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ABSTRACT: The mechanisms whereby Mycobacterium tuberculosis (Mtb)
rewires the host metabolism in vivo are surprisingly unexplored. Here, we
used three high-resolution mass spectrometry platforms to track altered lung
metabolic changes associated with Mtb infection of mice. The multiplatform
data sets were merged using consensus orthogonal partial least squares-
discriminant analysis (cOPLS-DA), an algorithm that allows for the joint
interpretation of the results from a single multivariate analysis. We show that
Mtb infection triggers a temporal and progressive catabolic state to satisfy the
continuously changing energy demand to control infection. This causes
dysregulation of metabolic and oxido-reductive pathways culminating inMtb-
associated wasting. Notably, high abundances of trimethylamine-N-oxide
(TMAO), produced by the host from the bacterial metabolite trimethyl-
amine upon infection, suggest that Mtb could exploit TMAO as an electron
acceptor under anaerobic conditions. Overall, these new pathway alterations advance our understanding of the link between Mtb
pathogenesis and metabolic dysregulation and could serve as a foundation for new therapeutic intervention strategies. Mass
spectrometry data has been deposited in the Metabolomics Workbench repository (data-set identifier: ST001328).

KEYWORDS: tuberculosis, metabolomics, pulmonary tuberculosis, tuberculosis progression, functional metabolomics,
multiplatform metabolomics, data fusion

■ INTRODUCTION

Tuberculosis (TB) is caused by the obligate pathogen
Mycobacterium tuberculosis (Mtb). It is estimated that one-
quarter of the world’s population is latently infected with the
bacilli, from which 5−10% develop active tuberculosis.1,2 The
increased prevalence of multidrug-resistant TB (MDR-TB) and
extensively drug-resistant TB (XDR-TB) cases represents a
potential threat to global health as the therapeutic arsenal for
drug-resistant TB treatment is limited.3 Thus, there is an urgent
need for new diagnostic and therapeutic strategies to control this
epidemic, including new biomarkers and host-directed
therapies, the development of which would be assisted by a
comprehensive mechanistic knowledge of host−pathogen
interactions.
Metabolomics has been employed for the identification of TB

diagnostic biomarkers, the evaluation of potential therapeutics,
and the study of the biological mechanisms underlying TB
disease onset and progression in both in vitro and in vivo animal
models, as well as in human patients.4−6 Characterizing how the
host metabolome is altered during Mtb infection is critically
important as it may lead to the discovery of new pathways

essential for protection against the bacillus and the identification
of host-directed therapies.
Previous metabolomic studies in the TB field have

contributed to our knowledge of the in vivo carbon sources
available to Mtb,7,8 the ability of Mtb to withstand the oxido-
reductive stress present in the TB lung,9 and the role of
immunometabolism in driving effector functions of the immune
cells in tuberculosis.10−14 However, there is a gap in our
understanding of how Mtb infection modulates the host
metabolome over the course of infection; several reasons are
responsible for this breach in our knowledge. First, a limiting
factor is that few studies have examined the dynamic metabolic
alterations that occur during the course of Mtb infection.15 For
example, only threemetabolomic studies using nuclear magnetic
resonance (NMR) examined the lungs of Mtb-infected animal
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models,16−18 of which only one guinea pig pulmonary TBmodel
was investigated at multiple time points.17,18 While NMR is
robust and well established, it suffers from relatively low
sensitivity. Second, another limiting factor is that a single
platform metabolomic approach was utilized in all lung
metabolomic studies.16−18 The simultaneous use of distinct
separation techniques coupled with high-resolution mass
spectrometry (HRMS) analyzers enables the separation of
specific metabolite subsets according to specific physicochem-
ical properties while permitting accurate mass measurements of
the metabolites. Such a multiplatform metabolomic approach
can reach higher levels of metabolite coverage, sensitivity, and
specificity.19 Unfortunately, to the best of our knowledge,
untargeted multiplatform-based metabolomic analyses to
examine how Mtb infection affects the lung metabolome have
not yet been reported. Likely reasons include the different
methodological limitations described for lung metabolomics.4

Here, we examined how Mtb affects the host metabolome
during infection by exploiting capillary electrophoresis-time-of-
flight (CE-TOF/MS), gas chromatography-quadrupole-time-
of-flight (GC-QTOF/MS), and liquid chromatography-quadru-
pole-time-of-flight (LC-QTOF/MS) as analytical platforms. A
downstream bioinformatics pipeline employing data fusion
algorithms, multivariate statistics, and functional metabolomics
was then used to characterize the global metabolomic changes in
the lungs of Mtb-infected mice at different time points during
infection (Figure 1A−C). This enabled us to identify new and
unexpected host disease-associated metabolic pathways includ-
ing, but not limited to, amino acid, carbohydrate, and fatty acid
metabolism and consumption, central carbon metabolism,
oxido-reductive stress, and polyamine metabolism of TB
modulated by Mtb. Overall, our findings have implications
that may contribute toward a better understanding of the
mechanisms of the disease and new strategies for the
pharmacological control of TB. To the best of our knowledge,
this is the first untargeted, MS-based lung metabolomic study
characterizing the progression of pulmonary TB in the mouse
model for TB.

■ EXPERIMENTAL SECTION

Mice and Mtb Infection

Bothmale and female age-matchedC57BL/6mice (8−10weeks
old) were infected with Mtb H37Rv in an animal BSL-3
laboratory and monitored with food and water ad libitum. Mice
were sacrificed by anesthesia with isoflurane followed by gentle
cervical dislocation as approved by the institutional Animal
Protocol Number (APN): 08591. Mice experimental proce-
dures were approved by the Institutional Animal Care and Use
Committee (IACUC) at the University of Alabama at
Birmingham. For mice studies, we adhered to the national/
international regulation of “Public Health Service Policy on
Humane Care and Use of Laboratory Animals” (NIH) and
“AnimalWelfare Act and AnimalWelfare Regulations” (USDA).
Mouse genotype was confirmed by PCR and Western blotting.
Mtb H37Rv was grown at 37 °C with shaking in BD Difco
Middlebrook 7H9 media supplemented with 0.2% glycerol and
ADS (albumin, dextrose, NaCl) with 0.02% tyloxapol. Mice
were infected with 5 × 104 Mtb H37Rv via the intratracheal
route. Lungs were collected from uninfected (male, n = 2;
female, n = 2) and Mtb-infected mice at 4 weeks (male, n = 2;
female, n = 2) and 9 weeks (male, n = 2; female, n = 3)
postinfection and stored immediately at −80 °C for further
processing and metabolite extraction.

Metabolite Extraction

Samples for metabolite analysis were prepared as described
previously.11,20 Briefly, 1 mL of 50%methanol was added to 100
mg of Mtb-infected or uninfected lung tissue and homogenized
in a dounce homogenizer to prepare a uniform suspension. For
CE-TOF/MS, 200 μL of homogenate was mixed with 200 μL of
0.2 M formic acid and vortexed for 2 min. The samples were
cleared by centrifugation at 16 000g for 10 min at 4 °C, and the
supernatant was filter-sterilized using 0.22 μm spin-X columns
(Sigma). For GC-QTOF/MS and LC-QTOF/MS, 200 μL of
each sample homogenate was mixed with 800 μL of 80:20
methanol/methyl tert-butyl ether (MTBE) and vortexed for 2
min. Metabolites were then extracted for 1 h with shaking at
room temperature and then centrifuged at 4000g at 20 °C for 20
min. Supernatants were sterile-filtered using 0.22 μm spin-X

Figure 1. Applied metabolomic workflow summary. Simplified metabolomic workflow (A), including consensus orthogonal partial least squares
discriminant analysis (cOPLS-DA) data fusion approach. Experimental design, and lung homogenate collection (B). Platform-specific sample
treatment and HRMS analysis (C). “Platform unspecific” refers to tasks that are universal regardless of theMS platform being used. “Platform-specific”
tasks will vary depending on the MS platform. Note that each metabolomic experiment allows the detection of specific subsets of metabolites.
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columns. All samples were passed through a Millipore filter (30
kDa cutoff) to remove large proteins. Samples were dried under
high vacuum and stored at−80 °Cuntil further platform-specific
processing and analysis.

CE-TOF/MS Analysis

The dried samples were resuspended in Milli-Q water
containing 0.1 mM formic acid and 0.2 mMmethionine sulfone
(internal standard) (Sigma-Aldrich, Germany) by vortexing for
1 min. After subsequent centrifugation (12 600g, 15 min), the
resulting clear solution was analyzed by CE-TOF/MS using a
CE system (Agilent 7100) coupled to a TOF/MS system
(Agilent 6224). The separation occurred in a fused-silica
capillary (Agilent Technologies) (total length, 96 cm; i.d., 50
μm) under normal polarity with a background electrolyte
containing 1.0 M formic acid in 10% (v/v) methanol at 20 °C.
Sheath liquid (6 μL·min−1) was methanol/water (1:1, v/v)
containing 1.0 mM formic acid with two reference masses to
allow correction and high mass resolution in the MS. Samples
were hydrodynamically injected at 50 mbar for 35 s and stacked
by injecting a background electrolyte at 100 mbar for 10 s. The
optimized MS parameters were as follows: fragmentor, 125 V;
skimmer, 65 V; octopole, 750 V; nebulizer pressure, 10 psi;
drying gas temperature, 200 °C; and flow rate, 10.0 L·min−1.
The capillary voltage was 3500 V. Data were acquired in the
positive electrospray ionization (ESI) mode with a full scan from
m/z 50 to 1000 at a rate of 1 spectra·s−1. The resulting CE-TOF/
MS data files were cleaned of background noise and unrelated
ions by the Batch Recursive Feature Extraction tool with Agilent
MassHunter Profinder version B.06.00 software. Data were
extracted using a data-mining algorithm based on the software.
To perform an initial selection on disease-associated metabo-
lites, every case group andwild-type comparisons were evaluated
by Kruskal−Wallis (KW) analysis of variance (ANOVA) on
ranks. This was performed using the software packageMATLAB
version 9 (The MathWorks, Inc., Natick, MA). Metabolites,
whose Benjamini−Hochberg p-values < 0.05, were putatively
annotated by comparison of their migration time and spectra
with an in-house library of pure standards and the METLIN
Metabolomics Database.21

GC-QTOF/MS Analysis

The above-described dried samples were resuspended in 450 μL
of MeOH/H2O/MTBE (74:10:16), and after centrifugation at
12 600g, 15 min at 4 °C, the supernatant was transferred to a vial
with an insert and evaporated to dryness under high vacuum.
The obtained dried extracts were derivatized by an MPS
autosampler for GC/MS analysis as previously described by
Fiehn.22 Briefly, aldehyde and keto groups were first converted
to O-methyloximes by reaction with 10 μL of pyridine
containing 15 mg·mL−1 O-methoxyamine (Sigma-Aldrich,
Germany) for 60 min at 70 °C. In a second step, acid
hydrogen-containing metabolites were trimethylsilylated by
react ion with 10 μL of N ,O -b is(tr imethyls i ly l) -
trifluoroacetamide (BSTFA) (Sigma-Aldrich, Germany) to
enhance the GC/MS metabolite coverage.
The analysis was performed on an Agilent Technologies

7890B GC system equipped with a Gerstel MPS autosampler
and an Agilent Technologies 7200 accurate mass Q/TOF
analyzer equipped with an electron ionization (EI) source.
Then, 1 μL of the sample was injected into a multimode inlet at
230 °C with the split ratio set at 1:12 with 9.354 mL·min−1

connected to a capillary column (30 m × 0.25 mm × 0.25 μm;
Agilent, Germany). Helium was used as the carrier gas, at a flow

rate of 0.78mL·min−1. Column temperature was 60 °C for 1min
and then programmed to increase at a rate of 10 °C·min−1 until
325 °C, which was maintained for 10min. The total runtime was
37.5 min. The MS scan mode was chosen as the acquisition
mode, with the mass range of 50−650 m/z and an acquisition
rate of 10 spectra·s−1.
The individual analytical fingerprints obtained were decon-

voluted using MassHunter Unknown Analysis version B.07.00.
This software also allows for the annotation of metabolites
comparing the mass spectrum obtained with those of a target
compound library, FiehnLib, and as this FiehnLib library
includes retention indices, the retention time was also used as an
additional criterion.23

After applying the MassHunter Unknowns Analysis, a.cef file
including the compound name, mass, CAS number, formula,
and retention times was generated to create a method for the
MassHunter Quantitative Analysis version B.07.00 to export a
data matrix containing integrated areas for each compound.
Signals derived from the column bleed were eliminated;
afterward, the abundances were normalized using the mean
fold-change method of normalization.

LC-QTOF/MS Analysis

The above-described dried samples were resuspended in 200 μL
of methanol/water/MTBE (7.4:1:1.6), vortexed for 1.5 h, and
centrifuged (4000g, 10 min, 4 °C). Clear solutions were
analyzed by LC-QTOF/MS. An HPLC system (1200 series,
Agilent Technologies, Waldbronn, Germany), equipped with a
degasser, two binary pumps, and a thermostated autosampler
coupled to an Agilent 6520 QTOF/MS system (Agilent
Technologies, Waldbronn, Germany), was used in both positive
and negative ESI polarity modes to increase the metabolome
coverage.
Briefly, 5 μL of extracted lung samples was injected into a

thermostated (60 °C) Agilent Poroshell 120 EC-C8 column
(150 mm × 2.1 mm, 2.7 μm; Agilent Technologies, CA) with a
guard column Ascentis Express C8 (5 mm × 2.1 mm, 2.7 μm;
Supelco, Bellefonte, PA). The flow rate was 0.4 mL·min−1 with
solvent A (10 mM ammonium formate in Milli-Q water) and
solvent B (10 mM ammonium formate in methanol and 15%
isopropanol) for analysis in the positive ionization mode and
solvent A (Milli-Q water with 0.1% formic acid) and solvent B
(methanol with 0.1% formic acid and 15% isopropanol) for
analysis in the negative ionization mode. Initial conditions at
time 0 were 82% B, increasing to 96% B in 30min. This was then
held until 38 min. The gradient then increased to 100% B by
38.5 min and held until 40.5 min. The conditions were then
returned to the starting conditions by 42 min, followed by an 8
min re-equilibration time. The total runtime of the method was
50 min. Capillary voltage was set to 4.5 kV; the drying gas flow
rate was 10 L·min−1 at 350 °C and gas nebulizer at 40 psi;
fragmentor voltage, skimmer voltage, and octopole radio
frequency voltage were set to 175, 65, and 750 V, respectively.
Data were collected at a scan rate of 1.05 spectra·s−1. Mass
spectrometry detection was performed in both positive and
negative ESI modes in a full scan from 100 to 1000m/z. Samples
were analyzed in separate runs (positive and negative ionization
modes), in a randomized order. The resulting LC-QTOF/MS
data files were cleaned of background noise and unrelated ions
by the Batch Recursive Feature Extraction tool with Agilent
MassHunter Profinder software version B.06.00. Data were
extracted using data-mining algorithms of the software. Putative
annotation of metabolites found in positive and negative
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ionization modes was performed by the CEU Mass Mediator24

for a subset of metabolites as described above for CE-TOF/MS.
Univariate statistical significance was determined by the
Kruskal−Wallis (KW) test as described above for CE-TOF/MS.

Van Krevelen Diagrams

Oxygen-to-carbon and hydrogen-to-carbon ratios were calcu-
lated for subsets of metabolites, whose putative annotations led
to one possible chemical formula. The resulting data was plotted
in a previously described metabolic map.25

Statistics

To productivelymine large data sets frommultiplatformHRMS-
based metabolomic approaches, a robust and reproducible
statistical data pipeline is necessary (Figure 1A).26 To obtain a
global view of results arising from different analytical platforms
(Supporting Table S1), results were combined using the
consensus orthogonal partial least squares-discriminant analysis
(cOPLS-DA) data fusion algorithm.27 OPLS-DA-related
algorithms calculate mathematical projections, which explain
the maximum variability between previously assigned sample
groups for a specific metabolite data matrix. In this context,
cOPLS-DA is a multivariate statistical test, which allows a joint
interpretation of the results frommultiple analytical platforms in
a single analysis, performed on a merged multiplatform data set.
Contrarily to the traditional OPLS-DA, which penalizes the
importance of metabolite alterations from smaller metabolic
data sets, cOPLS-DA harmonizes the data structure by
performing a weighted normalization of each MS platform-
specific data matrix, contextualizing and scoring the contribu-
tion of individual metabolites of the entiremultiplatform data set
to an optimally discriminant, group-specific metabolic finger-
print within the data model. Pairwise cOPLS-DA comparisons
between uninfected mice and mice 4 and 9 weeks postinfection
were generated. Additionally, a cOPLS-DA model including all
sample groups was also calculated. Note that cOPLS-DA, as well
as OPLS-DA, does not determine a specific cutoff value for
determining statistical significance. Then, a quantitative value
assessing the variable importance in the projection is assigned to
each metabolite in the context of a metabolite data matrix.
Therefore, although metabolites with variable importance in the
projection (VIP) values > 1 not including 0 in the error
confidence interval are generally accepted as statistically
relevant, it cannot be assumed that metabolites with lower
VIP values do not contribute to the multivariate separation and
differences observed between the sample groups. Additionally, a
shared and unique structure (SUS) plot was generated to
evaluate the differential trends in metabolites across the disease
time points.

Bioinformatics

As a first approach to highlight altered biological pathways,
MetaboAnalyst (version 4.0)28 was employed to map the
metabolites with VIP values higher than 1, using metabolite
enrichment analysis (overrepresentation analysis and pathway
analysis). To reduce the possible bias induced by signals with
more than one tentative annotation, a curated input subset of
unique metabolites with their respective KEGG code identifiers
(Supporting Table S1) was generated. However, given the
inherent bias of enrichment algorithms since metabolomic
analyses do not entirely cover the enrichment sets and pathways
constitute a classical “dissection” of the metabolome, we also
exploited clustering and metabolic network modularity analyses,
which can be exploited to explore the influence of metabolites on

each other based on their mathematical relationships and the
network topology, respectively.

Overrepresentation Analysis. Representation of metabo-
lites with VIP > 1 values determined in cOPLS-DA models,
including all pairwise comparisons and a three-group compar-
ison, was obtained by the performance of hypergeometric tests
in pathway-associated metabolite sets, using the default
reference metabolome. Significance of metabolite sets was
assessed by a p-value cutoff of 0.05.

Pathway Analysis. Metabolite representation and pathway
impact were assessed by the performance of hypergeometric
tests and evaluation of the relative-betweenness centrality of the
metabolites in theMus musculus pathway library for each subset
of metabolites with VIP > 1 values determined in all generated
cOPLS-DA models. All of the compounds present in the
selected pathways were considered. Significance of metabolite
sets was assessed by a p-value cutoff of 0.05.

Metabolite Clustering Analysis and Heatmap Gen-
eration. The entire data matrix resulting from data processing
and annotation, as well as specific subsets of metabolites, was
loaded onto the MetaboAnalyst 4.0 server.28 A hierarchical
clustering of both samples and metabolites was performed using
the whole matrix input and using MetaboAnalyst default
parameters (Supporting Figure S1). The different heatmaps
highlighted in the Results and Discussion section were
generated in parameter consistency with the whole-data matrix
heatmap, although no clustering was performed.

Metabolic Subnetwork Generation and Network
Clustering Analysis. Metabolite-specific and generic com-
pound KEGG codes29 were assigned to all metabolites with
unique annotations. A metabolic subnetwork based on KEGG
RPAIR data was generated using MetaboNetworks (version
2.1)30 and converted to .sif format (Supporting Text File S1).
After deletion of duplicated edges, the subnetwork modularity
was evaluated using the ModuLand (version 2.0)31 Plug-in for
Cytoscape (version 3.6.1).32 ModuLand 2.0 employs a
community landscape approach, which uses the LinkLand
algorithm for calculating influence functions of each node in the
whole node data set and the ProportionalHill method to
determine the different discrete or overlapping modules present
in the subnetwork, besides highlighting central node represen-
tatives of the different clusters and nodes bridging between
clusters.33 Once the modules are determined, ModuLand 2.0
merges them as metanodes and iteratively runs the algorithm,
providing different hierarchical levels of the network. Both
discrete and overlapping modularity algorithms were run. After
merging of modules with correlation values higher than 0.9, the
discrete modularity algorithm was used for careful data
interpretation.

■ RESULTS AND DISCUSSION

cOPLS-DA of Multiplatform HRMS-Based Metabolomics
Reveals Significant, Time-Dependent Changes in the Lung
Metabolome of Mtb-Infected Mice

C57BL/6 mice were infected with Mtb H37Rv and euthanized
at 4 and 9 weeks postinfection. Metabolome analyses were
limited to the 4-week time point, which reflects induction of
adaptive immunity, and the 9-week time point, which reflects
established, chronic disease. Since multiplatform HRMS
requires the processing and analysis of large numbers of samples,
for purposes of practicality, only these two time points were
chosen. Lungs were removed from uninfected (Mtb−), 4 weeks
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(Mtb+4w), and 9 weeks (Mtb+9w) postinfection mice. Lesions
were clearly visible in the lungs of infected mice, albeit more
severe pathology was noted in Mtb+9w compared to Mtb+4w
(Figure 2).
Metabolites were extracted from the lungs and analyzed

separately by three HRMS-based platforms (LC-QTOF/MS,
GC-QTOF/MS, and CE/TOF-MS). Overall, the different
metabolomic platform analyses revealed a notable joined matrix
data set of 1215 potential compounds after data processing and
curation, where 456 metabolites were putatively annotated
(Supporting Table S1). In the cOPLS-DAmodels, 554, 638, and
546 potential compounds from the entire metabolite data set
scored VIP values > 1 for Mtb+4w/Mtb, Mtb+9w/Mtb−, and
Mtb+9w/Mtb+4w pairwise comparisons, respectively (Table 1).
Additionally, a three-group comparison determined 631
potential compounds with VIP > 1 values. These results suggest
that profound changes in the metabolome occur during Mtb
infection.
Prominent group clustering and separation were observed in

the cOPLS-DA score plots (Table 2 and Figure 3A). Given the
high model fit (R2Y) and prediction accuracy (Q2Y) values
found in cOPLS-DA models, the most striking results that
emerged from the data are that strong, time-dependent
quantitative metabolic abnormalities occur in the lung of all
disease groups. Interestingly, each HRMS-based analysis
contributed to explaining additional group separation between

the different comparisons. In addition, distinct values were
determined for the specific contribution of each HRMS-based
metabolomic platform to the strength of the model components.
These observations demonstrate the importance of multiplat-
form analyses in obtaining metabolomic data capable of
achieving enhanced metabolome coverage and producing
increased phenotype-associated group separation in multivariate
analyses (Table 2).

Figure 2. Representative images of the histomorphology of uninfected and Mtb-infected mouse lungs. Low-power (A) and high-power (B)
Hematoxylin and Eosin staining (H&E) of uninfected control mouse lungs. Low-power (C) and high-power (D)H&E ofMtb-infected mouse lungs at
4 weeks postinfection. Low-power (E) and high-power (F) H&E ofMtb-infected mouse lungs at 8 weeks postinfection. Note the progressive increase
in alveolar consolidation of the infected lung tissue (C, D, E, F), which is absent in the uninfected lung tissue (A, B).

Table 1. Detected, Annotated, and Statistically Significant
Potential Compounds

variable importance in the projection (VIP) > 1

analytical
platform

annotated/
total

Mtb+9w/
Mtb+4w/
Mtb−

Mtb+4w/
Mtb−

Mtb+9w/
Mtb−

Mtb+9w/
Mtb+4w

GC-
QTOF/
MS

100/107 54 46 51 48

CE-TOF/
MS

127/268 153 119 152 119

LC-
QTOF/
MS+

182/643 319 294 337 280

LC-
QTOF/
MS−

48/197 105 95 98 99

sum 457/1215 631 554 638 546
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Three major clusters of metabolites could be observed among
statistically significant metabolites in the shared and unique
structure (SUS) plot (Figure 3B). The first and second clusters
of metabolites encompassed the majority of metabolic
alterations and corresponding metabolites whose levels follow
a similar trend at both disease stages. A third cluster represented
metabolites that decreased atMtb+4w and increased atMtb+9w.
A smaller, fourth cluster represented metabolites that were
exclusively increased at Mtb+9w, therefore representing a
specific, late alteration during advanced TB. These results
showed that although most of the alterations were consistently
increased or decreased at both infection time points, the
abundances of a considerable subset of metabolites were altered
between the two infection time points. Therefore, a clear
phenotypic difference could be detected between Mtb+4w and
Mtb+9w mice. This emphasizes the importance of sampling
metabolites at multiple time points during infection to describe
the phenotypic characteristics of the progression of pulmonary
TB. Clustering analysis of samples and potential compounds
indicated thatMtb+4w separates fromMtb+9w andMtb− samples
(Supporting Figure S1). These results indicate that the
metabolic phenotype of Mtb+4w is notably altered, suggesting
an early response to TB infection, which is partially reversed in

Mtb+9w. The different clusters of metabolites were in excellent
agreement with the data obtained from the SUS plot.
The annotated metabolome was notably enriched in different

metabolite classes including carbohydrates, small organic acids,
amino acids, peptides, and lipidome-related compounds,
thereby representing a broad overview of the metabolome
(Figure 3C). In the context of TB, alterations in the levels of
these metabolite pools should be carefully interpreted. For
example, mass exchange occurs within several animal compart-
ments and the environment, as well as cross-talking between
different compartments (i.e., migration and proliferation of
macrophages and T lymphocytes in the lung34 and stratified
macrophage polarization in Mtb granulomas35,36), to modulate
the spatiotemporal distribution of metabolites. In addition, lysis
and extraction of a tissue sample prior to analysis trigger a loss of
compartmentalization and spatial information.37 As a con-
sequence, metabolite levels in the tissue are not only the result of
a superimposition of the different metabolite concentrations in
all of the tissue and cellular compartments from both Mtb and
mouse metabolomes but also the result of the interaction of both
genomes, the so-called cometabolome (i.e., Mtb-secreted
proteins that metabolize macrophage metabolites).38 Next, we

Table 2. Model Fit, Prediction Accuracy, and Technique-Dependent Contribution Values to the Separation Observed in the
Different cOPLS-DA Modelsa

model R2Y Q2Y A GC-QTOF/MS CE-TOF/MS LC-QTOF/MS+ LC-QTOF/MS−

Mtb+9w/Mtb+4w/Mtb− 0.976 0.886 tp1 0.23 0.30 0.22 0.26
tp2 0.25 0.19 0.27 0.29
to 0.26 0.20 0.34 0.20

Mtb+4w/Mtb− 0.999 0.919 tp1 0.25 0.23 0.25 0.27
to 0.27 0.27 0.26 0.20

Mtb+9w/Mtb− 0.994 0.936 tp1 0.22 0.28 0.24 0.26
to 0.19 0.15 0.43 0.23

Mtb+9w/Mtb+4w 0.995 0.885 tp1 0.23 0.26 0.23 0.28
to 0.23 0.23 0.30 0.24

aR2Y, model fit; Q2Y, predictive accuracy; tp, predictive principal component; to, orthogonal principal component.

Figure 3. cOPLS-DA, Van Krevelen, and SUS plots describing the metabolite data set. (A) cOPLS-DA score plots of Mtb+9w/Mtb+4w/Mtb− and
pairwise comparisons. (B) SUS plot of potential compounds for Mtb+9w/Mtb− and Mtb+4w/Mtb− comparisons. (C) Van Krevelen diagram of
putatively annotatedmetabolites showing the metabolite distribution according to their molecular formula. In cOPLS-DA score plots,Mtb− represents
blue,Mtb+4w represents brown, andMtb+9w represents black. LC/MS+ and LC/MS− represent positive and negative ESI polarity modes, respectively.
In the SUS plot, clusters 1 and 2 represent direct shared structures of metabolites consistently increased and decreased at both time points, respectively.
Cluster 3 represents a group of metabolites with an inverse shared structure, while cluster 4 encompasses metabolites increased only in Mtb+9w.
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investigated changes in these metabolite classes in more detail in
the context of disease progression.

Systematic Overrepresentation (ORA) and Pathway
Analysis (PA) Identified Disease-Specific Pathways Altered
in Mtb-Infected Mice

To obtain functional information from differentially regulated
metabolic pathways, two enrichment analyses were performed.
First, we performed an overrepresentation analysis (ORA), in
which significantly different metabolic alterations were identi-
fied (Supporting Table S3). These mainly encompassed the
metabolism of amino acids and phospholipids. Overall, the ORA
results point toward an alteration of phospholipid metabolism in
Mtb+4w, which unexpectedly returned to nonsignificant values

at Mtb+9w. To further support the data obtained by ORA,
pathway analysis was performed as a second enrichment
algorithm. In this context, PA mostly detected metabolite sets
consistently altered in ORA (Supporting Table S3), including
the metabolism of phospholipids, amino acids, and nitrogen.
Additional alterations in metabolic pathways not identified by
ORA were reported as significant inMtb+4w/Mtb− (propanoate
metabolism) andMtb+9w/Mtb− (β-alaninemetabolism) or both
(sphingolipid, glutathione metabolism), demonstrating the
need for different algorithms to provide a more holistic data
analysis to identify relevant biological processes during the
progression of pulmonary TB.

Figure 4. Heatmaps depicting the metabolic changes associated with major nutrient groups during disease progression. (A) Overall metabolic-
associated changes. Note the prominent changes in carbohydrates and energy-storage-related lipids, whereas increasing abundances of amino acids and
oligopeptides occur with disease progression. (B) Representative selected metabolic changes. CH, carbohydrates; FA, fatty acids; DG, diacylglycerols;
TG, triacylglycerols; AA, proteinogenic amino acids annotated in the study at 0 (Mtb−), 4 (Mtb+4w), and 9 (Mtb+9w) weeks postinfection.

Figure 5. Detailed heatmap representations depicting Mtb-associated amino acid and peptide abundance changes during disease progression. (A)
Proteinogenic amino acid abundances. (B) Oligopeptide abundances annotated in the study. Note that oligopeptide annotations are indicative, since
CE-TOF/MS cannot determine the amino acid sequence. A gradual increase in the levels of the majority of metabolites grouped in this section occurs
with the disease progression.
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Macronutrient Consumption is Consistent with
Mtb-Associated Wasting

Interestingly, three distinct responses in metabolite levels
indicate macronutrient consumption (Figure 4A,B). In the
first response, distinct carbohydrates showed a notable decrease
in Mtb+4w, which was maintained in Mtb+9w. In the second
response, triacylglycerols decreased inMtb+4w andMtb+9w, and
diacylglycerol metabolites showed an initial decline at Mtb+4w
followed by a noticeable increase in Mtb+9w, whereas the levels
of several fatty acids increased in Mtb+4w and decreased at
Mtb+9w. The third response was represented by amino acids and
oligopeptides, which progressively increase throughout the
course of infection. Interestingly, the abundance of methyl-
histidine, which has been proposed as a biomarker of skeletal
muscle breakdown and injury,39,40 was notably increased in
Mtb+9w (Supporting Table S4). Hence, high levels of
methylhistidine suggest that muscle wasting occurs during
advanced TB disease and are consistent with previous studies
documenting a link between Mtb infection and malnutrition/
wasting.41,42 Overall, we posit that these data correspond with
the induction of a temporal and progressive catabolic state in
Mtb-infected mice, which is elicited to satisfy the continuously
changing energy demand to control infection.

TB Disease Progression Correlates with an Increase in
Proteolysis-Related Metabolites

Destruction of the extracellular matrix/pulmonary parenchyma
is a well-documented phenomenon that occurs during Mtb
infection.43,44 Upon Mtb-induced macrophage activation,
protein degradation is primarily performed through the activity

of secreted matrix metalloproteinases (MMPs, mainly MMP-1
and MMP-943). Surprisingly, a consistent increase in specific
and nonspecific protein breakdown products was observed in
Mtb-infected mice (Figure 5A,B and Supporting Table S4).
Nonspecific metabolites included short oligopeptides, amino
acids, and N-glycolylneuraminate. Specific protein degradation-
associated metabolites included trans-4-hydroxyproline and
galactosylhydroxylysine. These metabolites are related to
collagen-like post-translational modifications, suggesting that
substantial alterations occur in collagen and surfactant proteins
SP-A and SP-D (which are essential components of the
lung45,46) during disease. Lastly, increased abundances of a
metabolite annotated as desmosine, a breakdown product of
elastin, allude to increased elastin degradation in the TB lung.
Elastin is a major component of the extracellular matrix of the
lung. Upon lung injury, which involves the catabolism of the
extracellular matrix and elastin, desmosine is released. Not
surprisingly, desmosine has been identified as a potential
biomarker for structural lung injury in pulmonary TB and
chronic obstructive pulmonary disease.47,48 Overall, we propose
that the metabolites here constitute a data subset indicative of
alveolar destruction (Figure 2), progressive proteolysis, and
establishment of lung fibrosis49,50 occurring during TB
progression.

Increased Itaconic Acid (ITA) Production Subsequent to
Alterations in the Central CarbonMetabolismOccurs in the
Lungs of Mtb-Infected Mice

It is widely accepted that the central carbon metabolism
constitutes a relevant link between energy production and
immunity. In the context of carbohydrate metabolism, we

Figure 6.Topology of the TCA and related pathways andMtb-associated semiquantitative changes. Graphs represent arbitrary normalized abundance
units and VIP values between pairwise comparisons. Y-axes on graphs represent arbitrary normalized abundance units. VIP values between pairwise
comparisons are indicated. Metabolites not appearing on graphs are abbreviated as follows: AccoA, acetyl-coenzyme A; ACO, aconitate; ICT,
isocitrate; GLO, glyoxylate; KG, α-ketoglutarate; ScoA, succinyl coenzyme A; OAA, oxaloacetate; enzymes are colored in blue except forMtb-specific
enzymes, which are colored in brown; CS, citrate synthase; LDH, lactate dehydrogenase; PDH, pyruvate dehydrogenase; PC, pyruvate carboxylase;
ACO, aconitase; Irg-1, immune-responsive gene 1 protein; ICL, isocitrate lyase;MS, malate synthase; IDH, isocitrate dehydrogenase; GDH, glutamate
dehydrogenase; KGD, α-ketoglutarate dehydrogenase; LSC, succinyl-coA ligase; SDH, succinate dehydrogenase; FUM, fumarase; MS, malate
synthase; AST, aspartate aminotransferase.
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detected carbohydrate depletion occurring upon Mtb infection
(Figure 4) and moderate increases in glucose-6-phosphate
(Figure 6), which suggested increased substrate availability for
the pentose phosphate pathway (PPP), a major biosynthetic
pathway for nucleotides and NADPH, which is required as a
cofactor for glutathione reductase during oxidative stress and for
inducible nitric oxide synthase (iNOS).51 Intriguingly, lactate
increased marginally in Mtb+4w and moderately in Mtb+9w
(Figure 6), suggesting that most of the pyruvate was being
utilized elsewhere at 4 weeks but converted into lactate at 9
weeks postinfection. In contrast, pyruvate progressively
decreased with TB disease progression (Figure 6). Previous
transcriptomics and immunofluorescence studies of Mtb-
infected mouse lungs demonstrated increased expression of
glycolytic enzymes, lactate dehydrogenase, and glucose trans-
porters at 4 weeks postinfection, and it was concluded that the
Warburg effect is induced in Mtb-infected mouse lungs.52

However, the marginal increase we observed in lactate in
Mtb+4w does not fully support these findings and also differs
from a previous NMR mouse study,16 where lactate levels were
examined at a single, early time point (28 days postinfection). In
the guinea pig model for TB, NMR studies have shown a
decrease in serum lactate levels but an increase in lung lactate
levels.18 Overall, these findings point to the spatiotemporal
regulation of lactate, which differs in different animal model
systems. The large increase in citrate in Mtb+4w (Figure 6)
suggests that most of the pyruvate is being converted into citrate
in Mtb+4w for fatty acid synthesis and initial production of
itaconate during the early induction of adaptive immunity.53,54

However, the substantial decrease in citrate at 9 weeks
postinfection is likely due to the formation of the remarkably
high levels of ITA present in Mtb+9w (Figure 6). This
observation is consistent with previous NMR studies reporting
increased itaconate levels during Mtb infection.16

Itaconate is biosynthesized from cis-aconitic acid by
decarboxylation performed by the immune-responsive gene 1
protein (IRG-1), whose gene (Irg155) is upregulated in
macrophages upon stimulation with LPS, TNF-α, and IFN-
γ.56,57 Not surprisingly, itaconate plays several roles in
immunometabolism. ITA has been shown to play a major role
in metabolic reprogramming through inhibition of the TCA
enzyme succinate dehydrogenase (SDH)58 and to exert direct
antibacterial activity through inhibition of bacterial isocitrate
lyase.59,60 Given the relevance of itaconate in TB,61 we speculate
that at 4 weeks postinfection, pyruvate is being redirected to
increase citrate levels necessary for fatty acid synthesis and ITA
production. However, when chronic infection sets in at 9 weeks,
we surmise that the citrate levels are substantially reduced to
generate higher levels of ITA necessary to subdue the
inflammatory response.
The TCA cycle in inflammatory macrophages has breakpoints

at SDH and isocitrate dehydrogenase.54,62 In addition, it has
been described that ATP generation in effector T-cells relies on
glycolysis, rather than OXPHOS.63 Alterations in several TCA-
related metabolites (Figure 6 and Supporting Table S4) propose
similar observations at Mtb+4w, including (i) increased citrate
accumulation in Mtb+4w; (ii) possible SDH inhibition
supported by increased succinate and itaconate abundances in
Mtb+4w; (iii) possible malate dehydrogenase (MDH) inhib-
ition, supported by reduced fumarate levels and increasedmalate
and citrate inMtb+4w (which act asMDH inhibitors);64 and (iv)
NAD+ modulation (Supporting Table S2). During the early
stages of infection (Mtb+4w), notable alterations in the levels of

NAD+ occur in the lung of infected mice, which has been also
reported to occur in C57BL/6 mice using NMR.16 More
interestingly, the levels of nicotinamide, determined as the
breakdown product of two Mtb NAD+ glycohydrolases (MbcT
and TNT,65,66 the latter identified as relevant in Mtb
pathogenesis),67 were notably increased inMtb+4w (Supporting
Table S4). However, these changes in NAD+ and nicotinamide
could also be a consequence of the host-related metabolic
activity.68 At Mtb+9w, succinate levels and malate levels were
decreased with a contrasting increase in fumarate levels. The
high glutamate levels are possibly due to the accumulation of
succinate from the inhibition of succinate dehydrogenase and
the proteolysis discussed above (Figure 5A,B and Supporting
Table S4). The high aspartate level, which is a proxy for
oxaloacetate, is probably due to transamination reactions with
high levels of glutamate.
Taken together, these results suggest that the observed TCA

metabolic alterations are the outcome of a complex host-
pathogen regulatory network (Figure 6) wherein the lung in
Mtb+4w resembles an inflammatory immunometabolic re-
sponse, which are not fully maintained in Mtb+9w as citrate
levels are significantly decreased. In this context, it is important
to point out that itaconate production is a marker for anti-
inflammatory cellular responses induced following proinflam-
matory stimulation.69 Thus, the metabolic alterations observed
in the TCA cycle between the two time points suggest
transitions between inflammatory and anti-inflammatory
responses described in several studies.63,65 Given the notable
alterations in NAD-related metabolites occurring inMtb+4w, we
suggest that the potential modulatory role of Mtb in NAD+

metabolism occurring in the TB lung should be addressed
further in future studies.

Mtb Disease Causes Alterations in Oxido-Reductive
Stress-Related Metabolites

Mtb-induced inflammatory activation leads to the generation of
reactive oxygen and reactive nitrogen species (ROS and RNS,
respectively).70 Consistently, the increase in arginine and
citrulline levels in Mtb+4w and Mtb+9w is likely a consequence
of the increased expression of inducible nitric oxide synthase
(iNOS) in the lung (Supporting Table S4).71 However, the
presence of increased nitric oxide in infected cells is
controversial, since it is also known that Mtb induces the
expression of host arginase in infected macrophages.72 Addi-
tionally, altered levels of xanthine and hypoxanthine (Support-
ing Table S4) point to substantial modulation in xanthine
oxidase (XO) activity, which constitutes a major regulator of the
superoxide ion (O2

•−). Interestingly, the abundances of
xanthine and hypoxanthine levels were decreased in Mtb+4w,
whereas they were notably increased in Mtb+9w, suggesting a
differential behavior of XOwith disease progression. DuringMtb
infection, NADPH oxidase (NADPHox) is another key enzyme
that produces O2

•− during the oxidative burst.73 Although
metabolites involved in NADPH production could not be
detected, it is reasonable to infer that enhanced glucose-6-
phosphate levels generate more substrates for NADPH
production through the PPP.74 However, it has been reported
that MbcT hydrolyzes NAD+,67 and TNT is able to degrade
both NAD+ and NADP+,66 as mentioned above. Given that
NADPHox and XO/iNOS require NADPH and NAD+ as
cofactors, respectively, we suggest thatMtb-mediated NAD(P)+

glycohydrolase activity in modulating ROS/RNS production
should be assessed in further studies. Overall, we identified a
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distinct subset of metabolites involved in ROS/RNS bio-
synthetic pathways, which provides compelling evidence that
Mtb triggers time-dependent alterations in oxidative stress-
related metabolites during infection.
Glutathione- and glutathione-related compounds play a key

role in maintaining redox cellular homeostasis. Here, altered
levels of reduced glutathione (GSH) and glutathione-derived
products (oxidized glutathione (GSSG), S-lactoylglutathione, S-
hydroxymethylglutathione) as well as glutathione precursors in
Mtb+4w and Mtb+9w were detected (Supporting Table S4 and
Figure 5A). Altered levels of these metabolites suggest
modifications of the redox environment in the Mtb-infected
lung. These results intimate an increase in de novo GSH
synthesis, which could be an ROS-protective mechanism of the
host while providing GSH-mediated direct antimycobacterial
activity.75,76 Generally, GSSG abundances were similar in
Mtb+4w and Mtb+9w. The GSH/GSSG ratio returned to Mtb−

levels in Mtb+9w, suggesting the depletion of reduced
glutathione with disease progression. This is supported by the
alterations in metabolites related to the generation of ROS/RNS
and the increase in glutathione-derived compounds observed in
Mtb+9w. Intriguingly, the abundances of S-lactoylglutathione
were notably increased in Mtb+4w and to a lesser degree in
Mtb+9w. This compound is primarily biosynthesized in the
glyoxalase system, a metabolic pathway that is able to detoxify
the cells from methylglyoxal, a glycolysis-derived compound. S-
Lactoylglutathione is related to a plethora of immunity-related
functions including phagocyte activation, anti-IgE-induced

secretion of histamine in basophils, microtubule assembly,
neutrophil granule secretion, and chemotaxis.77 Thus, the levels
found in our results suggest that dysregulation occurs in the
glyoxalase system upon Mtb infection. Glyoxalase inhibition
causes an accumulation of methylglyoxal, which has been
described as cytotoxic for certain microorganisms such as
Staphylococcus aureus78 and Plasmodium falciparum.77 Given this
ex vivo observation, the pharmacological inhibition of the
glyoxalase system-associated enzymes (GLO-I and GLO-II)
may have modulatory activity in TB, as was previously
proposed.78

Ergothioneine (EGT) is an antioxidant taken up from the
environment by mammalian cells. However, Mtb also produces
EGT, and it has been shown to be essential for survival in
macrophages79 and in mice.80 Importantly, we found increased
EGT levels at the late stage of infection (Mtb+9w) (Supporting
Table S4), which highlights the therapeutic potential of this
antioxidant pathway.

Mtb Infection Drives Alterations in the Urea Cycle and
Polyamine Metabolism

Important alterations in the urea cycle were found in both
Mtb+4w and Mtb+9w (Figure 7 and Supporting Table S4). As
explained above, augmented concentrations of arginine and
citrulline may be regulated by altered iNOS activity, which
generates citrulline and NO from arginine, thereby “bypassing”
the urea cycle. However, the progressive increase in the
expression of arginase mentioned previously72 would favor the

Figure 7. Topology of the urea cycle and polyamine biosynthesis pathways andMtb-associated semiquantitative changes. Y-axes on graphs represent
arbitrary normalized abundance units. VIP values between pairwise comparisons are indicated. Metabolites not appearing on graphs are abbreviated as
follows: CP, carbamoyl phosphate; NO, nitric oxide; AS, argininosuccinate. Enzyme abbreviations are colored in blue: OTC, ornithine
transcarbamoylase; AS, argininosuccinate synthase; AL, argininosuccinate lyase; NOS, nitric oxide synthase; ODC, ornithine decarboxylase; SRM,
spermidine synthase; SMS, spermine synthase; SMOX, spermine oxidase; SAT1, spermidine/spermine-N1-acetyltransferase; PAO, polyamine
oxidase; DHS, deoxyhypusine synthase; DHH, deoxyhypusine hydrolase.
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catabolism of arginine by arginase, thereby reducing RNS
generation.81 Therefore, increases in the levels of urea and
ornithine observed in Mtb+9w suggest a progressive anti-
inflammatory metabolism. Alternatively,Mtb-associated wasting
and the subsequent enhancement of protein catabolism for
energy generation might explain a substantial part of the
alterations in the urea cycle.
Consistent with these findings, increased levels of polyamines

(i.e., spermidine, spermine, and putrescine) were found in both
Mtb+4w and Mtb+9w (Figure 7 and Supporting Table S4).
Polyamines are positively charged alkyl amines that interact with
DNA and are essential for cell proliferation and adequate
macrophage function,82,83 although an immunosuppressive role
has also been suggested.84 Polyamines are also capable of
binding iron, and interestingly, a link between ferritin H and
polyamines during Mtb infection was recently established.11

Endogenous polyamines have also been described as beneficial
for Mtb, increasing the activity of Mtb RNA polymerase85 and
conferring fluoroquinolone resistance to the bacteria.86 The
increase in polyamine levels suggests that anti-inflammatory
responses are present at both disease time points. Anti-
inflammatory responses are associated with arginine catabolism
through arginase activity, reducing NO production by iNOS.11

Further studies on the modulation of enzymes involved in these
pathways are expected to provide new insights into the
polyamine-related immunometabolism of TB.
Polyamines also play an important role in protein translation

since spermidine is a precursor for the synthesis of hypusine,
which is increased inMtb+4w andMtb+9w. Hypusine is an amino
acid exclusively found in the eukaryotic translation initiation
factor 5A-1 (eIF-5A), which plays an important role in protein
translation, particularly in the elongation step. Cell proliferation,
ROS tolerance, mitochondrial function, and endoplasmic
reticulum stress are a few examples of the variety of biological
processes in which eIF-5A is involved.87−89 Thus, increased
levels of polyamines leading to increased levels of hypusine
suggest altered activity of eIF-5A in Mtb-infected mice.

Mtb Infection Regulates Lipid Metabolism to Modulate
Signaling and Immunity

We observed substantial variation in the lipidome over the
course of infection (Figure 8A). Mtb+4w mice show an overall

decrease in the levels of triglycerides (TGs), diglycerides (DGs),
monoglycerides (MGs), phosphatidylcholines (PCs), phospha-
tidylethanolamines (PEs), and lysophosphatidylcholines
(LPCs), together with an increase in the levels of several free
fatty acids (i.e., myristic, stearic, lauric, linoleic, palmitoleic) and
O-phosphoethanolamine (Figure 8A,B and Supporting Table
S4). These results suggest an increase in phospholipase and
different lipase activities, which may contribute to the
degradation of the main pulmonary surfactant lipid constitu-
ents.90 These observations are of particular significance, as it
could be argued that some of these lipids function as an in vivo
carbon source forMtb.91 Hence, the depletion of triacylglycerols
could be due to its hydrolysis by Mtb.92 Our findings are
consistent with previous studies demonstrating an increase in
phospholipase A2 (PLA2) activity upon Mtb infection.93

Furthermore, an increase in the abundance of malonic acid, a
compound proposed as an indirect biomarker of fatty acid
synthesis,94 was detected in Mtb+4w but decreased in Mtb+9w
(Figure 8B). Enhanced fatty acid synthesis in Mtb+4w mice is
also supported by the reduced levels of L-carnitine and
acylcarnitines found in Mtb+4w mice (Figure 8A,B). This
correlates with the increase in the fatty acid synthase (FASN)
activity that has been described in inflammatory macrophages
and is regulated by the sterol regulatory element-binding
transcription factor (SREBP1c).95 Both PLA2 and FASN
activities have been demonstrated to exert proinflammatory
effects.93−96 Furthermore, fatty acid anabolism constitutes
alternative pathways for NADPH generation and subsequent
ROS formation, which is upregulated in inflammatory macro-
phages.97,98 However, except for most TGs, the changes in the
above-mentioned metabolites reflecting fatty acid synthesis are
considerably reversed in Mtb+9w, suggesting a possible
attenuation of PLA2 activity. Considering the carbohydrate
depletion occurring in Mtb+4w (Figure 4A,B), it is likely that
Mtb causes a shift in metabolism toward fatty acid oxidation
during disease. This is further supported by highly increased
levels of carnitines (Figure 8A,B) found in Mtb+9w. Such
metabolic shifts correlate with the described capacity of Mtb to
shift the macrophage from an inflammatory to an anti-
inflammatory-like phenotype.98,99

Another interesting feature of Mtb-infected macrophages is
the generation of cytosolic lipid droplets, which has been

Figure 8. Heatmap representations of Mtb-associated lipidomic changes during disease progression. (A) Overall changes in different lipids,
phospholipids, and carnitines. (B) Detailed changes in the abundances of selected fatty acids, carnitines, O-phosphorylethanolamine, and malonate.
TG, triacylglycerols; DG, diacylglycerols; MG, monoacylglycerols; FA, fatty acids; CE, cholesteryl esters; PC, phosphatidylcholines; PE,
phosphatidylethanolamines; LPC, lysophosphatidylcholines; LPG, lysophosphatidylglycerols; LPS, lysophosphatidylserines. Note that for most PC,
LPC, DG, MG, and sphingolipids, the alterations in metabolite levels in Mtb+4w are notably reversed in Mtb+9w.
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recently proposed to be a defense mechanism against infection,
sequestering lipids to prevent carbon fueling of Mtb.100 The
composition of certain lipid droplets is rich in cholesteryl
esters,101 which have been found to be notably increased with
disease progression. The notable increase found in cholesteryl
esters suggests that foam cells accumulating cholesteryl esters in
lipid droplets progressively increase in our disease model.102,103

Consequently, it is highly likely that the Acyl-CoA cholesterol
acyl transferase activity (ACAT) is increased in the lung ofMtb-
infected mice.11

Sphingolipids, which are related to different immunomodu-
latory properties,104 follow different patterns of expression in the
diseased mice (Figure 8A). Regarding sphingolipid alterations
occurring during TB disease, a decrease in the activity of
sphingosine kinase (SphK) has been documented to occur in the
lung of Mtb-infected mice, thereby blocking the Ca2+ influx
toward the macrophage cytoplasm and thereby inhibiting the
maturation of the phagosome.105 Given the alterations found in
our model and the reported evidence of sphingolipid
metabolism modulation as a therapeutic strategy,106 more
lipidomic studies are needed to assess the importance of
sphingolipids in Mtb-induced immune response.

Mtb Infection Dysregulates Purine and Pyrimidine-Related
Metabolism

Overall, the levels of pyrimidine-related compounds increased,
while purine-related compounds showed a complex profile
(Supporting Table S4). Purine and pyrimidine-derived com-
pounds participate in different biological processes including (i)
DNA replication and RNA synthesis, and their demand is
increased when cellular proliferation occurs; (ii) enzyme
cofactors in reactions that require chemical energy (especially
ATP) or a methyl donor (especially S-adenosylmethionine
(SAM)); and (iii) signaling molecules through purinergic
receptors. Our results suggest that these processes are strongly
altered duringMtb infection. Interestingly, adenosine levels were
decreased upon infection in both Mtb+4w and Mtb+9w.
Adenosine binds with high affinity to A1, A2B, and A3 receptors,
which are expressed by different cellular types of the immune
system.107 Activation of such receptors induces a variety of
cellular functions, including secretion of pro- and anti-
inflammatory cytokines, IgE production, mucous production,
suppression of TNFα release, and bronchoconstriction.107

Increased levels of adenosine might be the consequence of an
increase in adenosine deaminase activity (ADA), which has been
reported to occur in the bronchoalveolar lavage and serum of
TB-infected patients.108 In our model, depletion of adenosine
implies diminishing ADO-mediated signaling through puriner-
gic receptors while generating substrates for XO activity and
subsequent ROS generation. AMP levels were increased in
Mtb+4w and notably decreased in Mtb+9w. Therefore, AMP
could also be implicated in differential signaling through
purinergic receptors with disease progression.109

Mtb Infection Dysregulates Smooth Muscle Physiology

In addition to the bronchodilator effect of NO release
subsequent to increased iNOS activity,110,111 significant
alterations in metabolites that modulate lung smooth muscle
tone were found (Supporting Table S4). With respect to
bronchoconstrictors, the levels of acetylcholine, the main lung
physiological bronchoconstrictor, were reduced in Mtb+4w and
increased in Mtb+9w, while histamine showed the opposite
trend. Interestingly, serotonin and adenosine, which trigger
bronchoconstriction in mice,107,112 were decreased at both

infection time points. Altogether, these results suggest an
interplay between metabolite bronchoconstrictor and broncho-
dilator signals in which complex regulatory mechanisms are
involved.

Trimethylamine-N-oxide (TMAO) Establishes a Metabolic
Link between Mtb Infection and Cardiovascular Risk

The metabolic-associated changes mentioned in the above
sections consider Mtb and the host as the sole metabolomes
present in our study. However, this simplistic assumption does
not consider the different bacterial communities that are
continuously present in mice, including the gut and lung
microbiomes.113,114 This potentially expands the repertoire of
bacterial-specific biosynthetic pathways during TB. For
example, we detected high levels of TMAO in the lungs of
Mtb-infected mice, especially in Mtb+4w. Increases in TMAO
were consistent with alterations in topologically related
metabolites (Supporting Table S4). TMAO is a host flavin
monooxygenase 3 (FMO3) degradation product of trimethyl-
amine, a bacterial metabolite, which can be biosynthesized from
different substrates, including choline, betaine, carnitine, and
EGT.115 Interestingly, RNA-seq experiments have pointed
FMO3 to be related to the regulation of iron homeostasis
during TB.11 Although TMAO has been classically associated
with the gut microbiome,116 our data suggest thatMtb could be
the biosynthetic source of trimethylamine. Hence, it seems
reasonable that TMAO may serve as an electron acceptor for
alternative Mtb respiration under anaerobic conditions, which
was previously described for other bacteria (i.e., Salmonella spp.,
Alteromonas spp., Vibrio spp.117). Furthermore, increased
TMAO levels have also been associated with induction of
adhesion molecules and inflammation via NF-kB activation,118

increased expression of murine macrophage scavenger receptors
A and CD36, and inhibition of reverse cholesterol transport.119

Lastly, our results suggest that TMAO is linked to lipid droplet
and foam cell development during Mtb granuloma formation,
which is consistent with recent studies assessing the role of
TMAO in cardiovascular disease120 and in line with the
increased levels of cholesteryl esters as described above (Figure
8A). Overall, our findings identified a multifunctional
metabolite, TMAO, which, on the one hand, could be exploited
byMtb to modulate its own respiration and, on the other hand,
induces deleterious effects on the host, including increased
cardiovascular risk and renal insufficiency.121,122

Mtb Infection Dysregulates Host Immunometabolism

Innate immunity plays a key role in the pathophysiological
course of pulmonary TB. Canonically, the innate response
includes recognition of pathogen-associated molecular patterns
(PAMPs), which induces diverse events, including inflamma-
tion, cell differentiation, and proliferation. Several findings in
this study suggest that host immunometabolism is dysregulated
following Mtb infection. For example, the following metabolic
shifts (Supporting Table S4) could contribute to inflammation:
(i) alterations in iNOS-related metabolites;123 (ii) alterations in
XO-related metabolites, which may contribute to IL-1β
secretion through regulation of the NRLP3 inflammasome;124

and (iii) increases in succinate levels, which has been shown to
induce the release of proinflammatory cytokines through
stabilization of HIF-1α.62

We found altered abundances of amino acids, which have
been found to play a key role in immune-related processes
(Supporting Table S4). For example, increased levels of several
amino acids (i.e., arginine, glutamine, tryptophan) can
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potentially be sensed by the mechanistic target of rapamycin
(mTOR) in mice, which is involved in a plethora of functions,
including T-cell and monocyte differentiation and lipid
synthesis.125 Increased arginine and citrulline levels in our
disease model have been related to T-cell proliferation and
survival against infection.126,127 Tryptophan and its degradation
metabolites through the LPS-induced kynurenine pathway are
key players in immunomodulation and immune proliferation.128

The highly increased levels of kynurenine found inMtb+4w and
Mtb+9w suggest an alteration of the kynurenine pathway, which
may exert deleterious effects on the immune system given that
inhibition of indoleamine 2,3-dioxygenase (IDO) activity
promotes control of TB infection.129

Subnetwork Modularity Reveals Connections between
Distinct Mtb-Associated Pathobiological Processes

A subnetwork matrix containing the metabolites found in the
study as well as bridging nodes was parsed and curated from
MetaboNetworks. The resulting metabolic subnetwork was
composed of 435 nodes and 739 edges. Using discrete
ModuLand algorithms, we identified 21 modules. High
ModuLand betweenness centrality values were assigned to
metabolites including pyruvate, AMP, aspartate, serine,
glutamate, glycine, glutathione, and cysteine, which were
previously identified in our study as notably altered upon
disease onset and progression. These results suggest that
alterations in the abundances of such metabolites may have an
impact on several biological processes arising from different
metabolic pathways gathered in the network structure. In
addition, different clusters could be observed (Figure 9A). Small
clusters matched to specific pathways such as nicotinic acid
metabolism and cholesterol biosynthesis. Overall, several
network modules encompassed chemically similar metabolites
involved in functionally described pathways. These included

modules grouping carbohydrates, lipidome-related compounds,
nucleotides and PPP compounds, carnitine and coA-related
metabolites, glutamate and lysine-related compounds, and
central carbon and amino acid metabolism. These clustering
results provide evidence that clusters present in the network
share a common biological role and suggest that alterations in
one module are more prone to causing alterations in the
modules with a higher number of intermodular edges, thereby
providing a holistic view of cluster-specific metabolic alterations
during TB. Overlapping of the different Mtb-associated
biological alterations reflected in the metabolites from the
previous sections (Figure 9B) reveals that, with the exception of
cholesteryl esters and TMAO-related metabolites, the majority
of lipidome remodeling-associated compounds conform to a
tight cluster notably distant from the rest of the perturbations. In
addition, metabolites related to disease-associated processes
were mostly represented in the glutamate, proline, and lysine
cluster or in the central carbon metabolism cluster, both being
highly interconnected. These results suggest that proteolysis,
and immunometabolism, alterations in the urea cycle and the
polyamine metabolism are functional processes strongly related
to the central carbon metabolism, which can have a joint impact
via the metabolome.

■ CONCLUSIONS
Overall, our data emphasize that critical metabolic changes
occur in the mouse lung metabolome of Mtb-infected mice,
which are substantially altered or even reversed with disease
progression, manifesting the dynamic nature of metabolic
alterations. The non-targeted metabolomic approach in this
study allowed the discovery of metabolic signatures of distinct
pathobiological processes, several of which confirm previous
observations during Mtb infection. Furthermore, network
analysis has permitted the evaluation of comprehensive

Figure 9.Metabolic subnetwork topology and network clustering analysis. (A) Color-coded map indicating the discrete clustering analysis results and
major metabolite families found in clusters. (B) Superimposition of the different TB disease-associated alterations described in previous sections with
the distinct network clusters.
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interconnections between previously and newly described TB-
related metabolic processes. Also, specific metabolic alterations
canonically described as inflammatory and anti-inflammatory
macrophage polarization markers were found in both Mtb+4w
and Mtb+9w, suggesting that different macrophage polarization
subpopulations may coexist in theMtb-infected lung. Clustering
analysis of samples revealed closer clustering of Mtb+9w and
Mtb− mice, suggesting the return of several metabolite
abundances to control levels, after their alteration during the
acute immune response occurring inMtb+4wmice. Nonetheless,
the levels of metabolites indicate highly non-compensated
metabolic processes, such as proteolysis and macronutrient
consumption, which are likely to reflect disease progression and
worsening inMtb+9w. Importantly, to the best of our knowledge,
this is the first report indicating that high abundances of TMAO
found in the TB lung may be linked to a negative impact on the
host and a possible positive impact on Mtb.
To contextualize the vast amount of general data generated in

this study, consensus OPLS-DA has allowed data fusion and
significance assessment in a technique-independent manner,
providing a high-throughput-oriented statistical test for
determining alterations in the metabolome. Both cOPLS-DA
and SUS plots highlighted the importance of performing
multiplatform studies in our model, given the specific metabolic
coverage and group separation achieved by each MS-based
metabolomic platform. Hence, cOPLS-DA models could be
used to determine altered metabolic pathways in both ORA and
PA and highlight possible altered metabolic pathways. Given the
notable consistency between cOPLS-DA VIP values and
percentages of change, both parameters could be used to
interpret manually the alterations in specific pathways not
detected by metabolite representation algorithms. Collectively,
these advances allowed us to accurately contextualize and
interpret metabolic changes triggered by Mtb, which was not
previously possible.
Finally, in this study, new and previously described metabolic

alterations arising from pathological processes that were
modulated by TB disease were integrated into a network
model that demonstrated the collective interdependent
metabolic modulations induced with TB disease progression.
This will contribute to our understanding of the progression of
Mtb pathogenesis and potentially serve as a foundation for new
host-directed therapeutic strategies.
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The mass spectrometry data have been deposited to the
Metabolomics Workbench Data Repository (https://www.
metabolomicsworkbench.org/) via the NIH Data Repository
with the data set identifier ST001328.
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(33) Kovaćs, I. A.; Palotai, R.; Szalay, M. S.; Csermely, P. Community
landscapes: an integrative approach to determine overlapping network
module hierarchy, identify key nodes and predict network dynamics.
PLoS One 2010, 5, No. e12528.
(34) Stek, C.; Allwood, B.; Walker, N. F.; Wilkinson, R. J.; Lynen, L.;
Meintjes, G. The Immune Mechanisms of Lung Parenchymal Damage
in Tuberculosis and the Role of Host-Directed Therapy. Front.
Microbiol. 2018, 9, No. 2603.
(35) Lugo-Villarino, G.; Hudrisier, D.; Benard, A.; Neyrolles, O.
Emerging trends in the formation and function of tuberculosis
granulomas. Front. Immunol. 2012, 3, No. 405.
(36) Marakalala, M. J.; Raju, R. M.; Sharma, K.; Zhang, Y. J.; Eugenin,
E. A.; Prideaux, B.; Daudelin, I. B.; Chen, P. Y.; Booty,M. G.; Kim, J. H.;
Eum, S. Y.; Via, L. E.; Behar, S. M.; Barry, C. E.; Mann, M.; Dartois, V.;
Rubin, E. J. Inflammatory signaling in human tuberculosis granulomas
is spatially organized. Nat. Med. 2016, 22, 531−538.
(37) Liu, X.; Locasale, J. W. Metabolomics: A Primer. Trends Biochem.
Sci. 2017, 42, 274−284.
(38) Holmes, E.; Wilson, I. D.; Nicholson, J. K. Metabolic
phenotyping in health and disease. Cell 2008, 134, 714−717.
(39) Aranibar, N.; Vassallo, J. D.; Rathmacher, J.; Stryker, S.; Zhang,
Y.; Dai, J.; Janovitz, E. B.; Robertson, D.; Reily, M.; Lowe-Krentz, L.;
Lehman-McKeeman, L. Identification of 1- and 3-methylhistidine as
biomarkers of skeletal muscle toxicity by nuclear magnetic resonance-
based metabolic profiling. Anal. Biochem. 2011, 410, 84−91.
(40) Sugawara, T.; Ito, Y.; Nishizawa, N.; Suzuki, H.; Kobayashi, H.;
Nagasawa, T. Measurement of the rate of myofibrillar protein
degradation using the arteriovenous difference in plasma 3-methyl-
histidine concentration of rats. J. Nutr. Sci. Vitaminol. 2009, 55, 381−
384.
(41) Gupta, K. B.; Gupta, R.; Atreja, A.; Verma, M.; Vishvkarma, S.
Tuberculosis and nutrition. Lung India 2009, 26, 9−16.
(42) Macallan, D. C.; McNurlan, M. A.; Kurpad, A. V.; de Souza, G.;
Shetty, P. S.; Calder, A. G.; Griffin, G. E. Whole body protein
metabolism in human pulmonary tuberculosis and undernutrition:
evidence for anabolic block in tuberculosis. Clin. Sci. 1998, 94, 321−
331.
(43) Ong, C. W.; Elkington, P. T.; Friedland, J. S. Tuberculosis,
pulmonary cavitation, andmatrix metalloproteinases. Am. J. Respir. Crit.
Care Med. 2014, 190, 9−18.
(44) Shiryaev, S. A.; Cieplak, P.; Aleshin, A. E.; Sun, Q.; Zhu, W.;
Motamedchaboki, K.; Sloutsky, A.; Strongin, A. Y. Matrix metal-
loproteinase proteolysis of the mycobacterial HSP65 protein as a
potential source of immunogenic peptides in human tuberculosis. FEBS
J. 2011, 278, 3277−3286.
(45) Lindskog, C.; Fagerberg, L.; Hallström, B.; Edlund, K.; Hellwig,
B.; Rahnenführer, J.; Kampf, C.; Uhleń, M.; Ponteń, F.; Micke, P. The
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