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Abstract

Background: Phenotypically similar diseases have been found to be caused by functionally related genes, suggesting a
modular organization of the genetic landscape of human diseases that mirrors the modularity observed in biological
interaction networks. Protein complexes, as molecular machines that integrate multiple gene products to perform biological
functions, express the underlying modular organization of protein-protein interaction networks. As such, protein complexes
can be useful for interrogating the networks of phenome and interactome to elucidate gene-phenotype associations of
diseases.

Methodology/Principal Findings: We proposed a technique called RWPCN (Random Walker on Protein Complex Network)
for predicting and prioritizing disease genes. The basis of RWPCN is a protein complex network constructed using existing
human protein complexes and protein interaction network. To prioritize candidate disease genes for the query disease
phenotypes, we compute the associations between the protein complexes and the query phenotypes in their respective
protein complex and phenotype networks. We tested RWPCN on predicting gene-phenotype associations using leave-one-
out cross-validation; our method was observed to outperform existing approaches. We also applied RWPCN to predict novel
disease genes for two representative diseases, namely, Breast Cancer and Diabetes.

Conclusions/Significance: Guilt-by-association prediction and prioritization of disease genes can be enhanced by fully
exploiting the underlying modular organizations of both the disease phenome and the protein interactome. Our RWPCN
uses a novel protein complex network as a basis for interrogating the human phenome-interactome network. As the protein
complex network can capture the underlying modularity in the biological interaction networks better than simple protein
interaction networks, RWPCN was found to be able to detect and prioritize disease genes better than traditional approaches
that used only protein-phenotype associations.
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Introduction

Uncovering the associations between the genetic diseases and

their causative genes is a fundamental objective of human genetics

[1]. However, despite the recent genomic revolution, it still

remains a daunting challenge because of the pleiotropy of genes,

the limited number of phenotype-gene associations, the genetic

heterogeneity of diseases, as well as other complications [2,3].

In recent years, there has been an increase in the number of

genes confirmed as causative genes to diseases [4]. Such

information can be exploited by computational methods to predict

or prioritize new disease-gene associations. A common approach is

to measure the similarities between the candidate genes and the

known disease causative genes based on biological evidences of

these genes such as protein sequence information [5], gene

expression profiles [6], and even literature descriptions [7].

Candidate genes that share high similarities with the known

disease causative genes can then be ranked as the putative disease

genes to be validated by biologists or clinicians. However, these

approaches are limited by the quality and completeness of the

biological evidences. They are also not very useful for inferring

causative genes for new diseases, for it will depend not only on the

accuracy of the biological similarities of the genes being compared,

but also on the ability to categorize similar diseases correctly.

Given that different diseases encompass different but sometime

overlapping collections of clinical phenotypes, a more viable

approach would be to link or prioritize the candidate genes based

on the clinical manifestations of the diseases, that is, to identify

gene-phenotype associations instead of gene-disease associations

directly.

Recent studies have revealed that similar phenotypes are often

caused by functionally related genes [8,9], and genes associated

with similar disorders have been shown to demonstrate higher

probability of physical interactions between their gene products

[10,11]. This suggests a guilt-by-association prediction and

prioritization of disease genes by interrogating the networks of

phenome and interactome for correlations that elucidate gene-

phenotype associations of diseases. A graphical map of the
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phenome can be constructed by considering each phenotype as a

node, and then linking the highly similar phenotypes (e.g. based on

the similarity in their corresponding OMIM records or the domain

knowledge form clinicians). On the other hand, a graphical map of

the interactome can be constructed more directly by considering

each individual protein as a node, and the existence of an

experimentally detected protein-protein interaction (PPI) as a link

between the two corresponding nodes. The recent advent in high-

throughput methods for detecting PPIs en masse (e.g. yeast-two-

hybrid, co-immunoprecipitation-coupled mass spectroscopy) has

enabled the construction of PPI networks on a genomic scale. With

the two networks, we can then infer gene-phenotype associations

by computing the closeness between the candidate genes and

known disease genes based on network topological properties

[3,12–14]. For example, Wu et al. [15] built a regression model

measuring the correlation between phenotype similarities and

gene closeness in the PPI network for prioritizing candidate disease

genes based on the correlation scores. However, Wu’s method is

limited by the consideration of only small localized regions in both

the protein interaction network and phenotype network. To

address this issue, Vanunu and Sharan [16] designed a global

network-based method by formulating constraints on the genes’

score function that related to its smoothness over the network.

Most recently, Li and Patra [3] proposed a new method to

prioritize disease genes by extending the random walk with restart

algorithm on a heterogeneous network constructed by connecting

the gene network (i.e. protein interaction network) and the

phenotype network using known phenotype-gene relationships.

The observation that phenotypically similar diseases are often

caused by functionally related genes also suggests a modular

organization of the genetic landscape of human diseases. Many

specific examples have shown that individual genes that cause a

given phenotype tend to be linked at the biological levels as

components of a multi-protein complex [10,11]. In other words,

the causative genes for the same or phenotypically similar diseases

are likely to reside in the same biological module. Protein

complexes, as molecular machines that integrate multiple gene

products to perform biological functions, are direct manifestations

of biological modules. They are also detected as tightly linked

substructures in PPI networks [17], reflecting the modularity of

biological networks graphically. As such, protein complexes can be

a useful basis for interrogating the networks of phenome and

interactome to elucidate gene-phenotype associations of diseases.

Both the Vanunu and Li methods mentioned above did not

make use of protein complexes to aid in their inference of gene-

phenotype associations. In an earlier work, Lage et al. [18] made

use of protein complexes for prioritization of disease genes via

phenotypic weighting of protein complexes linked to human

diseases. However, they did not use actual protein complexes but

simply assembled neighboring proteins as complexes (consist of a

protein and all their direct interaction partners). They also ignored

the biological relationships between the protein complexes. For

example, it has been reported that if two protein complexes share

a number of common proteins or have densely physical

interactions between them, the mutations of genes in one protein

complex could lead to same or similar phenotypes of the other

protein complex [11]. As such, incorporating quality-controlled

protein complexes and accounting for their relationships are both

essential for accurate disease gene prediction. In this work, we

therefore propose to construct a novel protein complex network,

where nodes are individual complexes and the interactions

between two complexes are measured by the connection strengths

between them, as a basis for interrogating the phenome-

interactome networks for disease gene prioritization. We devise a

novel globally network-based technique called RWPCN (Random

Walker on Protein Complex Network) for elucidating novel gene-

phenotype relationships on such a network.

Our proposed method is different from the existing methods as

our network propagation algorithm is operated at the complex-

level instead of the protein level. We used reliable human protein

complexes from the Comprehensive Resource of Mammalian

protein complexes (CORUM) [19] since the protein complexes

were curated from the biological literatures. To our best

knowledge, this is the first attempt to capture and exploit the

biological modularity of the protein complexes and their

relationships in an explicit way. Our experimental results

showed that such an effort was indeed worth the while, for our

proposed algorithm was able to discover gene-disease associa-

tions more effectively as compared with existing state-of-the-art

methods.

Materials and Methods

In this section, we will first describe the experimental data we

have used. Then, we will introduce the overall network structure

for our RWPCN algorithm, including the phenotype network,

protein complex network, protein interaction network, as well as

gene-phenotype associations. Finally, we describe the construction

of the phenotype network and protein complex network. With

these, we then present our RWPCN algorithm for prioritizing

disease-related genes.

Data Set
Protein interaction data. Human PPI data were

downloaded from the Human Protein Reference database

(HPRD) [20] database which has 34364 interactions among

8919 human proteins/genes. We filtered out the proteins with only

self-interactions, resulting in 8756 human proteins.

Protein complex data. Human protein complexes data were

downloaded from the Comprehensive Resource of Mammalian

protein complexes (CORUM) database [19]. The CORUM

database is a collection of experimentally verified mammalian

protein complexes and these protein complexes are manually

extracted from literature. The records of CORUM protein

complexes are generated by different kinds of experiments, such

as coimmunoprecipitation, cosedimentation, and ion exchange chromatography.

We only considered those human protein complexes that include

at least one gene in HPRD human protein interaction data. This

resulted in 379 human protein complexes with an average size (the

average number of proteins) of 3.83. This set of protein complexes

contains a total of 918 human genes, covering 10.5% of human

genes in our PPI network. Note that we have also filtered out giant

complexes if they covered a number of smaller complexes.

Recall that we also view those proteins which are not included

in any CORUM protein complexes as individual protein

complexes. There were 7838 of these, and 3964 of these individual

protein complexes directly interact with CORUM complexes in

our resulting protein complex network.

Gene-phenotype associations. Gene-phenotype associa-

tions are assembled from the OMIM database [4], using

BIOMART [21]. In our experiments, we exploited an old

version of gene-phenotype association data used in previous

studies [3,15] to facilitate comparisons. 1428 known gene-

phenotype associations were extracted, spanning 1126 disease

phenotypes and 937 causative genes. In addition, we also collected

a new version of gene-phenotype relationships from BIOMART

[22], which contained 1614 links, with 1266 disease phenotypes

and 1034 causative genes.

Disease Gene Prediction on Protein Complex Network
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Overall Network Structure in RWPCN
Figure 1 depicts the overall network structure used in RWPCN.

It consists of three levels of networks, namely, the phenotype

network (top), protein complex network (middle), and the protein

interaction network (bottom). In the phenotype network at the top

level, we connect phenotypes if their similarity scores are bigger

than a pre-defined threshold. The similarity scores are also used to

weight the links. In the Figure, the links are marked with purple

lines, where the thicker lines denote higher phenotypic similarities.

The protein complex network in the middle layer is where

phenotypically-related protein complexes are connected. Within the

protein complex networks, the links are marked with gray lines, with

the thicker lines indicating stronger linkage strengths between the

two corresponding protein complexes. We will describe how to

compute the protein complexes’ linkage strengths later. The links

between the phenotypes and complexes capture the known gene-

phenotype associations, denoted by dashed red lines.

At the bottom level is the PPI network. Two proteins are

connected if they were reported to be interacting to each other.

Across the networks, each protein complex in the middle level links

with all its component proteins (yellow nodes) in the PPI network.

Given a query disease phenotype (a query node in the top level),

our objective is to predict disease genes for this phenotype in the

bottom level PPI network, guided by the protein complex

relationships in the middle level. Our proposed RWPCN

algorithm will traverse between the three networks and exploit

the structural relationships accordingly.

Constructing Phenotype Network
Biologists already have a detailed knowledge of the phenotypes

that are associated with each other. These phenotype associations

have been used to prioritize candidate disease genes as well as to

discover functional relations between genes and proteins [23].

As in the method by van Driel [23], we construct the phenotype

network by applying a text-mining approach to evaluate the

similarity among OMIM phenotypes using Medical Subject

Headings (MeSH) controlled vocabulary as standardized pheno-

typic feature terms. A phenotype ptMPT (PT is the set of all the

phenotypes) is represented as a feature vector pt = (x1, x2,…, xl)

where each dimension represents a vocabulary of Medical Subject

Headings. A dimension i (1, = i, = l) in the feature vector pt

represents a MeSH concept which provides a standardized way to

retrieve information to refer to the concept. Each feature value xi is

the weight of ith MeSH concept, which is determined by the

concept relevance and document frequency in [23].

Given two pti = (xi1, xi2,…, xil), ptj = (yj1, yj2,…, yjl), we measure

the phenotypic similarity between two vectors by the cosine

similarity between the normalized vectors, i.e.,

sim(pti,ptj)~

Pl

k~1

xik � yjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
k~1

x2
ik

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
k~1

y2
jk

s ð1Þ

Figure 1. Illustration of the overall network structure in RWPCN. Top level phenotype network connects the phenotypes and query
phenotype if their phenotypic similarity scores are bigger enough. The similarity scores are used to weight the links (the links are marked with purple
lines, where the thicker lines denote higher phenotypic similarities). The middle level of the network is protein complex network where phenotype-
related protein complexes are connected. The links between two protein complexes marked with gray lines, with the thicker lines indicate the strong
linkage strength. On the other hand, the links between the phenotypes and complexes indicate the known gene-phenotype associations, denoted by
dashed blue lines. The bottom level of the network is the protein interaction network where each protein complex in the middle level links with all its
component proteins (yellow nodes).
doi:10.1371/journal.pone.0021502.g001
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As recommended in [23], similarity values in the range [0, 0.3] are

believed to be uninformative and noisy while those in [0.6, 1] are

considered to be reliable [23]. Therefore, we re-compute the

phenotypic similarity between pti and ptj using a logical function

L(sim(pti,ptj))~
1

1ze
(c�sim(pti ,ptj )zd) used in [24]. We used the

default values recommended in [24] for the parameters c and d,

namely c = -15 and d = log(9999) respectively.

We construct our phenotype network using k-NN model (k-

Nearest Neighbor). That is, for each phenotype pti, we compute its

top k most similar phenotypic neighbors (i.e. having the k highest

phenotypic similarities with pti) to link to it. We experimentally test

the effects of different values of k on the performance of our

proposed algorithm, and we set k = 10 as the default value.

Constructing Protein Complex Network
A PPI network (in the bottom level) is an undirected graph

GPPI = (VPPI, EPPI), where VPPI is the set of nodes (proteins) and

E = {(u,v)| u,vMVPPI} is the set of edges (protein interactions).

To construct protein complex network in the middle level, we

need to collect known protein complex data or use some

computational methods to predict protein complexes. In this

paper, we use the known protein complex database Compre-

hensive Resource of Mammalian protein complexes

(CORUM) [19], which is a collection of high quality

experimentally verified mammalian protein complexes and

has higher quality than those predicted by computational

methods. However, the CORUM complex database is still far

from complete and it is built from 2400 different genes,

covering 12% of protein-coding genes in human [19]. As such,

our protein complex set COM consists of a set of multi-protein

complexes from CORUM (set CM) as well as a set of individual

complexes (set CI) — namely those individual proteins that are

not involved in any of the current CORUM complexes. As

such, we have the following:

COM~CM|CI ð2Þ

CM~ cAjcA[CORUM, cA is a complexf g ð3Þ

CI~ pf gjVcA[CORUM,p=[cA, p[VPPIf g ð4Þ

Given the protein complex set COM, we define the protein

complex network as a directed super graph GCOM = (VCOM, ECOM),

where the super node set VCOM = COM denotes a set of protein

complexes and ECOM = {(cA,cB)| cA,cBMVCOM} represents the set of

links between protein complexes. Note that a link (cA,cB)MECOM can

be categorized into one of three types depending on the nature of

complexes cA and cB, namely, EC2C (C2C links between two multi-

protein complexes), EI2I (I2I links between two individual

complexes), and EI2C (I2C links between an individual complex

and a multi-protein complex). Next, we describe how to assign

weight for these three types of links.

Note that each complex cA MCM is a super node that can be

represented as a graph cA = (VcA, EcA) where the set VcA

represents all the proteins in the complex cA, and the set EcA

represents the protein-protein interactions among the proteins

in VcA. Given two complexes cA = (VcA, EcA) and cB = (VcB, EcB),

cA,cBMCM , a C2C link EC2C(cA,cB) between cA and cB can be

quantified as follows:

EC2C(cA,cB)~

P
PA[VcA,PB[VcB,PA,PB=[VcA\VcB

I(PA,PB)

(jVcAj{jVcA\VcBj) � (jVcBj{jVcA\VcBj)
ð5Þ

where

I PA,PBð Þ~
1, if PA,PBð Þ[EPPI

0, Otherwise

�
ð6Þ

Basically, Equation (5) evaluates how closely the protein members

from different complexes interact with each other overall. It is the

proportion number of interaction between the complexes among

the number of all possible interactions. If there are a lot of physical

interactions between the members from two complexes (non-

overlapping proteins), then the two complexes are likely to be

highly related as mutations of proteins in one of protein complexes

could correspondingly disrupt the other complexes’ functions,

thereby producing similar disease phenotypes. Note that according

to equation (5), it is easy to know that EC2C (cA,cB) = EC2C (cB, cA).

In the case that we have one multi-protein complex cAMCM and

one individual protein complex IA MCI, then the C2I link EC2I (cA, IA)

and the I2C link EI2C (IA, cA) can be defined as follows:

EC2I (cA,IA)~

P
p
A[VcA

I(PA,IA)

jVcAj
,

EI2C(IA,cA)~

P
p
A[VcA

I(PA,IA)

deg(IA)

ð7Þ

Finally, given two individual protein complexes IA and IB, (IA, IB

MCI), then the I2I link EI2I (IA, IB) and the I2I link EI2I (IB, IA) are

computed as follows:

EI2I (IA,IB)~
1

deg(IA)
, EI2I (IB,IA)~

1

deg(IB)
ð8Þ

where deg(IA) is the number of neighbors of vertex IA.

Random walk with restart on the protein complexes
network (RWPCN)

We are now ready to present our proposed algorithm. Given a

query phenotype pti, we aim to prioritize candidate disease genes

based on known disease genes which are associated with pti’s

similar phenotypic neighbors in the phenotype network.

Step 1. Initialization of seed genes and complexes. Let

N(pti) represents the k-NN phenotype neighbor set of the query

phenotype pti where each ptjMN(pti) is similar with pti. Let dis(pti) be

the set of causative genes of the phenotype pti. We define the seed

disease gene set with respect to pti as S~ |
ptj[N(pti)

dis(ptj).

For a seed disease gene sMS, we assign to it a score

seed(s,pti)~
P

s[dis(ptj )

L(sim(ptj ,pti)) [24]. Given a phenotype pti

and the score for its seed gene set seed(s,pti), we can then score

the protein complex cA as follows:

F (cA,pti)~density(cA) �
X

s[VcA

seed(s,pti) ð9Þ

Disease Gene Prediction on Protein Complex Network
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F(cA, pti) denotes initial score of the protein complex cA with respect

to pti.

The density of a graph G = (VG, EG), denoted as density (G),

quantifies the richness of edges within G and it is defined as shown

in equation (10) [25]:

density(G)~
2 � jEGj

jVGj � (jVGj{1)
ð10Þ

Note that 0#density (G)#1. If density (G) = 1, then G is a complete

graph, which means every pair of distinct vertices in VG is

connected by an edge. As each protein complex can be viewed as a

graph, we apply density(CA) to quantify the richness of protein

interactions within CA. Those complexes with higher densities and

their component proteins have multiple associations with query

phenotypes and/or their phenotypic neighbors will get higher

scores.
Step 2. Propagating the seeds’ influence to the complexes

in the whole network. We adopt the Random Network

algorithm [26] to the protein complex network. First, the seed

protein complexes are each assigned a score with respect to the

query phenotype if they contain the genes in the seed disease gene

set. We then score all the protein complexes in COM by

propagation. We propose to do flow propagation for this. The

prior disease influence flows of seed complex vertices are

distributed and pumped to their neighbor complexes in the

network. These super vertices will then continue to spread the

influence flows received from previous iteration to their neighbors.

Formally, let F0 be a vector of the initial probabilities of all the

protein complexes in the protein complex network computed using

equation (9). The probability vector at step r, Fr, can be calculated

by equation 11,

Fr~(1{a)W
0
Fr{1zaF0 (r§2) ð11Þ

where F1 = F0.

W’ is the column normalized form transpose of adjacency

matrix W which is the transition matrix of the whole protein

complex interaction network. We construct matrix W based on the

three different links between protein complexes. Recall that our

protein complex set COM consists of both multi-protein complexes

(CM) and individual complexes (CI). The matrix W is thus defined

as:

W~
AC2C n�nð Þ AC2I n�mð Þ

AI2C m�nð Þ AI2I m�mð Þ

 !
ð12Þ

where AC2C (n*n), AC2I (n*m), AI2C (m*n) and AI2I (m*m) are the adjacency

sub-matrices. In particular, AC2C (n*n) represents the sub-network

links between multiple-protein complexes (equation 5), AC2I (n*m)

represents the sub-network links from multi-protein complexes to

individual complexes, AI2C (m*n) represents the sub-network links

from individual complexes to multi-protein complexes (equation

7), and AI2I (m*m) represents the sub-network links between

individual protein complexes (equation 8) respectively, where

n = |CM| and m = |CI| are the numbers of multi-protein

complexes and individual complexes respectively.

Note that in Equation 11, the parameter aM(0,1) provides a

probabilistic weighting of spreading the prior information of the

seed complex vertices to other protein complexes at every step. a is

set as 0.8 in our experiments. At the end of the iterations, the prior

information held by every vertex in protein complex network will

reach a steady state which is proven by paper [26]. This is

determined by the probability difference between Fr and Fr-1,

represented as Dif = |Fr2Fr-1| (measured by L1 norm). When

Dif = |Fr2Fr-1|, = 10210, as suggested in Li et al. [3], we consider

that a steady stage has been reached and stop the iterative process.

Note that the function F is smooth over the whole protein

complex-complex network, and each vertex complex is assigned a

value to represent its association with the disease phenotype of

interest.

Step 3. Scoring disease gene based on associations of

protein complexes to diseases. Once the vector Fr reaches a

steady state, we obtain the final scores of protein complexes with

respect to query phenotype. Recall that the final objective of our

algorithm is to prioritize candidate disease genes amongst the

genes in the GPPI. The final step is therefore to prioritize candidate

disease genes based on their associations with protein complexes.

Given a candidate gene g, its association with query phenotype pti,

denoted by S(g, pti), is computed as

S(g,pti)~
X
g[cA

Fr(cA,pti) ð13Þ

where CA is the set of complexes containing the gene g, Fr(cA, pti)

denotes probability of complex CA associated with phenotype pti
when Fr reaches a steady state. Because mutations on the genes

shared by multiple protein complexes may lead to multiple similar

phenotypes, scores of these shared genes should be the

accumulated score of protein complexes that contain them.

Results

In this section, we firstly introduce the experimental settings and

evaluation metrics. Then, we present the experimental results

compared with state-of-the-art techniques.

Experimental settings and evaluation metrics
Our objective is to uncover novel gene-phenotype relationships.

In order to compare different techniques, we employ standard

leave-one-out cross-validation in our experiments. Each known

gene-phenotype association (g, p) is employed as one test case

where the phenotype p is the query phenotype and the gene g is the

test disease gene. In each round of cross-validation test, we will first

intentionally remove the association (g, p) from our data. We then

run our proposed algorithm to score the genes based on their

associations with protein complexes with respect to the query

phenotype p. If the test disease gene g is ranked as top 1, we will

consider it as a successful prediction; otherwise it is a failed case.

We use the number of overall successful predictions to evaluate the

performance of different prediction methods. Depending on the

genes involved in the ranking, we further categorize our evaluation

metrics into the following two classes, namely, whole genome

evaluation and ab initio evaluation [15]. Whole genome evaluation

proposed by [15] basically ranks all the genes to scan for disease

genes, e.g. we can consider all HPRD genes which do not link to

the query phenotype (exactly same setting with RWRH [3]) and

check how many known test disease genes are still ranked as top 1

in the cross-validation test. However, there are no causative genes

for half of the OMIM phenotypes [4]. Ab initio prediction proposed

by Wu [15] identifies disease genes without any known disease

genes for those query phenotypes. For each phenotype entity, we

remove the gene-phenotype associations from this phenotype p to

all of its known causative genes and we can only use the other

disease genes associated with p’s neighbor phenotypes as the seed

disease gene set. If one of the known causative genes (assuming p is

Disease Gene Prediction on Protein Complex Network
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associated with multiple disease genes) related to the phenotype p

is ranked top 1, we consider it a successful prediction.

Note in our experiments, the same experimental data and

evaluation metrics have been consistently used to evaluate all the

prediction techniques.

Experimental Results
In this section, we first compare our algorithm with two state-of-

the-art techniques, namely, CIPHER-DN (CIPHER with the

topological distance feature of Direct Neighbors) [15] and RWRH

[3]. Next, we test the sensitivities of the parameters in our proposal

method. For discussion, we present two case studies of predicting

disease genes for two representative diseases i.e., Breast cancer and

Diabetes. Finally, with the computed scores for protein complexes,

we want to validate if those the protein complexes with high scores

are disease related.

Comparison with CIPHER-DN and RWRH. We

compared the performance of our RWPCN algorithm with

current computational techniques, namely, CIPHER-DN and

RWRH, using two evaluation metrics presented above, namely,

whole genome evaluation and ab initio evaluation. Table 1 shows the

overall comparison results of different algorithms. In terms of whole

genome evaluation (second column in Table 1), we observed that

our proposed RWPCN was able to achieve the best result,

successfully predicting 253 genes, which were 8 and 88 more genes

predicted than RWRH and CIPHER-DN respectively. In terms of

ab initio evaluation (third column in Table 1), we were able to

predict 226 disease genes successfully, which were 25 and 69 more

than the RWRH and CIPHER-DN respectively.

Note that in the original CIPHER-DN paper [15], the authors

have adopted a less strict evaluation metric for ab initio evaluation

than ours. As long as the target gene was ranked among the top N

(instead of the top 1), it was regarded as a successful prediction where

N (N. = 1) denotes the number of known disease genes for the

query phenotype. Using this less stringent evaluation metric, our

method predicted 240 genes successfully while CIPHER-DN

could only predict 157 genes in the ab initio evaluation.

In the evaluations above, we have used the standard (but old)

gene-phenotype association data which were also used in [3,15] for

comparison purpose. To further validate the predicted associa-

tions, we collected a new version of gene-phenotype association

data extracted from OMIM using BIOMART recently [22]. It

contains 1614 gene-phenotype associations, which includes 274

novel gene-phenotype associations where the disease genes were

unknown in the previous version (other 1340 associations are

shared by both versions). Table 2 shows that using the new gene-

phenotype association data, RWPCN successfully ranked the 273

(a sensitivity of 0.169) genes as top 1 in terms of whole genome

evaluation, and 247 (a sensitivity of 0.153) in terms of ab initio

evaluation, indicating our method is certainly capable of detecting

the novel knowledge which were absent in the older reference

data.

Effect of parameters a and k in RWPCN. Recall that we

have two parameters a and k in our RWPCN algorithm. The flow

parameter a is used in our RWPCN algorithm to control the

proportion of information that flows back into the seed nodes/

protein complexes at each iteration of the algorithm. A larger a
represents that information flows are likely to return to the seed

nodes, therefore those protein complexes near to seed nodes are

more likely to be ranked forward. On the contrary, a smaller a
represents that information flows are likely to flow out of the seed

nodes, therefore those protein complexes near to seed nodes are

more likely to be ranked backward. The second phenotype

parameter k decides the number of related phenotypes with regard

to the query phenotype. An unnecessarily large k will include many

phenotypes which are not relevant while a smaller k will include

lesser number of related phenotypes and may miss out some

important relevant phenotypes as a result.

We first investigated how the flow parameter a affects the

performance of the algorithm. We ran our algorithm with values

of a ranging from 0.2 to 0.9 in steps of 0.1, while keeping the

phenotype k fixed as 10 using leave-one-out cross-validation. The

performance of the algorithms is measured using whole genome

evaluation and ab initio evaluation mentioned above, as shown in

Figure 2.

With increasing value of a, we were able to obtain increased

numbers of successful predictions for both whole genome evaluation

and ab initio evaluation. This is expected since the seed nodes in

protein complex network are more likely to hold the information

flows, thus few flows will be distributed to the distant neighbors in

the network. Biologically, this is reasonable since the protein

complexes (and the corresponding proteins in the complexes) that

directly interact with the disease complexes/proteins are more

likely to be disease/phenotype related. We observe that the

performance of RWPCN with a. = 0.4 are better than the

existing CIPHER-DN and RWRH algorithms. In fact, we found

that the optimal values of a can be found within a large range of

0.5, = a, = 0.9. As such, selecting a suitable value for a for good

performance is not a problem.

To study the effect of the parameter k that decides the number

of related phenotypes, we ran RWPCN with k from 4 to 15 with

a = 0.8, based on whole genome and ab initio evaluations. Results

are shown in Figure 3. The performance of RWPCN algorithm

improved with increasing value of k from 4 to 10, indicating that

incorporating more related phenotypes is helpful for prioritizing

target disease genes. However, if we further include more

phenotypes (e.g. when k.10) with low phenotypic similarities,

noisy and un-meaningful phenotypes will be included [23] and

eventually affects the performance of disease gene prediction.

For example, the results in Figures 3 showed that the

Table 1. Overall performance of RWRH, CIPHER-DN and
RWPCN algorithm.

Algorithm Whole genome evaluation Ab initio evaluation

RWPCN 253 226

RWRH 245 201

CIPHER-DN 165 157

We compared RWPCN with RWRH and CIPHER-DN based on the measurement
of whole genome evaluation and ab initio evaluation.
doi:10.1371/journal.pone.0021502.t001

Table 2. Overall performance of BIOMART06, 09 and 06+09
phenotype-gene data.

Phenotype-gene
data

Whole genome
evaluation

Ab initio
evaluation

BIOMART06 253 226

BIOMART09 273 247

BIOMART06+09 285 253

We ran RWPCN on three kinds of phenotype-gene association data, extracted
from BIOMART 06, BIOMART 09 and combination of two version data.
doi:10.1371/journal.pone.0021502.t002
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performance with k in the range of [11,15] has worsened.

Nevertheless, the performance of RWPCN algorithm with k in

the wide range [7,12] was consistently better than that of

RWRH and CIPHER-DN, suggesting that RWPCN is insensi-

tive to the specific values of k.

Inferring novel causal genes for breast cancer and

diabetes. We also applied our method for uncovering novel

candidate genes on specific complex genetic diseases. We have

chosen Breast Cancer (MIM: 114480) and Diabetes Mellitus type

2 (MIM: 125853) for our case studies here.

Figure 2. Effect of value a based on whole genome and ab initio evaluation. Figure 2 investigated how the flow parameter affects the
performance of the RWPCN algorithm. With increasing value of a, we can obtain increased numbers of successful predictions for both whole genome
evaluation and ab initio evaluation.
doi:10.1371/journal.pone.0021502.g002

Figure 3. KNN phenotype network on whole genome and ab initio evaluation. This figure studies the effect of the parameter k that decides
the number of related phenotypes. Figure 3 shows the performance of RWPCN algorithm improved with increasing value of k from 4 to 10
(incorporating more related phenotypes) but it performs worse than when k.10 (including low noisy phenotypes). Overall, the performance of
RWPCN algorithm with k in the wide range [7,12] was consistently better than that of RWRH and CIPHER-DN.
doi:10.1371/journal.pone.0021502.g003
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We ran our RWPCN algorithm (with k = 10 and a = 0.8) for

both Breast Cancer and Diabetes Mellitus type 2. Note that we no

longer removed any gene-phenotype associations since our

objective was to predict novel disease genes instead of evaluating

the performance using cross-validation. We ranked the resulting

candidate genes over the whole genome and selected the top 20

ranked genes associating with target phenotypes (Breast Cancer

and Diabetes Mellitus type 2).

The experimental results are listed in Table 3 and 4 for Breast

Cancer and Diabetes Mellitus type 2 respectively.

Table 3 showed 6 highly ranked genes that are also known to

associate with the Breast Cancer. However, we are more interested

in investigating whether our predicted novel susceptible genes are

also associated with disease phenotypes. We searched for

additional gene-phenotype associations from GENECARDS

database [27] and also performed literature search from PubMed

on the other susceptible genes predicted by our algorithm to be

associated to disease phenotype of Breast Cancer (MIM: 114480).

We found 8 additional genes, namely RBBP8, HDAC1, HDAC2,

LMO4, ZNF350, ELAC2, RNASEL and PTEN that are also

reported to be related to Breast Cancer. For CtIP (also known as

retinoblastoma binding protein 8, RBBP8, ranked at 2), the

expression of this gene had been shown to be a novel mechanism

for tamoxifen resistance development in breast cancer [28].

HDAC1 and HDAC2 (ranked at 3 and 4), among class I HDACs,

were reported to regulate the changes in histone acetylation and

were associated with HDAC inhibitors that were expected to

reverse hypoacetylation levels observed even at the early stages of

breast cancer progression [29]. LMO4 (ranked at 6) was a novel

cell cycle regulator with a key role in mediator of ErbB2/HER2/

HER2/Neu-induced breast cancer cell cycle progression [30].

Genetic variants and haplotype analyses of the ZNF350 (ranked at

12) gene suggested that it is associated with high-risk non BRCA1/

2 French Canadian breast and ovarian cancer families [31].

Germline mutation in RNASEL (ranked at 15) predicted increased

risk of breast cancer [32]. Finally, Tsou HC et al. [33] reported

three novel MMAC1/PTEN (ranked at 16) mutations in CS

(Cowden syndrome) were associated with breast cancer. All these

showed that our prediction method could discover novel disease

genes for breast cancer beyond the original disease gene set.

Table 4 showed our prediction results for Diabetes Mellitus

type 2. Out of the top 20 predicted disease genes, 8 genes were

known to associate with the phenotype. We found three

additional genes PIK3R1, EP300 and ABCC8 also related to

the disease phenotypes. PIK3R1 (ranked at 1) had been tested

for their influence on insulin action, showing significant

associations with diabetes [34]. EP300 (ranked at 13, aliases

p300), as a transcriptional coactivator, could cause diabetes via

regulating fibronectin expression via PARP and NF-kappaB

activation [35]. For ABCC8, a rare mutation in ABCC8/SUR1

(ranked at 20) had been reported to have an effect on K(ATP)

channel activity and beta-cell glucose sensing, leading to diabetes

in adulthood [36].

From Tables 2 and 3, we found our predicted disease genes

indeed mapped significantly with disease genes that were either

curated in existing databases or reported in the literature. This

suggests that the other unmatched ones could be potentially real

disease genes that are worth being further validated by clinicians

and biologists.

Table 3. Breast cancer genes prediction.

Rank Score HGNC Gene symbol Mark

1 3.61665 BRCA1 *

2 2.64458 RBBP8 !

3 1.04115 HDAC1 !

4 1.02108 HDAC2 !

5 1.00632 CTBP1 ,

6 0.983392 LMO4 !

7 0.814445 RAD51 *

8 0.812762 BRCA2 *

9 0.807072 NBN *

10 0.806886 BRIP1 *

11 0.801356 PIK3CA *

12 0.671104 ZNF350 !

13 0.142519 SMAD3 ,

14 0.141945 ELAC2 !

15 0.141729 RNASEL !

16 0.140748 PTEN !

17 0.0947266 TP53 ,

18 0.0849672 SMAD4 ,

19 0.0831955 EP300 ,

20 0.0721527 CREBBP ,

Genes marked with * are known disease genes associated with Breast Cancer
(MIM: 114480), genes marked with ! are the genes associated with Breast
Cancer (MIM: 114480) either extracted from literature or from GENECARDS
database, genes marked with , are un-related to disease.
doi:10.1371/journal.pone.0021502.t003

Table 4. Diabetes genes prediction.

rank Score HGNC Gene symbol Mark

1 1.34591 PIK3R1 !

2 1.33691 IRS1 *

3 1.33691 INSR *

4 1.33691 KHDRBS1 ,

5 0.821847 NEUROD1 *

6 0.812877 IPF1 *

7 0.810154 SLC2A4 *

8 0.802705 MAPK8IP1 *

9 0.802453 TCF2 *

10 0.802404 PPP1R3A *

11 0.354724 TCF1 ,

12 0.194629 CREBBP ,

13 0.15557 EP300 !

14 0.102423 PCAF ,

15 0.0807789 PLN ,

16 0.0806853 RPS6KA1 ,

17 0.0652625 CUL3 ,

18 0.0652625 SPOP ,

19 0.0595811 POLR2A ,

20 0.0471911 ABCC8 !

Similarly, Genes marked with * are known disease genes associated with
Diabetes Mellitus, type 2 (MIM: 125853), genes marked with ! are the genes
associated with Diabetes Mellitus, type 2 (MIM: 125853), extracted from
literature or from GENECARDS database, genes marked with , are un-related
with disease.
doi:10.1371/journal.pone.0021502.t004
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Detecting disease-related protein complexes. Recall that

we have assigned scores to the protein complexes to indicate the

degree of association of the protein complexes to the query disease

phenotypes. The higher the scores protein complexes were

assigned, the higher probability protein complexes were

associated with corresponding phenotypes. Based on the scores,

we ranked the protein complexes and studied the two top-ranked

complexes here: Sarcoglycan-sarcospan complex (SG-SPN) and

Pex26-Pex6-Pex1 complex. For evaluation, a set of 248 disease

protein complexes from Lage et al. [18] was used as our

benchmark.

Figure 4 showed that the SG-SPN complex (surrounded by green

line) contained five human proteins: Q16586, Q16585, Q92629,

Q13326, Q14714 and it was ranked at top 1 protein complex in

predicting phenotype (MIM: 608099)-gene (SGCA) association by

our RWPCN algorithm. We found that this SG-SPN complex had

a large overlap (shared four proteins) with the disease complex

No. 230 (surrounded by red dash line) in our benchmark set. We

also found that all shared 4 proteins were known disease genes

linked to phenotypes (Blue dash links), which had high phenotypic

similarities among them. Noted that gene Q14714 (SSPN) in SG-

SPN complex was associated with phenotype Fukuyama Congen-

ital Muscular Dystrophy (FCMD) (MIM: 253800) [37] which was

closely related to phenotype (MIM: 608099) in our phenotype

network, indicating that SG-SPN complex could indeed be a valid

disease complex.

Similarly, Figure 5 showed the Pex26-Pex6-Pex1 complex

(surrounded by green line) which covered a benchmark disease

complex (surrounded by red dash line) that consisted of proteins

O43933 (PEX 1) and Q13608 (PEX 6). This complex was

ranked at top 1 in inferring phenotype (MIM: 202370)-gene

(PEX26) association. The Pex26-Pex6-Pex1 complex was

involved in peroxisome biogenesis disorders (PBDs), which

included the Zellweger syndrome spectrum (PBD-ZSD) and

rhizomelic chondrodysplasia punctata type 1 (RCDP1). PBD-

ZSD represented a continuum of disorders including infantile

Refsum disease (MIM: 266510), neonatal adrenoleukodystrophy

(MIM: 202370), and Zellweger syndrome (MIM: 214100). Noted

that the Q7Z412 (PEX 26) protein in the our predicted disease

complex was also a known disease gene associated with all the

three phenotypes, suggesting that the mutations of proteins in the

same CORUM protein complexes were likely to induce the same

or similar phenotypes. It also showed that our highly ranked

protein complexes were indeed disease related.

Discussion

While great progress has been made in genomics and

proteomics, discovering the associations between genes and

phenotypes have remained challenging. In this paper, we

constructed a novel human protein complex network by

integrating HPRD protein interaction network [20] and CORUM

protein complexes [19]. We showed that a genome-wide disease

gene prioritization for multi-factorial diseases can be obtained

using such a human protein complex network. Using our method,

the top ranked candidate disease genes that are found to be closely

associating with protein complex can potentially be used to guide

the prediction of disease-related protein complexes.

We have verified the ability of our RWPCN algorithm to

disclose gene-phenotype associations through extensive experi-

ments. We first exploit known gene-phenotype associations to

initialize the higher-level complex phenotype associations based on

the modular nature of complex diseases. Then, we prioritize

candidate disease genes for disease phenotypes using the network

propagation technique on the complex interaction network. Our

RWPCN algorithm was shown to outperform the existing methods

RWRH [3] and CIPHER [15] which only use gene/protein level

associations. This suggests that our protein complex network can

Figure 4. SG-SPN overlaps with the disease complex No. 230. Figure 4 showed that the SG-SPN complex (surrounded by green line)
contained five human proteins. We found that this SG-SPN complex had a large overlap (shared four proteins) with the disease complex No. 230
(surrounded by red dash line) in our benchmark set. We also found that all shared 4 proteins were known disease genes linked to phenotypes (Blue
dash links), which had high phenotypic similarities among them. Gene Q14714 (SSPN) in SG-SPN complex was associated with phenotype Fukuyama
Congenital Muscular Dystrophy (FCMD) (MIM: 253800) [37] which was closely related to phenotype (MIM: 608099) in our phenotype network.
doi:10.1371/journal.pone.0021502.g004
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indeed capture the underlying modularity in the biological

interaction networks better than simple protein interaction

networks, as it is a more effective basis for interrogating the

human phenome-interactome network for gene-phenotype asso-

ciations through our RWPCN algorithm.

It should be acknowledged that the proposed RWPCN

algorithm can be improved further. As RWPCN relies on the

human protein complex interaction network, the coverage of the

protein complex data can affect the performance of prediction.

Since the current protein complex data is by no means complete,

predicted human protein complexes with high quality could be

taken into consideration. Combining the predicted and experi-

mental validated complex data into the prioritization process (e.g.

using the method reviewed in [38–40]), could increase the power

of prediction as long as we also ensure the quality of the complex

data. RWPCN also depends on the quality (i.e. reliability) of the

PPI data in the current model, and it may be more suited to

certain kind of diseases than others. It is well-known that PPI data

generated with high-throughput methods can be of inferior

quality. One possible improvement is to weight protein-protein

interactions using diverse biological evidences (e.g. protein

sequences, domain, motif, topological properties of PPI network

[41,42], protein localization, molecular function, biological

process and gene expression profiles [43,44], metabolic reactions

[45], etc) to improve the reliability of the PPI data that we use for

disease gene prioritization. We are currently exploring these and

other approaches to further improve our RWPCN algorithm for

discovering gene-phenotype associations.
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