]. However, women in low and middle-
income countries tend to have a severe disease burden of
GDM, and the development of more concise and easy-to-use
models is warranted [51].

Our results showed that the stacking model achieves the
best accuracy and specificity as well as the lowest error rate.
This finding is similar to the results of the previous studies,

and stacking could yield better results in predicting the onset
of diabetes such as GDM [52]. In the present study, we also
compared the performance of our stacking method with that
of the RF, and the results of the statistical test showed that
the stacking method was better than the RF in these three
metrics. The bagging algorithm, such as RF, is a good ex-
ample of homologous ensembles. Its main components are
the parallel combinations of numerous weak classifiers,
which output the final result via a voting or averaging ap-
proach. In this process, the dataset needs to be resampled
based on different sample distributions and each weak
classifier is built from each bootstrap samples. Stacking is a
classic example of heterogeneous ensembles. In this method,
a variety of independent base learners with strong perfor-
mances are used to predict in the first layer, and the pre-
diction result of each base learner is used as the input of the
meta-learner. The final prediction result is obtained through
the meta-learner in the second layer [53]. Because of its
unique way of working, stacking offers greater flexibility
than bagging methods and allows for better prediction re-
sults by setting up different base learners and meta-learners
to reduce variance and bias [54, 55]. It is worth noting that
bagging can be incorporated into the framework of stacking
as a base learner. In our study, RF and XGBoost were used as
the base learners for stacking methods. The popular stacking
framework has theoretically demonstrated that the ensemble
results of stacking should be better or asymptotically
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FIGURE 5: Boxplot of performance for the three models with the optimal parameter and stacking method.

TaBLE 3: The paired samples t-test between the stacking method and RF.

95% confidence
interval of the

Mean Standard deviation  Standard error mean difference df P value

Lower Upper
Accuracy (stacking-RF) 0.028 0.035 0.005 0.018 0.038 5.709 49 <0.001
Specificity (stacking-RF) 0.041 0.049 0.007 0.027 0.056 5.951 49 <0.001
Error rate (stacking-RF) —-0.028 0.035 0.005 -0.038 -0.018 -5.709 49 <0.001

A value of p<0.05 was considered significant.

equivalent to the optimal base learner in its first layer [56].
What was more, we constructed different base learners using
their respective optimal feature subsets. Previous studies

have suggested that attribute partitioning methods generally
improve independence and result in better model perfor-
mance than data partitioning [57, 58].
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FIGURE 6: Feature importance ranking of three models.

We explored the order of feature importance for three
base learners. Combined with the ranking of the feature
importance in the final model output, age, BMI, alcohol
intake, intake of unsaturated fatty acids such as soybean oil,
probiotic intake, moderate to vigorous physical activity,
passive smoking, household size, family history of hyper-
tension in FDRs, and stroke in SDRs, renovation of the living
and working environment, unplanned pregnancy, abortion,
and gravidity were significant predictors worth noting. For
one thing, the differences of age, BMI, physical activity,
intake of unsaturated fatty acids, and other factors between
the GDM cases and non-GDM cases in this study were
statistically significant. For another thing, most of these
features have been statistically confirmed to be associated
with the onset of GDM. Age, BMI, dietary factors, physical
activity, and abortion were significant risk factors for GDM
and have also been considered significant predictors in
previous predictive modelling studies [16, 59-61]. Other
features, such as alcohol consumption, family history of
hypertension, and passive smoking, were associated with a
higher risk of GDM in Chinese women [62, 63]. However,
the role of gravidity, unplanned pregnancy, and interior
renovation exposure in the risk prediction model for GDM
requires further validation. We did not focus on biochemical
indicators in this study, although these indicators may play
an important role in building a risk prediction model for
GDM. Whereas, sociodemographic factors, including dis-
ease history and family history, may reflect changes in
certain underlying physiological mechanisms that suggest
the risk of GDM development. Machine learning algorithms
could be used to identify probable disease risk factors. As a

result, the study’s key features may not only provide new
evidence for their inclusion in future research but also reveal
potential risk factors for GDM that require additional in-
vestigation. What was more, we chose RFE combined with
cross-validation when selecting the optimal feature subset.
The RFE method is able to obtain the subset of features that
make the model perform best under specific conditions. By
combining this method with cross-validation, we are able to
obtain the smallest subset of features while ensuring the
effectiveness of the model. This way of selecting feature
subsets helps in the construction of stacking models because
stacked models require the first layer of base learning
equipment to have good generalization power. Feature se-
lection simplifies the complexity of the model and reduces
the running time while ensuring strong predictive perfor-
mance of the base learner [58].

Our study has a number of advantages. First, our
stacking model performed well in predicting the GDM of
women in the first trimester, and using sociodemographic
and behavioral data to build GDM prediction models is
more practical and feasible in areas with limited medical
resources. Second, a pipeline was built to combine the steps
of imbalanced data processing, model development, opti-
mization, and model evaluation, with nested cross-valida-
tion employed to ensure more consistent evaluation
findings. Furthermore, since the sample in this study was
nationwide, the results could be more representative than
other Chinese models using small-scale or single-canter
data. However, the out-stacked model’s performance was
limited compared to similar studies [64]. Our findings were
similar to those of a Tanzanian study [51]. More important
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features should be included when creating prediction
models, especially for machine learning algorithms. This
does not imply including a larger number of features, but
rather features that have been identified as relevant in prior
models. Although we did not focus on clinical indicators in
this study, other readily available indicators were lacking.
Referring to similar research, several important predictors
such as sedentary time, abdomen circumference at inclusion,
and irregular menstruation were omitted in our study
[59, 64]. This may be one of the reasons for the slightly
unfortunate performance of our model. What was more,
using more complex methods may be able to further en-
hance the performance. In the future, we will discuss other
feature selection methods and use more complex learners,
such as deep neural networks, to improve the proposed
stacking method. Although nested cross-validation provides
some assurance of model stability, our machine learning
models still require external validation in the future.

5. Conclusion and Future Work

Overall, it is feasible to construct a GDM prediction model
for women in the first trimester based on easily available
factors by using the stacking ensemble method. Our
proposed stacking method based on easily available fac-
tors has better performance than the base learners, such as
RE. Our proposed approach could also be considered in
other health domains, such as type 2 diabetes, hyper-
tension, and stroke. These diseases have similar risk
factors and predictors of GDM and are greatly influenced
by lifestyle and behaviors. Stacking provides better results
than a single learning device and is more flexible than
bagging and boosting and using different subsets of fea-
tures can reduce the complexity of stacking models.
Therefore, future research can explore more feature se-
lection methods and build stacking models in combina-
tion with other different base learners.
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