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 2 

ABSTRACT 47 

Background: Heart failure with preserved ejection fraction (HFpEF) accounts for ~50% 48 

of HF cases, with no effective treatments. The ZSF1-obese rat model recapitulates 49 

numerous clinical features of HFpEF including hypertension, obesity, metabolic 50 

syndrome, exercise intolerance, and LV diastolic dysfunction. Here, we utilized a 51 

systems-biology approach to define the early metabolic and transcriptional signatures to 52 

gain mechanistic insight into the pathways contributing to HFpEF development.  53 

Methods: Male ZSF1-obese, ZSF1-lean hypertensive controls, and WKY (wild-type) 54 

controls were compared at 14w of age  for extensive physiological phenotyping and LV 55 

tissue harvesting for unbiased metabolomics, RNA-sequencing, and assessment of 56 

mitochondrial morphology and function. Utilizing ZSF1-lean and WKY controls enabled 57 

a distinction between hypertension-driven molecular changes contributing to HFpEF 58 

pathology, versus hypertension + metabolic syndrome. 59 

Results: ZSF1-obese rats displayed numerous clinical features of HFpEF. Comparison 60 

of ZSF1-lean vs WKY (i.e., hypertension-exclusive effects) revealed metabolic 61 

remodeling suggestive of increased aerobic glycolysis, decreased β-oxidation, and 62 

dysregulated purine and pyrimidine metabolism with few transcriptional changes. ZSF1-63 

obese rats displayed worsened metabolic remodeling and robust transcriptional 64 

remodeling highlighted by the upregulation of inflammatory genes and downregulation 65 

of the mitochondrial structure/function and cellular metabolic processes. Integrated 66 

network analysis of metabolomic and RNAseq datasets revealed downregulation of 67 

nearly all catabolic pathways contributing to energy production, manifesting in a marked 68 

decrease in the energetic state (i.e., reduced ATP/ADP, PCr/ATP). Cardiomyocyte 69 
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ultrastructure analysis revealed decreased mitochondrial area, size, and cristae density, 70 

as well as increased lipid droplet content in HFpEF hearts. Mitochondrial function was 71 

also impaired as demonstrated by decreased substrate-mediated respiration and 72 

dysregulated calcium handling. 73 

Conclusions: Collectively, the integrated omics approach applied here provides a 74 

framework to uncover novel genes, metabolites, and pathways underlying HFpEF, with 75 

an emphasis on mitochondrial energy metabolism as a potential target for intervention.  76 
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INTRODUCTION 77 

Heart failure (HF) is a growing epidemic. In the U.S. alone, >6.7 million people over the 78 

age of 20 have HF and this is projected to increase to >8.5 million people by 20301,2. 79 

Nearly one-quarter of people will develop HF in their lifetime1-3 and current HF mortality 80 

rates are higher today than in 19994. Of those diagnosed with HF, ~50% have heart 81 

failure with preserved ejection fraction (HFpEF)1-3,5. HFpEF patients present with 82 

elevated left ventricular (LV) filling pressure despite normal LV ejection fraction (≥50%). 83 

At present there are very limited treatments for HFpEF, and the 5-year mortality rate is 84 

merely 50%1-3. Clinical trials of drugs that are effective in HF with reduced ejection 85 

fraction (HFrEF) have uniformly failed in HFpEF1,3. Due to our limited understanding of 86 

mechanisms which drive HFpEF and lack of therapeutic strategies to treat this 87 

devastating disease, the NIH-NHLBI has issued a statement of emphasis detailing the 88 

research priority of HFpEF and identified HFpEF as the greatest unmet need in 89 

cardiovascular medicine6.   90 

 91 

While clinicians struggle to treat HFpEF patients, research scientists have grappled with 92 

preclinical models to study the pathobiology of HFpEF7-12 to improve our understanding 93 

of this complex, multi-organ disease. Clinically relevant models are required to fully 94 

elucidate molecular disease mechanisms and effectively translate new therapies from 95 

bench to bedside. Towards this end, the (ZSF1) rat has been proposed as an animal 96 

model for HFpEF13,14. This model was created by crossing rat strains with two separate 97 

leptin receptor mutations (fa and facp), the lean female Zucker diabetic fatty (ZDF) rat 98 

(+/fa) and the lean male spontaneously hypertensive heart failure (SHHF) rat. Offspring 99 
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homozygous for both mutations (fa:facp) create a hybrid rat with central obesity and 100 

hypertension (ZSF1-Obese rat) resulting in spontaneous cardiometabolic HFpEF 101 

whereas the heterozygous lean offspring (ZSF1-Lean rat) exhibit no signs of obesity 102 

and diabetes15. Previous studies have shown that obese ZSF1 rats develop significant 103 

diastolic dysfunction between 10-20 weeks of age with concentric LV remodeling and 104 

hypertrophy like that observed in HFpEF patients16. In addition to LV diastolic 105 

dysfunction, previous studies have demonstrated skeletal muscle pathology, exercise 106 

intolerance, endothelial dysfunction, systemic inflammation, and renal and hepatic 107 

abnormalities that are consistent with cardiometabolic HFpEF13,16-19.  We have 108 

previously demonstrated that the ZSF1 rat is responsive to therapeutic interventions 109 

when delivered early during the progression of HFpEF18,19. The severity of HFpEF in 110 

terms of cardiometabolic pathology has been shown to be similar between male and 111 

female ZSF1 obese rats20, which is not the case for the popular "two-hit" mouse model 112 

of HFpEF in which female mice are protected against the development of HFpEF21. In 113 

summary, the ZSF1 obese rat represents a clinically-relevant and superior model for the 114 

elucidation of novel mechanisms responsible for the development and progression of 115 

HFpEF. 116 

 117 

To uncover potentially novel and critical mechanisms in HFpEF, we provide an in-depth 118 

characterization the ZSF1 obese rat model of HFpEF using several physiological, 119 

biochemical, molecular, and omics approaches.  We evaluated male ZSF1-obese, 120 

ZSF1-lean hypertensive controls, and WKY (wild-type) lean, normotensive controls at 121 

an early stage in the development of HFpEF (14-wks of age), performing extensive 122 
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physiological phenotyping in conjunction with unbiased metabolomics and 123 

transcriptomics. Our results reveal that the addition of obesity/metabolic syndrome upon 124 

hypertension and vascular dysfunction is a primary contributor to gross cardiac 125 

transcriptional and metabolic remodeling, driving the development of HFpEF. Most 126 

notably, mitochondrial energy metabolism pathways were highly disrupted resulting in 127 

an energetic deficit that correlated with maladaptive mitochondrial ultrastructural 128 

remodeling and functional impairment. These findings support an integrated framework 129 

to identify metabolic and transcriptional pathways that are disrupted in, and contribute 130 

to, HFpEF progression that will optimally yield new therapeutic targets.   131 
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METHODS 132 

Experimental Animals: Wistar Kyoto (WKY), ZSF1-lean, and ZSF1-obese male rats 133 

were purchased from Charles River laboratories and used in all experiments contained 134 

within this study (n=5 to 7 per group). Animals were purchased and held at Temple 135 

University Lewis Katz School of Medicine (TU-LKSOM) or LSU Health Sciences Center 136 

(LSUHSC) in a temperature controlled and 12-hour light/dark cycle for the entirety of 137 

studies. All studies were approved by TU-LKSOM and LSUHSC Institutional Animal 138 

Care and Use Committees (IACUC) and received animal care at TU-LKSOM and 139 

LSUHSC according to the Association for Assessment and Accreditation of Laboratory 140 

Animal International (AAALAC) guidelines. 141 

 142 

Study Design: Both ZSF1-lean, ZSF1-obese, and WKY controls were investigated at 14 143 

wks of age. Physiologic parameters of body weight, transthoracic echocardiography, 144 

and exercise capacity testing are as described below. Further investigation into 145 

pathophysiology of these separate animal models was performed utilizing left ventricular 146 

(LV) and systemic invasive hemodynamic measurements along with ex vivo 147 

assessments of mitochondrial ultrastructure and function. Isolated cardiac LV tissue 148 

samples were also submitted for RNAseq and unbiased metabolomics. 149 

 150 

Echocardiography: Transthoracic echocardiography of all groups was performed with a 151 

Vevo 2100 echocardiography system (FUJIFILM VisualSonics). Left ventricular diastolic 152 

measurements were performed using an apical four chambered view of the heart. Left 153 

ventricular systolic measurements were performed using a long-axis view. Animals were 154 
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anesthetized using inhaled isoflurane at an induction dose of 3% with a maintenance 155 

dose of 1% for the longevity of the experiment. Heart rate was maintained at 156 

approximately 250-300 beats per minute (BPM) for the data collection period as 157 

previously described22.  158 

 159 

Exercise Capacity Testing: ZSF1-lean, ZSF1-obese, and WKY control rats were 160 

assessed for exercise intolerance utilizing a IITC Life Science 800 Series treadmill. 161 

Animals were first acclimated to the treadmill for a period of 5 minutes with no 162 

movement, they were then brought through a warmup phase consisting of initially 6 163 

meters per minute which was thereby increased to 12 meters per minute for a 4-minute 164 

ramp up time, for a total warmup phase of 5 minutes. For data collection as presented, 165 

the animals were run at a rate of 12 meters per minute with 0° incline until exhaustion, 166 

which was defined as animal placement on the shock pads for more than 3 seconds. 167 

Exercise capacity was then determined by the total distance run. 168 

 169 

Terminal Invasive Hemodynamics and Sacrifice: At 14 wks of age, animals were 170 

anesthetized via inhaled isoflurane at a concentration of 3% for induction and 1% 171 

maintenance during the following procedure. The rodent neck and associated structures 172 

were dissected for exposure of the common carotid which was canulated with a 1.2 F 173 

high-fidelity pressure catheter, measuring the systemic pressures at systole and diastole 174 

accordingly for multiple cardiac cycles. The pressure catheter was then carefully 175 

introduced into the left ventricle of the animal. Left ventricular end diastolic pressures 176 

(LVEDP) and ventricular relaxation time constant (Tau) were measured after multiple 177 
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cardiac cycles to obtain an average measurement. The catheter was then removed, and 178 

the rat was subsequently exsanguinated and sacrificed with tissues and plasma 179 

harvested for additional measurements as previously described23. 180 

 181 

Mitochondrial function: Heart mitochondria were isolated and subjected to respiratory 182 

function assays using the Seahorse XF96, like that described previously7,24. Briefly, 183 

~100 mg left ventricular heart pieces were washed 5× with cold buffer A (220 mM 184 

mannitol, 70 mM sucrose, 5 mM MOPS, 1 mM EDTA; pH 7.2 with KOH) followed by 185 

homogenization using a glass-col homogenizer in 2 ml of buffer A containing 0.2% fatty 186 

acid-free BSA. Homogenate was then subjected to centrifugation at 800 × g for 10 min 187 

followed by supernatant collection and centrifugation at 10,000 × g for 10 min. The 188 

pellet containing mitochondria was then resuspended in 1 ml fresh buffer A (without 189 

BSA) and centrifuged at 10,000 × g, with this step repeated once. The washed 190 

mitochondrial pellet was then resuspended in 150 µl respiration buffer (120 mM KCl, 25 191 

mM Sucrose, 10 mM HEPES, 1 mM MgCl2, 5 mM KH2PO4; pH 7.2 with KOH) and kept 192 

on ice.  193 

To determine mitochondrial function, samples were diluted to a concentration of 194 

2.5 µg (protein) in 50 µl respiration buffer per well and centrifuged onto XF96 195 

microplates at 500 × g for 3 min at 4°C. State 3 respiration in response to substrates 196 

were measured after injection of pyruvate + malate (5.0 mM + 2.5 mM, final 197 

concentrations) or succinate + rotenone (10 mM + 1 µM, final concentrations) to assess 198 

complex I and II rates, respectively. Fatty acid oxidation was assessed in response to 199 

palmitoyl-l-carnitine + malate (50 µM + 2.5 mM, final concentration). The oxygen 200 
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consumption rates recorded after injection of oligomycin (1 µg/ml), an inhibitor of ATP 201 

synthase, served as a measure of State 4 respiration. Following State 4 respiratory 202 

measurements, injection of FCCP, a mitochondrial uncoupler, provided ETC complex 203 

maximal respiratory capacity. Respiratory control ratios, state 3/state 4, were calculated 204 

as a measure of the coupling of oxygen consumption to ATP production. 205 

 206 

Mitochondrial calcium uptake assay: Isolated mitochondria were diluted in Isolated 207 

Mitochondria Assay Buffer (IMAB; 125 mM KCl, 10 mM NaCl, 20 mM HEPES, 2 mM 208 

MgCl2, 2 mM KH2PO4, pH 7.2 with KOH). Mitochondria were loaded into 96-well plates 209 

(final concentration of 1 µg/µL), supplemented with 10 mM succinate (Sigma-Aldrich, 210 

S3674), 10 mM malate (Sigma-Aldrich, 240176) and 10 mM pyruvate (Sigma-Aldrich, 211 

P5280), and 1 µM calcium green-5N hexapotassium salt (Invitrogen, C-3737). Final 212 

volume at the start of the assay was 50 µL. Fluorescence was measured every 200 ms 213 

at 506 nmex/532 nmem using a TECAN Infinite M1000 Pro plate reader set at 37°C. After 214 

120 sec of baseline measurements, successive injections of 2.5 µM CaCl2 (5 µL of 25 215 

µM CaCl2 stock prepared in IMAB) were administered every 120 sec. To generate a 216 

standard curve of extramitochondrial Ca2+ (bath concentration), the same experimental 217 

setup was employed without addition of mitochondria to the well. The standard curve 218 

was utilized to calculate the extramitochondrial calcium remaining post mitochondrial 219 

uptake (average of last 100 sec per injection cycle) and to determine the percent 220 

mitochondrial calcium uptake following successive injections. All methods are as 221 

described25-27. 222 

 223 
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Mitochondrial swelling assays: Isolated mitochondria were diluted in Isolated 224 

Mitochondria Assay Buffer (IMAB; 125 mM KCl, 10 mM NaCl, 20 mM HEPES, 2 mM 225 

MgCl2, 2 mM KH2PO4, pH 7.2 with KOH). Mitochondria were loaded into 96-well plates 226 

(final concentration of 1 µg/µL), supplemented with 10 mM succinate (Sigma-Aldrich, 227 

S3674), 10 mM malate (Sigma-Aldrich, 240176) and 10 mM pyruvate (Sigma-Aldrich, 228 

P5280). Final volume was 150 µL per well. Absorbance was measured every 5 seconds 229 

at 540 nm using a TECAN Infinite M1000 Pro plate reader set at 37°C with plate 230 

shaking between measurements. After 2 minutes of baseline measurements, a single 231 

Ca2+ bolus of 500 µM CaCl2 (7.5 µL of 10 mM CaCl2 stock prepared in IMAB) was 232 

administered with measurements recorded every 5 sec for 10 min. All methods are as 233 

described25-27. 234 

 235 

Transmission Electron Microscopy (TEM): Left ventricle tissue cut to ~3 mm3 were fixed 236 

in 2% PFA + 2% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.4, and stored 237 

at 4°C for 48 h. Tissues were washed 3x for 15 min each in 0.1 M sodium cacodylate 238 

buffer, pH 7.4, and then post-fixed in freshly prepared 1.5% potassium ferrocyanide and 239 

1% osmium tetroxide in 0.1 M sodium cacodylate buffer pH 7.4 for 2 h. The samples 240 

were washed with water 4x for 15 min each followed by en bloc staining overnight with 241 

1% uranyl acetate (aq). Following washing 3x with H2O for 15 min each, tissues were 242 

dehydrated in an ascending acetone series (25% acetone, 50% acetone, 75% acetone, 243 

95% acetone, 100% anhydrous acetone, 100% anhydrous acetone), 15 min each step.  244 

Samples were infiltrated with Spurr’s resin (25% resin in acetone, 50% resin in acetone, 245 

75% resin in acetone, 100% resin, 100% resin), 1 h each step followed by overnight 246 
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incubation in 100% Spurr’s resin.  The next day, one last exchange in 100% Spurr’s 247 

resin was performed before samples were placed in aluminum weigh dishes with fresh 248 

resin and polymerized at 60ºC overnight. Following polymerization, tissues in proper 249 

orientation were excised from the resin with a jeweler’s saw and glued onto supports.  250 

Muscle tissues were sectioned with a Leica UC7 ultramicrotome, and 60 nm thick 251 

sections were collected onto 200 mesh copper grids with a formvar-carbon support film.  252 

Grids were post-stained with 2% uranyl acetate in 50% methanol and Reynolds lead 253 

citrate. Grids were examined and imaged in a FEI Tecnai 12 120 keV digital TEM, with 254 

images acquired at various magnifications (e.g. 1,100x – 21,000x). 255 

 256 

Morphometric analysis of TEM images: Analysis of mitochondria, lipid droplets (LD), LD-257 

mitochondria associations, and sarcomere lengths were performed using ImageJ/FIJI 258 

(NIH). After calibration for distance, shape descriptors and size measurements were 259 

obtained by manually tracing only discernable mitochondria or lipid droplets. Circularity 260 

is computed as [4pi × (area/perimeter2)] and roundness is computed as [4 pi × (surface 261 

area)/(pi × major axis2); values of 1 indicate perfect spheres. Feret Diameter represents 262 

the longest distance between any two points within a given mitochondrion28. A custom 263 

Phyton plugin (MitoCareTools) was adopted for quantification of lipid-mitochondrion 264 

associations29,30. Areas where the LD was <100nm from the outer mitochondrial 265 

membrane (OMM) were determined as a LD-mitochondrion interface. To obtain mean 266 

gap distance, the LD membrane was first traced followed by tracing the mitochondrion 267 

OMM with values obtained from the plugin. 268 

 269 
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Protein Immunoblotting: Remaining isolated mitochondria from our calcium and 270 

respiratory assays were pelleted and lysed in RIPA buffer supplemented with 271 

phosphatase inhibitors (Roche, 4906837001) and protease inhibitors (Sigma, S8830). 272 

Samples were kept on ice for 30 min with agitation via vortex every 10 min. Samples 273 

were then centrifuged at 13,000 × g for 20 min at 4°C. The supernatant was collected, 274 

and protein concentration quantified using the Pierce 660nm Protein Assay Reagent 275 

(Thermo Fisher Scientific). Equal amounts of protein (5 ug) were run by gel 276 

electrophoresis on polyacrylamide Tris-glycine SDS gels. Gels were transferred to 277 

PVDF (EMD Milipore, IPFL00010) and membranes were blocked for 1 h in Blocking 278 

Buffer (Rockland, MB-070) followed by incubation with primary antibody overnight at 279 

4°C on a rocker. Membranes were then washed in TBS-T 3x for 5 min each and 280 

incubated in a fluorescent secondary antibody for 1 h at RT. Membranes were then 281 

washed in TBS-T 3x for 5 min each and imaged on a Licor Odyssey system. Antibodies 282 

in the study were used at a concentration of 1:1000 and include: VDAC1/3 (Abcam, 283 

ab14734), MCU (Cell Signal, 14997), MICU1 (Novus Bio, BP1-86663), MICU2 (Novus 284 

Bio, BP2-92063), MCUB (Sigma Aldrich, HPA024771), Total OxPHOS Cocktail (Abcam, 285 

ab110413).  286 

 287 

RNA sequencing: Left ventricular heart pieces were immediately flash frozen in liquid N2 288 

following excision and subjected to RNAseq analysis. Total RNA was isolated using a 289 

fibrous tissue RNA isolation kit (Qiagen). The TrueSeq stranded mRNA library prep kit 290 

was used to enrich polyA mRNAs via poly-T based RNA purification beads which were 291 

then amplified using HiSeq rapid SR cluster kit and multiplexed and run using the HiSeq 292 
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rapid SBS kit. Reading depth was ~30M reads per sample and single-end 75 bp 293 

fragments were generated for bioinformatic analysis. All kits for sequencing were 294 

obtained from Illumina and all sequencing was performed on the Illumina HiSeq2500 295 

sequencer. RNA transcripts were aligned to the Rnor_6.0 assembly using HISAT2 296 

v2.1.0 and quantified using HTSeq v0.11.2. Differential expression analysis was 297 

performed between groups using DESeq2 v1.22.2. Genes were considered differentially 298 

expressed when they met a fold change ≥2.0 and FDR ≤0.05. Gene ontology (GO) 299 

analysis was accomplished using DAVID GO analysis tools. All RNA-sequencing data 300 

will be submitted to the GEO repository with the appropriate accession # at time of 301 

publication. 302 

 303 

Metabolomic analysis: Left ventricular heart pieces were immediately flash frozen in 304 

liquid N2 following excision to most accurately capture the in vivo cardiac metabolome. 305 

Samples were prepared by Metabolon using their automated MicroLab STAR® system 306 

(Hamilton Company, Reno, NV). First, tissue homogenates were made in water at a 307 

ratio of 5 µL per mg of tissue. For quality control, several recovery standards were 308 

added prior to the first step in the extraction process. To remove protein, dissociate 309 

small molecules bound to protein or trapped in the precipitated protein matrix, and to 310 

recover chemically diverse metabolites, proteins were then precipitated with methanol 311 

(final concentration 80% v/v) under vigorous shaking for 2 min (Glen Mills GenoGrinder 312 

2000) followed by centrifugation. For quality assurance and control, a pooled matrix 313 

sample was generated by taking a small volume of each experimental sample to serve 314 

as a technical replicate throughout the data set. Extracted water samples served as 315 
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process blanks. A cocktail of standards known not to interfere with the measurement of 316 

endogenous compounds was spiked into every analyzed sample, allowing instrument 317 

performance monitoring and aiding chromatographic alignment. 318 

The extract was divided into fractions for analysis by reverse phase (RP)/UPLC-319 

MS/MS with positive ion mode electrospray ionization (ESI), by RP/UPLC-MS/MS with 320 

negative ion mode ESI, and by HILIC/UPLC-MS/MS with negative ion mode ESI. 321 

Samples were placed briefly on a TurboVap® (Zymark) to remove the organic solvent. 322 

All methods utilized a Waters ACQUITY UPLC and a Thermo Scientific Q-Exactive high 323 

resolution/accurate mass spectrometer interfaced with a heated electrospray ionization 324 

(HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution. The 325 

sample extract was reconstituted in solvents compatible with each MS/MS method. 326 

Each reconstitution solvent contained a series of standards at fixed concentrations to 327 

ensure injection and chromatographic consistency. One aliquot was analyzed using 328 

acidic positive ion conditions, chromatographically optimized for hydrophilic compounds. 329 

In this method, the extract was gradient eluted from a C18 column (Waters UPLC BEH 330 

C18-2.1×100 mm, 1.7 µm) using water and methanol, containing 0.05% 331 

perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). For more hydrophobic 332 

compounds, the extract was gradient eluted from the C18 column using methanol, 333 

acetonitrile, water, 0.05% PFPA and 0.01% FA. Aliquots analyzed using basic negative 334 

ion optimized conditions were gradient eluted from a separate column using methanol 335 

and water, containing 6.5 mM ammonium bicarbonate (pH 8). The last aliquot was 336 

analyzed via negative ionization following elution from a HILIC column (Waters UPLC 337 

BEH Amide 2.1×150 mm, 1.7 µm) using a gradient consisting of water and acetonitrile 338 
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with 10 mM ammonium formate (pH 10.8). The MS analysis alternated between MS and 339 

data-dependent MSn scans using dynamic exclusion. The scan range covered 70–1000 340 

m/z. 341 

Raw data were extracted, peak-identified and processed using Metabolon’s 342 

proprietary hardware and software. Compounds were identified by comparison to library 343 

entries of purified, authenticated standards or recurrent unknown entities, with known 344 

retention times/indices (RI), mass to charge ratios (m/z), and chromatographic 345 

signatures (including MS/MS spectral data). Biochemical identifications were based on 346 

three criteria: retention index within a narrow RI window of the proposed identification, 347 

accurate mass match to the library±10 ppm, and the MS/MS forward and reverse 348 

scores between experimental data and authentic standards. Proprietary visualization 349 

and interpretation software (Metabolon, Inc., Durham, NC) was used to confirm the 350 

consistency of peak identification among the various samples. Library matches for each 351 

compound were checked for each sample and corrected, if necessary. Area under the 352 

curve was used for peak quantification. 353 

Original scale data (raw area counts) were analyzed using Metaboanalyst 5.0 354 

software (http://www.metaboanalyst.ca/). Metabolites with greater than 50% of the 355 

values missing were omitted from the analysis, and missing values were imputed by 356 

introducing values with 1/5 of the minimum positive value of each variable.  An 357 

interquartile range filter was used to identify and remove variables unlikely to be of use 358 

when modeling the data. The data were log-transformed and auto-scaled (mean-359 

centered and divided by the standard deviation of each variable). Univariate (e.g., 360 

volcano plots) and multivariate (e.g., PCA) analyses were then performed. For multiple 361 
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comparison testing, q (FDR) values were calculated in R using a method embedded 362 

within the Metaboanalyst software, controlling for the false discovery rate. Metabolites 363 

were considered significantly different when they met a fold change ≥1.25 and FDR 364 

≤0.05. 365 

 366 

Integrated Pathway Network Analyses: Integrated network analyses utilizing both the 367 

transcriptomic and metabolomic datasets were performed using Metaboanalyst 5.0 368 

software. Integrated pathway maps were generated using BioRender.  369 

 370 

Statistical Analysis: Statistical analysis was performed using GraphPad Prism 9, 371 

Metaboanalyst, and the R program. Statistical parameters including the value of n 372 

(number of cats), the definition of center, dispersion and precision measures 373 

(mean±SEM or SD), and statistical significance is reported in the figures and figure 374 

legends. A P value of ≤0.05 was considered statistically significant. For the 375 

metabolomics and transcriptomics data sets, an FDR value of ≤0.05 was considered 376 

statistically significant. For direct comparisons, statistical significance was calculated by 377 

unpaired or paired Student t test. Details on the statistical methods employed for the 378 

metabolomics and RNA-seq data sets can be found within their respective methods 379 

sections.   380 
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RESULTS 381 

The clinical features of HFpEF are recapitulated in the ZSF1-Obese rat. We 382 

investigated whether the ZSF1-Obese rat, which is both hypertensive and obese, 383 

phenocopies the clinical characteristics of HFpEF and aimed to identify potential 384 

molecular and metabolic mechanisms contributing to HFpEF (Fig. 1A); ZSF1-Lean 385 

(hypertensive lacking obesity/metabolic syndrome) and WKY rats were included as 386 

controls. ZSF1-Obese rats demonstrated a 60% and 40% increase in body weight 387 

compared to WKY and ZSF1-Lean controls, respectively (Fig. 1B). Both Lean and 388 

Obese rats were hypertensive, with elevated systolic (~155 mmHg) and diastolic (~110 389 

mmHg) blood pressures (Fig. 1C). Distance run on a treadmill was 83% less in ZSF1-390 

Obese rats, indicating severe exercise intolerance, which was also observed in lean rats 391 

(Fig. 1D). Echocardiography revealed a significant elevation in the E/e’ in ZSF1-Obese 392 

rats with preserved ejection fraction (EF%) (Fig. 1E,F). Invasive hemodynamics (PV 393 

Loop) indicated a 6-fold increase in LVEDP (left ventricular end diastolic pressure; Fig. 394 

1E), a hallmark feature distinguishing HFpEF from HFrEF31. Left ventricular, atrial, liver, 395 

and kidney weights when normalized to tibia length were greatest in ZSF1-Obese rats 396 

vs. controls (Fig. 1G, Supplemental Fig. 1), indicating tissue hypertrophy and/or 397 

edema. Collectively, the ZSF1-Obese rat displays numerous features of clinical HFpEF 398 

including obesity, hypertension, exercise intolerance, diastolic dysfunction with 399 

preserved ejection fraction, and cardiac hypertrophy. 400 

 401 

Lean hypertensive rats demonstrate significant metabolic remodeling with few 402 

transcriptional changes. To identify potential molecular and metabolic pathways 403 
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contributing to disease development, RNAseq and quantification of the steady-state 404 

abundance of metabolites was performed in hearts from all 3 genotypes, initially 405 

assessing those changes mediated by hypertension alone by comparing ZSF1-Lean to 406 

WKY controls. We observed differential expression of 233 genes in Lean hearts, with 407 

149 increased and 84 decreased in expression (fold change [FC] ≥ 2.0 and FDR ≤ 0.05) 408 

(Fig. 2A). Gene ontology (GO) analysis of the differentially expressed transcripts 409 

surprisingly revealed no significant enrichment of biological or KEGG pathways (Fig. 410 

2B-E), suggesting diffuse and non-specific transcriptional remodeling. Metabolomics 411 

analysis identified 120 metabolites increased in abundance and 85 decreased in 412 

abundance (FC ≥ 1.25 and FDR ≤ 0.05) (Fig. 2A). Unlike our transcriptomics dataset, 413 

pathway enrichment analysis of the cardiac metabolome revealed significant changes (p 414 

< 0.05) in nucleotide metabolism, amino acid metabolism, and pathways critical for 415 

energy metabolism (e.g., glycolysis, pyruvate, Krebs cycle) (Fig. 2F). Collectively, these 416 

results suggest that chronic hypertension alone is sufficient to robustly remodel cardiac 417 

metabolism while minimally impacting the transcriptome.  418 

 419 

ZSF1-Obese HFpEF hearts displays signatures of inflammation, mitochondrial 420 

dysfunction, and downregulation of energy metabolism. Based on our physiological 421 

phenotyping results, the two-hits of obesity (i.e., metabolic syndrome) and hypertension 422 

are required for the robust development of HFpEF. Therefore, while we did examine the 423 

transcriptomic and metabolomic differences between ZSF1-Obese and WKY rats 424 

(Supplemental Fig. 2), we were most interested in identifying potential transcriptional 425 

and metabolic alterations revealed with the addition of obesity. A total of 5,691 genes 426 
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were differentially expressed (3,123 upregulated and 2,568 downregulated; FC ≥ 2.0 427 

and FDR ≤ 0.05) (Fig. 3A). Interestingly, fibrosis and inflammation were the dominant 428 

signatures based on GO enrichment analyses, including pathways related to 429 

extracellular matrix assembly, immune cell activation, phagocytosis, B cell activation 430 

and signaling, immune response, and NF-κB signaling (Fig. 3B,C).  431 

 GO enrichment analysis of significantly downregulated transcripts revealed 432 

suppression of key metabolic and mitochondrial biological processes (Fig. 3D). This 433 

included the downregulation of ubiquinone biosynthesis, cristae formation, fusion, and 434 

protein import into the matrix (Fig. 3D). Metabolic pathways that were downregulated in 435 

ZSF1-Obese hearts included the Krebs cycle, fatty acid metabolism, and pyruvate 436 

metabolism (Fig. 3E). In agreement with the transcriptomic analyses, the metabolomic 437 

signature was impacted to a greater degree than that observed with hypertension alone 438 

(i.e., Lean vs WKY; Fig. 2), with 148 metabolites that were increased and 130 439 

metabolites that decreased in ZSF1-Obese rats as compared to Lean controls (FC ≥ 440 

1.25 and FDR ≤ 0.05) (Fig. 3A). Pathway enrichment analysis revealed nucleotide and 441 

amino acid metabolism as the most impacted metabolic processes in HFpEF hearts 442 

(Fig. 3F); although fewer total pathways were significantly impacted, this was due to the 443 

underlying metabolic remodeling invoked by hypertension alone. In fact, several 444 

metabolites associated with pathways significantly enriched by hypertension alone (e.g., 445 

Krebs cycle) were further disrupted in the ZSF1-Obese heart, comparison of the ZSF1-446 

Obese vs WKY in Supplemental Fig. 2F, which shows similarly enriched pathways in 447 

Lean vs WKY. 448 

 449 
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Omics integration reveals transcriptional and metabolic coordination of the 450 

cardiac energetic deficit in HFpEF. To gain further mechanistic insight into HFpEF 451 

development, we next examined transcriptional changes dependent on the two-hits of 452 

metabolic syndrome + hypertension versus those independent of hypertension. 453 

Changes independent of hypertension included 795 differentially expressed genes 454 

(Supplemental Fig 3A), with an enrichment in processes related to the cell cycle and 455 

proliferation. This transcriptional enrichment could be associated with the meta-456 

inflammation known to occur in HFpEF and which appears evident in the ZSF1-Obese 457 

hearts (Fig. 3B,C and Supplemental Fig 3B). Transcriptional changes dependent on 458 

both hypertension and metabolic syndrome revealed 5,544 differentially expressed 459 

genes with a significant enrichment in energy metabolism pathways and additional 460 

signatures of inflammation (Supplemental Fig 3C).  461 

Merger of our omics data sets provides a more comprehensive and integrated 462 

interpretation of the remodeling occurring in HFpEF. Using a multi-omics assimilation 463 

approach, the differentially expressed transcripts and metabolites significantly altered in 464 

abundance were integrated to reveal pathways most impacted that likely contribute to 465 

disease progression. The effects of hypertension alone (Lean vs. WKY) indicated 466 

glycolysis, purine and pyrimidine metabolism, and nicotinate and nicotinamide 467 

metabolism as pathways most impacted (Fig. 4A). HFpEF hearts (ZSF1-Obese) had a 468 

greater impact on metabolic pathways related to ketone bodies, lipid metabolism, 469 

pyruvate metabolism, and the Krebs cycle, which was the most impacted pathway (Fig. 470 

4B).  471 
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As many of the identified pathways are central to cardiac energy metabolism (i.e., 472 

glycolysis, pyruvate metabolism, Krebs cycle), we generated integrated metabolic 473 

pathway maps to better illustrate the transcriptional and metabolic changes in these 474 

pathways. The hypertensive effects (i.e., ZSF1-Lean vs. WKY) on glycolysis revealed 475 

increased expression of Pfk (phosphofructokinase) and Pfkfb1 (6-phosphofructo-2-476 

kinase:fructose-2,6-bisphosphatase), the later which generates fructose-2,6-477 

bisphosphate, a potent allosteric activator of PFK24. The downstream glycolytic 478 

intermediates 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, and 479 

pyruvate were all increased in abundance, potentially suggesting increased glycolytic 480 

activity in Lean hearts compared to WKY controls (Fig. 5A). This is in stark contrast to 481 

the ZSF1-Obese HFpEF heart which showed an overall downregulation of glycolytic 482 

enzymes. Obese hearts when compared to Lean had a higher PCr:ATP ratio and lower 483 

ATP:ADP ratio than Lean vs WKY, indicating a lower cardiac energy state in HFpEF. 484 

These differences were largely driven by a reduction in ATP abundance in the HFpEF 485 

heart (Fig. 5A). Interestingly, PCr levels were highest in the HFpEF heart, likely in part 486 

due to transcriptional downregulation of creatine kinase isoforms (i.e., Ckm, Ckmt2). 487 

Hypertensive and HFpEF hearts demonstrated increased abundance of acyl-carnitines, 488 

with greater increases in the two-hit hearts (ZSF1-Obese), suggestive of decreased 489 

utilization or increased synthesis (Fig. 5B, Supplemental Fig. 4). ZSF1-Obese hearts 490 

also showed downregulation of key β-oxidation enzymes and transporters (e.g., Cact, 491 

Cpt1, Cpt2, Acat1) (Fig. 5B). Transcriptional repression of all Krebs cycle enzymes 492 

accompanied by increased abundance of the upstream metabolites citrate and 493 

isocitrate, suggest an overall decrease in Krebs cycle activity in Obese hearts (Fig. 5C). 494 
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As glycolysis and β-oxidation are central to cardiac oxidative metabolism, 495 

downregulation of their enzymes along with additional pathways capable of input to the 496 

Krebs cycle [i.e., branched chain amino acids (BCAAs), ketones, amino acids] also 497 

likely contributes to the apparent overall decrease in Krebs cycle activity and the 498 

energetic deficit of the HFpEF heart (Fig 5 and Supplemental Fig. S5). These 499 

integrated analyses reveal a transcriptional and metabolic signature brought upon by 500 

obesity in HFpEF, highlighting mitochondrial energy metabolism as a potential 501 

distinguishing and important feature. 502 

 503 

Disrupted mitochondrial ultrastructure and impaired function are evident early in 504 

HFpEF development. Due to the strong mitochondrial signature unique to HFpEF, we 505 

looked deeper and examined mitochondrial ultrastructure by transmission electron 506 

microscopy. Gross qualitative assessment of electron micrographs revealed 507 

mitochondrial cristae disorganization, with less dense cristae observed in the Lean and 508 

this progressively worsened in Obese hearts (Fig 6A). Quantitative mitochondrial 509 

morphological analyses indicated no difference in mitochondrial number per 510 

cardiomyocyte area but a decrease in the total mitochondrial area, indicating smaller 511 

mitochondria in Obese hearts (Fig. 6B). Damaged or fragmented mitochondria typically 512 

assume a smaller and more rounded morphology32,33, this was evident by a reduction in 513 

Feret’s diameter and an increase in the circularity index in ZSF1-Obese HFpEF 514 

cardiomyocyte mitochondria (Fig. 6C). Strikingly, obese hearts displayed a significant 515 

increase in lipid droplets (LDs), which localized adjacent to interfibrillar mitochondria 516 

(Fig. 6A). Quantification of LDs revealed a significant increase in number and size 517 
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exclusively in Obese hearts (Fig. 6D,E). Because LDs strongly associated with 518 

interfibrillar mitochondria, we quantified mitochondria-LD interactions which indicated an 519 

increase in the total number of mitochondria-LD contacts as well as the length of 520 

mitochondrial and LD membranes in close association with one another (Fig. 6F). 521 

Lastly, sarcomeric length was increased in ZSF1-Obese cardiomyocytes, likely a 522 

consequence of increased preload (i.e., diastolic dysfunction) and LV dilation observed 523 

in the HFpEF heart (Fig. 6G). 524 

With notable mitochondrial ultrastructural changes, we next examined 525 

mitochondrial function via respiratory activity and calcium handling assays. 526 

Determination of citrate synthase activity, a gold standard for assessing mitochondrial 527 

abundance, was decreased in both Lean and Obese rats (Fig. 7A). Both Lean and 528 

Obese cardiac mitochondria displayed lower overall respiratory rates as compared with 529 

WKY controls (Fig. 7B,D,F). In the presence of pyruvate + malate (complex I) or 530 

succinate + rotenone (complex II), mitochondria from ZSF1-Lean and -Obese hearts 531 

showed a significant reduction in state 3 respiration (Fig. 7C,E); fatty acid supported 532 

state 3 respiration (palmitoyl-l-carnitine) also trended lower, but did not reach statistical 533 

significance (Fig. 7G). Complex I respiratory control ratio (RCR) was reduced in the 534 

Lean hearts, indicating reduced coupling of oxygen consumption to ATP production, and 535 

surprisingly this was improved in the Obese hearts when compared to the reduction in 536 

Lean (Fig. 7C). No differences were observed for complex II RCR, FAO RCR, or State 4 537 

rates (Fig. 7E,G and Supplemental Fig. 6A). 538 

Mitochondrial calcium uptake, is intricately linked to bioenergetics34 and at high 539 

levels induces mitochondrial dysfunction. Indeed, HF is associated with mitochondrial 540 
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calcium overload26,27,34,35. We isolated mitochondria from ZSF1-Obese hearts and 541 

subjected them to repeated 2.5 µM Ca2+ boluses. Interestingly, ZSF1-Obese cardiac 542 

mitochondria failed to uptake Ca2+ as demonstrated by the accumulation of Ca2+ in the 543 

bath (i.e., extramitochondrial) (Fig. 7H,I and Supplemental Fig. 6B). This is suggestive 544 

of mitochondria that are either already calcium-overloaded or that have downregulated 545 

mitochondrial calcium uniporter activity. Mitochondrial swelling, an indicator of 546 

susceptibility to mitochondrial permeability transition, was increased in Lean hearts 547 

while swelling of ZSF1-Obese HFpEF mitochondria occurred faster and to a greater 548 

extent than both WKY and Lean mitochondria (Fig. 7J-M and Supplemental Fig. 6C). 549 

Protein expression via immunoblotting of proteins involved in mitochondrial Ca2+ 550 

handling revealed a significant increase in both the 30 kDa and 40 kDa MCU isoforms 551 

and in the MCU gatekeeper, MICU1, exclusively in ZSF1-Obese HFpEF cardiac 552 

mitochondria when normalized to a mitochondrial loading control, ATP synthase (i.e., 553 

complex V) (Fig. 7N,O and Supplemental Fig. 7). VDAC1, which is also involved in 554 

mitochondrial calcium homeostasis34, was significantly decreased in ZSF1-Obese 555 

mitochondria (Fig. 7N). Collectively, our results indicate significant remodeling of the 556 

mitochondrial ultrastructure, accumulation of cardiomyocyte lipid droplets, dysfunctional 557 

respiratory capacity, and dysregulated calcium handling all of which underlie and likely 558 

contribute to the gross metabolic dysregulation and subsequent cardiac dysfunction 559 

observed in the HFpEF heart. 560 

  561 
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DISCUSSION 562 

In the present study, we characterized and identified the underlying molecular changes 563 

associated with the HFpEF phenotype in a robust preclinical rat model. Key findings 564 

include: 565 

• Metabolic syndrome/obesity is a principal driver of HFpEF 566 

• Transcriptional and metabolic remodeling in HFpEF is characterized by the 567 

upregulation of inflammation and downregulation of energy metabolism 568 

• Mitochondrial ultrastructural and functional remodeling underlie the HFpEF 569 

phenotype and likely is an early contributor to cardiac dysfunction. 570 

• The HFpEF heart displays significant intramyocardial lipid accumulation (huge 571 

increase in lipid droplet size, number, and association with mitochondria). 572 

Impact of the additive hit of metabolic syndrome and obesity 573 

The ZSF1-Obese rat model recapitulates the multifactorial clinical features that 574 

distinguish HFpEF. Importantly, our study validates the notion that “two-hits”, 575 

hypertension and metabolic syndrome/obesity are necessary for the development of 576 

HFpEF, similar to the L-name + HFD murine model11 and in agreement with human 577 

HFpEF populations which are typically obese with vascular dyfunction36,37. A strength of 578 

our study is the inclusion of the WKY non-hypertensive control as this allowed us to 579 

examine transcription, metabolic, and functional changes that are dependent and 580 

independent of these “two-hits”. While hypertension alone resulted in cardiac metabolic 581 

remodeling, the addition of metabolic syndrome resulted in more drastic metabolic 582 

remodeling which was associated with an energetic deficit and mitochondrial 583 

abnormalities, both in ultrastructure and function. Similarly, only 152 transcription 584 
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changes were exclusively dependent upon hypertension, whereas 795 transcripts 585 

independent of hypertension and 5,544 transcript changes were dependent on both 586 

metabolic syndrome and hypertension. While other models of HFpEF have been 587 

proposed, namely models of Western diet feeding9, angiotensin II/phenylephrine 588 

(ANGII/PE) infusion8, and senescence-accelerated aging (i.e., SAMP/SAMPR mice)10,12, 589 

and while pathology associated with these models may be multifactorial, these models 590 

do not contain two independent hits. Furthermore, long-term Western diet feeding 591 

progresses to HFrEF, which rarely occurs in humans38,39, and ANGII/PE and 592 

SAMP/SAMPR models lack metabolic syndrome and/or hypertension. While these 593 

models are likely suitable for the study of diastolic dysfunction, this is distinct from the 594 

multifaceted, multi-organ nature of HFpEF. Thus, the ZSF1-obese rat model serves as 595 

an excellent preclinical model to study cardiometabolic HFpEF. 596 

 Identifying therapeutic targets for HFpEF has proven difficult due to the  597 

combinatorial etiologies that contribute to the syndrome. Recently, SGLT2 inhibitors 598 

(SGLT2i), which act to block glucose reabsorption in the kidney, have proven efficacious 599 

and safe in reducing cardiovascular events in animal models40,41 and in HFpEF 600 

trials42,43. SGLT2i have a minimal impact on hypertension yet result in profound weight 601 

loss and normalization towards glucose homeostasis40,44,45. These results are directly in 602 

line with our findings and overall conclusion that the primary driver of HFpEF is the 603 

metabolic syndrome component, which is further exacerbated in the Obese- vs Lean-604 

ZSF1 rats. Adjunctive therapy of SGLT2i + a hydrogen sulfide donor (H2S, a well-605 

studied cardioprotective agent) in our ZSF1-Obese HFpEF model was shown to be 606 

efficaciously superior to either treatment alone19. This is interesting as H2S has been 607 
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shown to modulate metabolism23 and preserve mitochondrial integrity46. While we 608 

observed numerous transcriptional changes independent of hypertension, most of the 609 

transcriptional remodeling was dependent on both hits, thus, treatments aimed at 610 

targeting metabolic syndrome alone will likely be insufficient for long-term efficacy.  611 

 Our study provides a roadmap for the discovery of novel mechanisms driving 612 

HFpEF progression and provides a data set which can be correlated to the remodeling 613 

observed in human HFpEF47.  Targeting of HDAC6 in a HFpEF mouse model was 614 

recently shown to be as  efficacious as SGLT2i41. This is of note as the mechanisms of 615 

SGLT2i cardioprotection remains unclear as mice with global loss of SGLT2 are 616 

protected from HF with SGLT2 blockade48,49, indicating SGLT2 inhibitors likely have an 617 

off-target mechanism of action.  618 

 619 

Remodeling of Energy Metabolism 620 

An important observation from our metabolomics dataset is a drastic change in the 621 

energy state of the ZSF1-Obese heart. HFpEF hearts displayed a greater PCr:ATP ratio 622 

(1.85 vs 0.884) and lower ATP:ADP ratio (0.37 vs 4.87) as compared to hypertension 623 

alone. This was driven by a significant reduction in ATP in the HFpEF heart. This may, in 624 

part, be associated with an inability to liberate PCr stores, as all creatine kinase 625 

isoforms were reduced in ZSF1-Obese rats. This indicates that the HFpEF heart is 626 

energy starved, as compared to the ZSF1-Lean control (hypertension alone). The 627 

ZSF1-Obese heart also displayed gross metabolic remodeling of pathways associated 628 

with energy metabolism, discussed hereafter. 629 

 630 
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Glycolysis – We observed an increase in the expression of Pfkl and of Pfkfb1, activators 631 

of aerobic glycolysis, and downstream metabolites of glycolysis (i.e., 3-PG, 2-PG, PEP, 632 

and pyruvate) were also found to be increased, suggesting increased glycolysis in the 633 

hypertensive heart. In contrast, nearly all glycolytic enzymes were decreased in 634 

abundance in the Obese HFpEF heart. These results are in agreement with results from 635 

the Kass Lab which also found a reduction in protein expression of these same 636 

glycolytic enzymes in human HFpEF endomyocardial biopsies; however, they only 637 

detected decreased abundance of the upstream glycolytic metabolites G6P and F-1,6-638 

BP while we observed a decrease in the downstream metabolite PEP50. Glucose 639 

oxidation is also likely decreased as we and others have shown changes in the 640 

abundance of pyruvate, PDH, MPC1, and PDK450,51, with direct measurements of 641 

reduced glucose oxidation performed in the working heart52. Both in the ZSF1-Obese 642 

and human HFpEF heart, changes in the pentose phosphate pathway (i.e., purine and 643 

pyrimidine metabolism) were identified, indicating disruptions to ancillary biosynthetic 644 

pathways; these ancillary pathways are known to contribute to cardiac remodeling53,54, 645 

highlighting that their role in HFpEF is an area worthy of investigation. Collectively, 646 

these studies suggest a significant downregulation of glycolytic metabolism and 647 

changes in ancillary pathways in the HFpEF heart. 648 

 649 

Fatty Acids – Fatty acids contribute the largest percentage to cardiac energy production, 650 

thus loss of oxidative capacity in the failing heart would be detrimental to energy 651 

metabolism and cardiac function. Our results indicate a significant impairment in fatty 652 

acid oxidation (FAO), with associated FA metabolic processes among the most 653 
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downregulated in the HFpEF heart, including key enzymes in transport and processing 654 

(e.g., Acs, Cpt1, Cact, Acad, Acat1). Dysregulation of genes involved in fatty acid and 655 

oxidative metabolism seems a conserved signature, as similar findings to ours have 656 

been shown in other murine models41,55 and human HFpEF populations51; however, 657 

some studies have reported an increase in FAO transcripts56. While there is a 658 

discrepancy in gene expression among different studies, a proteomic study of HFpEF 659 

samples, from the same group that reported an increase in FAO and OXPHOS 660 

transcripts, found an overall decrease in protein abundance57, a reminder that transcript 661 

and protein abundance often do not correlate in pathology. 662 

In agreement with a decrease in FAO, our results indicate reduced abundance of 663 

short chain acyl-carnitines and increased medium and long-chain acylcarnitines, 664 

potentially suggesting inefficient oxidation. Medium and long-chain acylcarnitines were 665 

decreased in human HFpEF and the expression of FAO genes were also decreased51; 666 

whether this discrepancy in findings is simply due to sampling of the right ventricle 667 

versus the left ventricle remains to be determined. Nonetheless, Krebs cycle 668 

intermediates are lower in human HFpEF51 and we demonstrate reduced utilization of 669 

fatty acids by mitochondria isolated from HFpEF hearts. While these collective results 670 

suggest impairments in fatty acid utilization, palmitate oxidation measured in the 671 

isolated working heart was increased in the mouse L-name + HFD mouse model52; 672 

thus, more work is needed to define how HFpEF remodels cardiac fatty acid 673 

metabolism. 674 

 675 
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Ketones, BCAAs, and Amino Acids – The potential for alternative fuel sources to 676 

contribute to cardiac energetics has become more appreciated. Our integrated network 677 

analysis approach identified the synthesis and degradation of ketone bodies as highly 678 

impacted in HFpEF. We observed an increase in 3-hydroxybutyrate and a 679 

corresponding decrease in key ketone catabolic enzymes (i.e., Bdh1, Oxtc1, Acat1), 680 

suggestive of reduced utilization. In a murine model of HFpEF, BDH1 protein 681 

abundance is reduced with a corresponding trend of decreased oxidation rates52. In 682 

HFrEF, myocardial uptake, oxidation, and expression of BDH1 increases 2- to 3-fold58-683 

60, which is greater than predicted rates in HFpEF59. This divergence in ketone body 684 

oxidation between HFrEF and HFpEF may provide insight into differential substrate/fuel 685 

treatment strategies. For example, while increasing circulating ketones through the diet 686 

appears to provide beneficial effects in HFrEF61, whether this would be beneficial in 687 

HFpEF has not been explored. Another potential target could be HMGCS, which we 688 

found upregulated in the ZSF1-Obese HFpEF heart and is generally known to be 689 

involved in ketone synthesis; thus, whether impaired ketone oxidation is due to 690 

competing synthesis mediated by HMGCS presents an interesting inquiry. 691 

 The branched chain amino acids (BCAAs) leucine, valine, and isoleucine have 692 

been proposed as an alternative fuel source for the heart and suppression of BCAA 693 

oxidation has been implicated in heart failure62,63. While we observed a global 694 

suppression of BCAA oxidation genes, the downregulation of the nodal BCAA catabolic 695 

enzyme, branched-chain α-keto acid dehydrogenase complex (Bckdh), agrees with 696 

data in human HFpEF51. Previous reports suggest BCAAs accumulate in the human 697 

HFpEF heart, suggesting decreased oxidation64. However, contributions of BCAAs 698 
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to energy production are likely minimal59,62,65,66 and the activation of cardiac BCAA 699 

oxidation does not provide energetic or functional benefit in models of HFrEF67. 700 

Thus, while BCAA oxidation seems downregulated, targeting this pathway in HFpEF 701 

may not prove effective. 702 

 Our integrated pathway maps identified the downregulation of numerous other 703 

amino acid pathways at the level of transcription and/or metabolite abundance. The 704 

observed changes in global amino acid metabolism could be related to the increased 705 

proteolysis that occurs in the failing heart59. Many of these amino acids and represented 706 

pathways have yet to be explored, providing experimental opportunities to generate new 707 

hypotheses. For example, we observed a reduction in arginine metabolism, which when 708 

given as an oral supplement to HFrEF patients proved beneficial68; whether similar 709 

benefits could be obtained in HFpEF patients is worth exploring. 710 

 711 

Impact on Mitochondrial and Lipid Droplet Structure and Function 712 

Ultrastructural changes – Mitochondrial dysfunction is a hallmark of HF69-71 and our 713 

transcriptomic and metabolic signatures implicates the derangement of several 714 

mitochondrial processes in the ZSF1-Obese heart. Downregulation of biological 715 

processes related to cristae formation and mitochondrial fusion were confirmed by 716 

ultrastructural remodeling characterized by the disruption and near disappearance of 717 

cristae and overall smaller and more rounded mitochondria, indicating that the fission- 718 

fusion balance is perturbed. Alterations in mitochondrial shape and cristae density can 719 

greatly impact the localization, structure and function of the OXPHOS system, impairing 720 

cellular and mitochondrial metabolism32,33,72. While we observed no change in total 721 
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mitochondrial number, mitochondrial area was significantly reduced in HFpEF, likely 722 

because the smaller size of individual mitochondrions. Interesting, mice treated with the 723 

SGLT2i empagliflozin demonstrated an increase in mitochondrial area per 724 

cardiomyocyte area40. Recently, TEM of human HFpEF cardiomyocytes revealed no 725 

change in mitochondrial area but significant cristae derangement which was most 726 

observable in patients presenting with obesity57.  727 

 There exists a high correlation between myocardial adiposity and diastolic 728 

dysfunction73,74. Cardiac MRI of HFpEF, HFrEF, and non-failing patients revealed 729 

significant intramyocardial fat only in HFpEF75. We observed the accumulation of LDs in 730 

HFpEF hearts which was also recently seen in HFpEF patients via TEM imaging57. LDs 731 

act as an energy storage depot and are involved in transferring stored FAs to 732 

mitochondria for energy production. However, transcriptional downregulation of fatty 733 

acid oxidation machinery and the structural remodeling likely limit utilization, thus 734 

promoting storage and LD accumulation. While we observed greater mito-LD 735 

interactions in HFpEF, the interpretation of this result is confounded by the fact that few, 736 

if any LDs were observed in control hearts. To overcome this limitation, we examined 737 

the expression of known proteins that act as tethers to support mitochondria and lipid 738 

droplets approximation. Perilipin 5 (PLIN5), a LD protein reported to tether them to 739 

mitochondria76,77, was downregulated 3-fold in our HFpEF hearts. Loss of PLIN5 740 

decreases mito-LD interactions and oxidative metabolism, whereas overexpression 741 

increases these interactions78. Similarly, we noted a downregulation of Miga2, another 742 

mito-LD tether involved in lipid metabolism and mitochondrial fusion79,80. Whether 743 
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disruption of these tethers could play a role in HFpEF is unknown, but it’s striking that 744 

these LD proteins were downregulated in the context of massive LD biogenesis.  745 

 746 

Mitochondrial Dysfunction – Mitochondrial respiratory capacity was significantly 747 

impaired in both the pre-HFpEF (hypertensive) and HFpEF (hypertension + metabolic 748 

syndrome) heart, suggesting that while mitochondrial dysfunction is a key feature of HF, 749 

it is not necessarily unique to HFpEF. What is unique in the HFpEF heart is impaired 750 

mitochondrial calcium handling. Mitochondrial protein expression of MCU and MICU1, 751 

components of the mitochondrial calcium uniporter, were increased exclusively in the 752 

HFpEF heart. This could be a compensatory change to increase calcium-dependent 753 

activation of mitochondrial dehydrogensases to increase Krebs cycle flux and 754 

mitochondrial energetics. However, as previously reported by our group and others, 755 

while initially compensatory these expression changes in uniporter components turns 756 

maladaptive with chronic stress (refs). In a mouse model of HFpEF, SGLT2i treatment 757 

improved HFpEF-mediated Ca2+ reuptake by the sarcoplasmic reticulum and rescued 758 

mitochondrial respiratory function40; however, whether improved reuptake was a 759 

consequence of improving mitochondrial Ca2+ buffering, improved energetics, and/or 760 

enhancing SERCA activity was not tested. Similarly, treating HF with a pan HDAC 761 

inhibitor (SAHA) decreased acetylation of proteins involved in oxidative metabolism, 762 

improving mitochondrial oxidative phosphorylation81. Whether HDAC inhibition plays a 763 

similarly protective role in HFpEF remains to be investigated. 764 

 765 
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Study Limitations. There are several limitations to our study. Our results do not test a 766 

specific mechanism or hypothesis but provide an integrated systems biology approach 767 

to allow for the discovery of potentially important pathways and mechanisms 768 

contributing to HFpEF. The current study also exclusively utilized male rats, partly due to 769 

the high-cost of acquiring a sufficient number of female rats to maintain power in our 770 

dual-control study. However, a recent study that exclusively utilized ZSF1 female rats 771 

reported similar findings related to the mitochondria40, suggesting conserved 772 

mechanisms of action between sexes. Adjusting for sex in a human HFpEF RNAseq 773 

study, importantly, did not affect pathway enrichment56. Nonetheless, as the prevalence 774 

of HFpEF is slightly greater in females than males, we understand and acknowledge the 775 

importance of potential for sex differences in molecular pathways. Current work in our 776 

labs is exploring whether similar functional, metabolic, transcriptional, and mitochondrial 777 

remodeling is found in female HFpEF or whether sex distinguishes between remodeling 778 

pathways and targets. Also, aging is a critical risk factor for HFpEF and is not accounted 779 

for in our study. As we have shown in a large animal model of diastolic dysfunction, 780 

aging alone significantly alters the cardiac transcriptome and metabolome7, making it 781 

difficult to tease out pathway changes due to disease progression, aging, or both. Lastly, 782 

it is evident that metabolic syndrome and obesity are primary drivers of HFpEF 783 

development, thus understanding the systemic changes at peripheral tissues is critical 784 

to complete our understanding of HFpEF pathophysiology. In a large-animal model that 785 

recapitulates several clinical features of HFpEF and diastolic dysfunction, we found 786 

skeletal muscle to have distinct transcriptional and metabolic signatures that were 787 

accompanied by mitochondrial dysfunction7, and similar findings have been noted in 788 
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human HFpEF skeletal muscle82. Similar approaches have also been performed to 789 

identify potential candidates for interorgan crosstalk between the liver and heart in 790 

HFpEF83. Investigating peripheral tissues and potential interorgan communication likely 791 

will yield novel and meaningful insights to understand HFpEF development and 792 

progression. 793 

 794 

CONCLUSIONS 795 

In summary, the results presented here demonstrate the power of applying integrated 796 

omics technologies to lead to the design of functional experiments to test specific 797 

hypotheses and discover novel therapeutic targets. The ZSF1-Obese rat model 798 

recapitulates the clinical characteristics of human HFpEF and shares many of the same 799 

transcriptional, metabolic, and mitochondrial remodeling as seen in patients. Our 800 

findings provide a wealth of data that are likely to reveal novel metabolic pathways and 801 

molecular targets which will hopefully allow for the discovery of new therapeutics to treat 802 

HFpEF.  803 
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FIGURE LEGENDS 1150 

Fig. 1: Clinical manifestations of HFpEF are observed in the ZSF1-Obese rat. 1151 

Physiological characterization of HFpEF. (A) Schematic of study design. (B) Body 1152 

weights of WKY (control), Lean (Hypertensive; HTN), and ZSF1-Obese (Metabolic 1153 

Syndrome + HTN; HFpEF) rats. (C) Assessment of systolic (SBP) and diastolic (DBP) 1154 

blood pressure obtained during invasive hemodynamics. (D) Distance run during a 1155 

treadmill exercise capacity test. (E) Indices of cardiac left ventricular diastolic function 1156 

assessed by echocardiography for the E/e’ ratio and invasive hemodynamics for the left 1157 

ventricular end diastolic pressure (LVEDP). (F) Determination of cardiac systolic 1158 

function assessed by the echocardiography for the left ventricular ejection fraction 1159 

(LVEF%). (G) Gravimetric assessment of left ventricle and left atria normalized to tibia 1160 

length (TL). n = 4-7 male rats per group, mean ± SEM. One-way ANOVA with Holm-1161 

Sidak’s post-hoc test, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. 1162 

 1163 

Fig. 2: Hypertension significantly impacts the cardiac metabolome with minimal 1164 

impact on the transcriptome. RNAseq and metabolomic comparisons of hearts from 1165 

Lean vs WKY control rats. (A) Summary of the upregulated and downregulated 1166 

transcriptional and metabolic changes. Gene ontology analysis revealing the top 1167 

upregulated (B) biological processes and (C) KEGG pathways of those genes found to 1168 

be differentially expressed. Gene ontology analysis revealing the top downregulated (D) 1169 

biological processes and (E) KEGG pathways of those genes found to be differentially 1170 

expressed. (F) Pathway enrichment analysis of the cardiac metabolome indicated those 1171 

pathways found to be most significantly affected in ZSF1 rats due to hypertension. Fold 1172 
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change cutoffs of ≥ 2.0 (RNAseq) and ≥ 1.25 (metabolomics) were employed with an 1173 

FDR ≤ 0.05. n = 6 male rats per group for RNAseq and n = 7 male rats per group for 1174 

metabolomics. FDR = false discovery rate. 1175 

 1176 

Fig. 3: Transcriptional cardiac remodeling is dependent upon the two hits of 1177 

obesity and hypertension in ZSF1-Obese HFpEF rats. RNAseq and metabolomic 1178 

comparisons of hearts from ZSF1-Obese vs Lean rats. (A) Summary of the upregulated 1179 

and downregulated transcriptional and metabolic changes. Gene ontology analysis 1180 

revealing the top upregulated (B) biological processes and (C) KEGG pathways of 1181 

those genes found to be differentially expressed. Gene ontology analysis revealing the 1182 

top downregulated (D) biological processes and (E) KEGG pathways of those genes 1183 

found to be differentially expressed. (F) Pathway enrichment analysis of the cardiac 1184 

metabolome indicated those pathways found to be most significantly affected in ZSF1 1185 

rats due to hypertension. Fold change cutoffs of ≥ 2.0 (RNAseq) and ≥ 1.25 1186 

(metabolomics) were employed with an FDR ≤ 0.05. n = 6 male rats per group for 1187 

RNAseq and n = 7 male Lean and 8 male ZSF1-Obese rats for metabolomics. FDR = 1188 

false discovery rate. 1189 

 1190 

Fig. 4: Integrated network analysis of RNAseq and metabolomic dataset reveals 1191 

unique metabolic pathways impacted in HFpEF. Integrated analysis of cardiac omics 1192 

datasets to identify those pathways most impacted by transcriptional and metabolic 1193 

remodeling due to (A) hypertensive phenotype (Lean vs WKY) or (B) the observed 1194 

HFpEF phenotype (ZSF1-Obese vs Lean). Fold change cutoffs of ≥ 2.0 (RNAseq) and ≥ 1195 
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1.25 (metabolomics) were employed with an FDR ≤ 0.05. A greater pathway impact 1196 

indicates a greater influence at the transcriptional and metabolic level to a given 1197 

pathway. Labeled pathways had a p-value ≤ 0.05. n = 6 male rats per group for RNAseq 1198 

and n = 7 male Lean and 8 male ZSF1-Obese rats for metabolomics. FDR = false 1199 

discovery rate. 1200 

 1201 

Fig. 5: HFpEF results in the transcriptional and metabolic downregulation of 1202 

pathways central to energy metabolism. Pathway maps of the transcriptional and 1203 

metabolic alterations in Lean vs WKY and ZSF1-Obese vs Lean rats in energy 1204 

generating pathways, specifically (A) aerobic glycolysis, (B) fatty acid oxidiation, (C) 1205 

and the Krebs cycle. Additional pathways indicated in boxes provide an objective 1206 

summary of the transcriptional and metabolic increase or decrease observed. Genes 1207 

and metabolites significantly increased or decreased in expression or abundance (Fold 1208 

change ≥ 2.0 (RNAseq) and ≥ 1.25 (metabolomics); FDR ≤ 0.05) are as indicated. 1209 

 1210 

Fig. 6: Mitochondrial ultrastructural remodeling in the HFpEF heart is 1211 

characterized by a decrease in mitochondrial content, cristae disorganization, 1212 

and lipid droplet association. Transmission electron micrographs of cardiomyocyte 1213 

mitochondrial and lipid droplet (LD) ultrastructure. (A) Representative images of WKY, 1214 

Lean, and ZSF1-Obese cardiomyocyte ultrastructure indicating cristae disorganization 1215 

(yellow arrows) and lipid droplet accumulation and interaction with mitochondria (red 1216 

arrows). (B) mitochondrial area (i.e., content) quantified by the number of mitochondria 1217 

per image area and the percent area of mitochondria to total area. (C) Mitochondrial 1218 
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shape quantified by the Feret’s diameter and circularity index. (D) Quantification of LD 1219 

area (i.e., content) quantified by the number of LDs per image area and the percent 1220 

area of LDs to total area. (E) LD shape quantified by the Feret’s diameter and circularity 1221 

index. (F) Analysis of mitochondrial-LD interaction quantified by the number of mito-LD 1222 

contacts per image area, the outer mitochondrial membrane (OMM) perimeter in contact 1223 

with an LD, and the LD perimeter in association with the OMM. (G) Determination of 1224 

sarcomeric length measured from z-line to z-line. n = 4 male rats per group, , mean ± 1225 

SEM. One-way ANOVA with Holm-Sidak’s post-hoc test, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 1226 

0.001, ****p ≤ 0.0001. 1227 

 1228 

Fig. 7: Mitochondrial dysfunction characterized by impaired respiratory activity 1229 

and disrupted calcium handling is a key feature of the HFpEF heart. Functional 1230 

assessment of the mitochondrial function in the HFpEF heart. (A) Determination of 1231 

mitochondrial content assessed by citrate synthase activity. Interrogation of 1232 

mitochondrial respiratory function by assessing oxygen consumption rates (OCR) of 1233 

(B,C) complex I (pyruvate + malate)-specific substrates, (D,E) complex II (succinate)-1234 

specific substrate + rotenone (complex I inhibitor), and (F,G) fatty acid oxidation 1235 

capacity (palmitoyl-𝖫-carnitine): state 3 (substrate-mediated) oxygen consumption and 1236 

the respiratory control ratio (RCR) providing an index of oxygen consumption to ATP-1237 

production coupling. (H,I) Mitochondrial calcium uptake in response to repeated 2.5 µM 1238 

boluses. Mitochondrial swelling in response to a 500 µM bolus, displayed as both (J) 1239 

uncorrected and (K) normalized prior to calcium addition. Quantification of mitochondrial 1240 

swelling indicated by (L) percent change to WKY baseline and (M) area above the 1241 
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curve. Immunoblotting of (N) VDAC1/3 and components of the mitochondrial calcium 1242 

uniporter and (O) subunits of ETC complexes. Proteins differentially expressed in 1243 

protein abundance are indicated in red. n = 5 male rats per group (A-G), n = 4 male rats 1244 

per group (I-O), mean ± SEM. One-way ANOVA with Holm-Sidak’s post-hoc test, *p ≤ 1245 

0.05, ***p ≤ 0.001, ****p ≤ 0.0001. 1246 

 1247 
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Figure 2

Statistical Comparison
ZSF1 Lean vs WKY
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Figure 3Statistical Comparison
ZSF1 Obese vs ZSF1-Lean

Transcriptomics
Total Genes
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