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Abstract

Neuromodulation of the primary visual cortex using anodal transcranial direct current stimu-

lation (a-tDCS) can alter visual perception and enhance neuroplasticity. However, the mech-

anisms that underpin these effects are currently unknown. When applied to the motor

cortex, a-tDCS reduces the concentration of the inhibitory neurotransmitter gamma amino-

butyric acid (GABA), an effect that has been linked to increased neuroplasticity. The aim of

this study was to assess whether a-tDCS also reduces GABA-mediated inhibition when

applied to the human visual cortex. Changes in visual cortex inhibition were measured using

the mixed percept duration in binocular rivalry. Binocular rivalry mixed percept duration has

recently been advocated as a direct and sensitive measure of visual cortex inhibition

whereby GABA agonists decrease mixed percept durations and agonists of the excitatory

neurotransmitter acetylcholine (ACH) increase them. Our hypothesis was that visual cortex

a-tDCS would increase mixed percept duration by reducing GABA-mediated inhibition and

increasing cortical excitation. In addition, we measured the effect of continuous theta-burst

transcranial magnetic stimulation (cTBS) of the visual cortex on binocular rivalry dynamics.

When applied to the motor or visual cortex, cTBS increases GABA concentration and we

therefore hypothesized that visual cortex cTBS would decrease the mixed percept duration.

Binocular rivalry dynamics were recorded before and after active and sham a-tDCS (N = 15)

or cTBS (N = 15). Contrary to our hypotheses, a-tDCS had no effect, whereas cTBS

increased mixed percepts during rivalry. These results suggest that the neurochemical

mechanisms of a-tDCS may differ between the motor and visual cortices.

Introduction

Anodal transcranial direct current stimulation (a-tDCS) is a non-invasive electrical brain stim-

ulation technique that can modulate neural excitability and promote neuroplasticity. When

applied to the visual cortex, a-tDCS can increase contrast sensitivity [1–4], improve visual acu-

ity [5,6], and enhance perceptual learning [7,8] in patients with amblyopia, a neurodevelop-

mental disorder that affects binocular vision, as well as in controls. In addition to perceptual
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changes, reduced phosphene thresholds [7,9,10] and increased VEP amplitudes [4,7,11] have

been reported following visual cortex a-tDCS. Therefore, a-tDCS can induce physiological and

neurochemical changes that result in increased visual cortex excitability.

Although the specific mechanisms that underlie the effects of visual cortex a-tDCS are

unknown, the effects of motor cortex a-tDCS are attributed in part to a reduction in cortical

inhibition mediated by the neurotransmitter gamma amino-butyric acid (GABA). Specifically,

magnetic resonance spectroscopy measures indicate that a-tDCS reduces motor cortex GABA

concentration [12–18]. We anticipated that a similar reduction in GABA concentration occurs

when a-tDCS is applied to the visual cortex based on previous results that are consistent with

such an effect. For example, magnetoencephalography measurements made after visual cortex

a-tDCS indicated an increase in occipital gamma activity that has been linked with reduced

GABA-mediated inhibition [19, but see 20,21]. In addition, visual phenomena that have been

associated with neural inhibition such as an attenuated cortical response to inputs from the

amblyopic eye in adults with amblyopia [3,4] surround suppression [20] and lateral inhibition

[21], can be reduced by a-tDCS.

Cathodal tDCS also reduces GABA concentration within the motor cortex in concert with

reduced glutamate concentration [12]. However, continuous theta-burst stimulation (cTBS), a

form of transcranial magnetic stimulation that can also alter visual perception [22–25], has

been found to increase GABA concentration in both the motor cortex [26] and the visual cor-

tex [23]. cTBS, therefore, would be expected to have the opposite effect to a-tDCS on percepts

that are directly influenced by GABA-mediated inhibition.

Binocular rivalry dynamics have recently been advocated as a sensitive measure of GABA-

mediated inhibition withing the human visual cortex [27]. Binocular rivalry is a form of bistable

perception wherein the brain alternately suppresses one eye over the other stochastically when

each eye views a different image [28–31]. Previous studies have found that binocular rivalry

dynamics are correlated with visual cortex GABA concentration [32–34]. Specifically, young

adults with slower binocular rivalry alternation rates had higher primary visual cortex GABA

concentrations [32,34]. In addition, higher GABA concentrations are correlated with longer

periods of perceptual dominance, defined as the period of time when either eye dominates per-

ception during rivalry relative to mixed percepts when both eyes contribute to perception [34].

A causal relationship between GABA-mediated inhibition and binocular rivalry dynamics

has also been reported. Single doses of clobazam (a GABAa receptor agonist) or arbaclofen (a

GABAb receptor agonist) increased perceptual dominance and reduced mixed percept dura-

tion during binocular rivalry compared to a placebo [27]. Additionally, reduced inhibition and

increased excitation induced by the acetylcholine agonist donepezil was recently found to

reduce perceptual dominance and increase mixed percept duration during binocular rivalry

[35]. Given this evidence, we used binocular rivalry mixed percept duration as a measure of

cortical inhibition.

Whether a-tDCS reduces visual cortex GABA concentration as it does in the motor cortex

is not yet known. Our study aimed to address this question. We hypothesized that visual cortex

a-tDCS would reduce visual cortex GABA concentration resulting in increased mixed percept

durations during binocular rivalry. We further hypothesized that visual cortex cTBS, that has

been found to increase visual cortex GABA concentration [23], would have the opposite effect.

Materials and methods

Participants

A total of thirty young adults with normal or corrected-to-normal vision (0.1 LogMAR or bet-

ter in each eye) participated in one of two within-subject, sham-controlled experiments: an a-
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tDCS experiment (n = 15, mean participant age 25, median age 24, range 22–30, 11 female)

and a cTBS experiment (n = 15, mean participant age 24, median age 24, range 22–29, 7

female). Participants with abnormal binocular vision and those taking psychoactive drugs

were excluded. All participants were informed of the nature of the study before participation

and provided written informed consent. The project was approved by the University of Water-

loo Research Ethics Committee (ORE #30537).

Visual stimuli

Dichoptic, orthogonally oriented (45˚ and 135˚) sinusoidally modulated red/green gratings

(0.5 cycles per degree, 6.1 degrees of visual angle) were presented on a 24-inch Asus 3D moni-

tor. Participants wore 120 Hz frame sequential shutter glasses to view the stimuli. The contrast

of the gratings was matched using a Chroma Meter CS-100 photometer (mean luminance:

red = 8.4 cd/m2; green = 32.9 cd/m2). Stimuli were viewed from 57cm using a chin rest. Partic-

ipants reported perceiving the 45˚ grating only, the 135˚ grating only, or a mixture of both

(piecemeal or superimposition percepts) by holding down a computer keyboard key and

switching keys as the percept changed.

Anodal transcranial direct current stimulation

Two 5x7 cm electrode sponges were placed on the scalp, the anode at 2 cm above the inion

over the visual cortex and the cathode at the vertex. Each tDCS electrode was placed inside a

saline-soaked sponge. The electrodes were secured using a head mount. A-tDCS was delivered

at 2mA for 15 minutes in addition to a 30-second ramp-up and 30-second ramp-down period

using a NeuroConn DC-Stimulator MC-8. Electrode impedance levels were below 5 k Ohms

throughout each session and were continuously monitored during the experiment. The inten-

sity and duration of a-tDCS were matched to those of studies providing evidence for a-tDCS

effects on visual cortex function [4,21]. The sham condition consisted only of the ramp-up and

ramp-down periods. Participants were masked to the stimulation condition. The experimenter

could not be masked due to resource limitations; however, session order (active first or sham

first) was randomly sequenced prior to the start of data collection. For both active and sham

conditions, six 60-second trials of binocular rivalry were completed before, during, 5 minutes,

and 30 minutes post stimulation (Fig 1A).

Continuous theta burst stimulation

cTBS was delivered using a MagVenture MagPro X100 stimulator (MagVenture Farum, Den-

mark) with BrainSight frameless neuro-navigation software (Rogue Research Inc., Montreal,

Canada). Active motor thresholds (AMTs) were used to calibrate visual cortex cTBS intensity

[36]. We chose to use AMT rather than phosphene threshold to calibrate cTBS intensity

because AMT is objective, not everyone perceives TMS induced phosphenes and AMT is posi-

tively correlated with phosphene threshold [37]. The procedure for determining AMT

involved placing a surface electrode on the belly of the first dorsal interosseous muscle tendon

(left or right based on hand dominance) and a second electrode on the lateral bone of the

wrist. The electromyographic (EMG) response was monitored using BrainSight software as

the participant was asked to steadily press their pointer finger against the arm of their chair to

generate a motor evoked potential (MEP) of 100μV. A single pulse of TMS was systematically

delivered to different points of a contralateral motor cortex stimulation grid (3 by 3 cm) begin-

ning at 40% of the maximum stimulator output (MSO) until the region hotspot—defined as

the stimulation location corresponding to the maximum TMS-induced MEP amplitude—was

located [38,39]. Using the Rossini-Rothwell algorithm for determining AMT, single pulses
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were then delivered to this region while increasing the intensity by 1% until a peak-to-peak

amplitude of 200μV was generated for 5 out of 10 pulses (50%) [40].

For visual cortex cTBS, the TMS coil was centered 2 cm above the inion, on the sagittal mid-

line. Stimulation involved five bursts of three 50Hz pulses delivered every second for 40 sec-

onds at 100% of the participant’s AMT [36]. The control condition used the same protocol

with a sham coil. Both the participant and experimenter were masked to the stimulation condi-

tion (active and sham condition codes were given to the experimenter by another researcher).

Binocular rivalry dynamics were recorded for six 60-second trials before, 5 minutes post, and

30 minutes post stimulation (Fig 1B).

Analysis

The duration of mixed perception during binocular rivalry was calculated in seconds per

60-second trial. We also analysed binocular rivalry ocular dominance index ((time viewing the

dominant eye percept–time viewing the non-dominant eye percept)/total time excluding

mixed percepts) and alternation rates (any change in perception). Measures were averaged

across all six trials for each time point separately for each participant. The dominant eye was

defined as the eye with the longest pre-stimulation viewing time at the initial visit.

A repeated measures ANOVA with factors of Condition (active vs. sham) and Time (a-

tDCS: pre vs. during vs. 5min post vs. 30min post; cTBS: pre vs. 5min post vs. 30min post) was

conducted separately for mixed percept duration, ocular dominance index and alternation

rate for each stimulation type. Post-hoc testing of significant interactions was conducted using

t-tests. Effect sizes were calculated as either partial eta squared (ηp
2) or Cohen’s d based on the

analysis.

For one tDCS participant, the 5 minutes post stimulation data for the sham condition was

irretrievably lost. For one TMS participant, baseline data and 5 minutes post stimulation data

for the sham condition were irretrievably lost. The missing data points were imputed using the

mean value of the other 14 participants [41].

Fig 1. a-tDCS (A) and cTBS (B) experiment protocols. Binocular rivalry dynamics were recorded for 6 minutes at

baseline (pre), during, 5 minutes post and 30 minutes post a-tDCS. A-tDCS electrodes were placed on the head following

the baseline measure. Similarly, for cTBS, binocular rivalry dynamics were recorded pre, 5 minutes post and 30 minutes

post stimulation. Motor thresholding was completed on the first visit following the baseline measure.

https://doi.org/10.1371/journal.pone.0239349.g001
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Results

Anodal transcranial direct current stimulation

No significant effects of a-tDCS were observed for any measure of binocular rivalry dynamics

(ηp
2 range 0.03 to 0.09, p> 0.05). Fig 2 illustrates mixed percept duration, ocular dominance

index and alternation rate for the active a-tDCS and sham conditions.

Fig 2. Average time spent in mixed percept (A), ocular dominance indices (B), and alternation rates (C) for 15

participants pre, during, 5 minutes and 30 minutes post a-tDCS. Error bars = SEM. No statistically significant effects

were observed.

https://doi.org/10.1371/journal.pone.0239349.g002
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Continuous theta burst stimulation

cTBS significantly increased the duration of mixed percepts relative to sham stimulation (sig-

nificant interaction between Condition and Time, F28 = 3.53, ηp
2 = 0.20, p = 0.043; Fig 3A).

Post hoc t-tests revealed a significant increase in mixed percept duration with active cTBS

from pre to 5min post (t14 = -3.065, Cohen’s d = -0.80, p = 0.008) and from pre to 30min post

(t14 = -2.31, Cohen’s d = -0.60, p = 0.037; Fig 3A). There were no significant differences

between the active cTBS and sham conditions at any timepoint (pre cTBS and pre sham, t =

-1.333, Cohen’s d = -0.344, p = 0.204; post-5 cTBS and post-5 sham; t = 1.065, Cohen’s

d = 0.287, p = 0.305; post-30 cTBS and post-30 sham, t = 0.621, Cohen’s d = 0.160, p = 0.545).

There were no effects of cTBS on ocular dominance index or alternation rate (Fig 3B & 3C).

Discussion

We tested the hypothesis that visual cortex a-tDCS, which has been observed to reduce regional

GABA concentration [13,17], acts to reduce GABA-mediated inhibition within visual cortex as

evidenced by increased binocular rivalry mixed percept duration [27]. Mixed percept duration

during binocular rivalry has been causally linked to visual cortex GABA concentration through

pharmacological antagonism of GABAa and GABAb receptors [27]. We hypothesized that visual

cortex cTBS would have the opposite effect to a-tDCS and reduce mixed percept duration because

cTBS applied to the motor cortex [26] or visual cortex [23] increases GABA concentration.

Contrary to our hypotheses, visual cortex a-tDCS had no effect on mixed percept duration

and visual cortex cTBS increased mixed percept duration, a result that was opposite to the

anticipated effect. As expected, neither form of non-invasive brain stimulation altered ocular

dominance index or alternation rate during binocular rivalry.

No effect of a-tDCS on mixed percept duration

The most obvious explanation for the lack of an a-tDCS effect on mixed percept duration is

that a-tDCS simply had no effect on the visual cortex at all. Although we certainly cannot rule

out this possibility, the vast majority of published studies using the same or similar stimulation

parameters over visual cortex have reported a-tDCS effects, including effects that are consis-

tent with reduced GABA-mediated inhibition such as reduced surround suppression [20],

reduced lateral inhibition [21] (with a moderate to large effect size) and an equalization of the

cortical response to each eye in adults with amblyopia [3,4]. Therefore, we also propose possi-

ble alternative explanations.

One explanation is that a-tDCS does reduce visual cortex GABA concentration, but that the

primary visual cortex is not the appropriate region to target because binocular rivalry is associ-

ated with a broad network of brain areas that includes the LGN [42], V1 [43], and the prefron-

tal cortex [44,45]. We chose V1 as our brain stimulation target because of the reported

association between GABA concentration and binocular rivalry dynamics in this region

[27,33,46]. However, the relatively large rivalry stimuli with strongly competing features that

we used may have primarily recruited higher-level regions of the rivalry network. It is conceiv-

able that a-tDCS may alter binocular rivalry dynamics for smaller rivalrous stimuli that do not

contain strongly competing features.

An alternative explanation is that a-tDCS does not act to modulate GABA concentration in

visual cortex. In non-visual areas, usually motor cortex, most studies using magnetic resonance

spectroscopy (MRS) to quantify neurotransmitters have reported reduced GABA concentra-

tion following a-tDCS; however, not all studies have observed this effect [18,47–49]. It is possi-

ble that a-tDCS modulation of GABA concentration is highly dependent on stimulation

parameters [see citation 50 for a comprehensive review] and/or the distribution of male and
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Fig 3. Average time spent in mixed percept (A), ocular dominance indices (B), and alternation rates (C) for 15

participants pre-stimulation, 5 minutes and 30 minutes post cTBS. Error bars = SEM. � p<0.05.

https://doi.org/10.1371/journal.pone.0239349.g003
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female participants within the study population [51–53], all of which differ among previous

studies and our own. In addition, it is possible that a-tDCS mechanisms differ between brain

regions. For example, Dwyer et al. [54] recently reported no change in GABA or GLX concen-

tration following temporal lobe a-tDCS. A detailed study of repetitive TMS (rTMS) effects

over different brain regions using functional connectivity and computational modeling has

recently revealed that the effects of a fixed 1 Hz stimulation protocol differ significantly when

the stimulation is applied to different brain regions [55]. In particular, occipital 1Hz rTMS

induced opposite functional connectivity effects when compared to frontal 1 Hz rTMS. We

posit that similar phenomenon occurs for a-tDCS such that visual cortex a-tDCS may not

influence local GABA concentration in the same way as a-tDCS of motor cortex. An MRS

study of visual cortex a-tDCS is required to directly address this question.

Increased mixed percept duration following visual cortex cTBS

MRS measurements made after visual and motor cortex cTBS have indicated increased visual

cortex GABA concentration [23,26], an effect that would be expected to reduce mixed percept

duration [27,56]. However, we observed the opposite effect; an increase in mixed percept dura-

tion following cTBS. The interaction effect that we observed for mixed percept duration had

only a moderate effect size, raising the possibility of a type 2 error, although the within-condi-

tion pairwise comparisons indicating changes from the pre-cTBS baseline had moderate to

strong effect sizes.

Previous studies have reported counter intuitive improvements in visual perception follow-

ing inhibitory cTBS of the visual cortex [25,26]. These results were explained in the context of

changes in the signal to noise ratio within visual cortex. However, it is not immediately appar-

ent how such changes may influence binocular rivalry mixed percept duration. Previous work

identifying a causal relationship between GABA-mediated inhibition and mixed percept dura-

tion used a systemic pharmacological intervention, whereas we targeted only the primary

visual cortex with cTBS. Further studies are required to more fully understand how visual cor-

tex cTBS affects the larger network of brain areas that contribute to binocular rivalry.

Measures of binocular rivalry dynamics

There are differences in binocular rivalry dynamics calculations across previous studies, and

subtle differences in definitions. For instance, some studies calculate the proportion of percep-

tual dominance to mixed percept perception (referred to as perceptual suppression) [27,34],

while mean dominance durations calculated as the average duration that a dominant percept

lasts in seconds is used by others [32]. Our measures were designed to capture any changes in

dominance and mixed percepts.

We also measured alternation rates because previous studies have suggested that visual cor-

tex GABA concentration is correlated with alternation rate in young adults [32,34]. We did

not observe an association between alternation rate and visual cortex a-tDCS or cTBS. Notably,

GABA agonists do increase perceptual suppression (i.e. reduce mixed percept duration), but

do not consistently influence alternation rate suggesting that different mechanisms may gate

alternation rate [27,32].

Overall, our results suggest that the effects of a-tDCS on GABA concentration may differ

between the visual cortex and the motor cortex and bring into question the mechanism for

reported visual perception changes following a-tDCS. Further investigation of this question

using techniques such as MRS is required to elucidate the mechanisms of visual cortex a-tDCS

and help guide the continued development of visual rehabilitation strategies that involve a-

tDCS or other forms on non-invasive brain stimulation.
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