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A B S T R A C T   

The surge of genome sequencing data has underlined substantial genetic variants of uncertain significance (VUS). 
The decryption of VUS discovered by sequencing poses a major challenge in the post-sequencing era. Although 
experimental assays have progressed in classifying VUS, only a tiny fraction of the human genes have been 
explored experimentally. Thus, it is urgently needed to generate state-of-the-art functional predictors of VUS in 
silico. Artificial intelligence (AI) is an invaluable tool to assist in the identification of VUS with high efficiency 
and accuracy. An increasing number of studies indicate that AI has brought an exciting acceleration in the 
interpretation of VUS, and our group has already used AI to develop protein structure-based prediction models. 
In this review, we provide an overview of the previous research on AI-based prediction of missense variants, and 
elucidate the challenges and opportunities for protein structure-based variant prediction in the post-sequencing 
era.   

1. Introduction 

With the surge of high-throughput sequencing technologies, a 
number of large-scale genetic projects have been launched by several 
countries[1]. The exponentially increasing genome sequencing data 
have revealed that there are extensive genetic variations within human 
populations[2,3]. The vast majority of these variants are defined as 
variants of uncertain significance (VUS) because their phenotypic con-
sequences and clinical significance are unknown. Therefore, in the 
post-sequencing era, the main task of genomic research has changed to 
converting the rich genetic data into useful information. This is a 
particularly acute problem for missense single-nucleotide variants 
(SNVs), which account for the majority of VUS. In Clinvar, one of the 
most widely used genetic databases, there are about 5% variants with 
category or clinical significance conflicts (e.g. benign versus pathogenic) 

among the variants with at least 2 submissions[4]. According to the 
commonly sequenced genes, the proportions of variants with uncertain 
significance or conflicting information are even higher (e.g. BRCA1 52% 
uncertain and 3% conflicting, as of September 2023)[5]. 

Various technologies that can assess the functional effects of muta-
tions have emerged[6–8], but only a tiny fraction of the human 
disease-related genes have been explored. Experimental approaches can 
be quite expensive and time-consuming when applied to all the 
remaining VUS, which limits the clinical application of genetic infor-
mation and the realization of a more efficient discovery tool. Therefore, 
generating state-of-the-art computational functional predictors for VUS 
remains crucial. 

Evidence suggests that in silico analysis can accelerate the clinical 
interpretation of VUS[9–11]. State-of-the-art missense variant func-
tional predictors have been developed by artificial intelligence (AI) [12, 
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13]. Notably, breakthroughs in protein structure prediction based on 
deep learning, such as AlphaFold2[14] and RoseTTAFold[15], have 
improved AI variant predictors by adding information of protein tertiary 
structures[16]. Here, we review the recent advances in AI prediction for 
missense variants, particularly protein structure-based methods, and 
elucidate the challenges and opportunities for this promising direction. 

2. Recent developments in the determination of protein tertiary 
structures 

Proteins are polymers of amino acids linked by peptide bonds that 
fold into specific spatial configurations. The functions of proteins are 
closely associated with their atoms and amino acid coordinates (tertiary 
structure), particularly the active domains. Protein structures have been 
recommended as a strong source of information in the Guidelines for 
Variant Classification[17]. Researchers have developed several experi-
mental techniques to determine protein structures, such as X-ray crys-
tallography, nuclear magnetic resonance (NMR) spectroscopy, and 
cryo-electron microscopy (cryo-EM) [18–20]. While the number of 
structures stored in the Protein Data Bank (PDB)[21] has steadily 
increased to 210,000 (as of September 2023), it covers only about 17% 
of all human protein residues[22]. 

Since there are a large number of homologous sequences for the 
proteins that actually exist in nature, the relationship between the 
amino acid sequence and the structure of a protein follows a certain 
regularity. Therefore, various computational tools have been developed 
to predict 3D protein structures. Protein structure prediction methods 
commonly fall into two categories: theoretical analysis and statistical 
analysis. While the traditional prediction techniques, such as homology 
modeling (HM)[23], are relatively mature, recent advances in AI have 
initiated new concepts to enhance the quality and proteomic coverage of 
protein structure models. 

In 2020, the AlphaFold2[14] project stood out in the challenging 
14th Critical Assessment of Protein Structure Prediction (CASP14), fol-
lowed by RoseTTAFold[15] and ESMFold[24]. On this basis, several 
multiple sequence alignment (MSA)-free protein structure prediction 
methods (e.g. OmegaFold[25] and HelixFold-Single[26]), filled the gap 
in structure prediction using evolutionary information. Compared with 
the widespread techniques (e.g. HM), these AI-based algorithms exhibit 
higher availability for several reasons: (i) there is no need for a close 
homolog solved experimentally; (ii) the whole-protein structure can be 
obtained; and (iii) the AI algorithms provide unlimited potential for 
refining the structures[16]. This breakthrough addressed the significant 
economic and temporal costs in determining protein structures, thus 
obtaining enough variant protein structures for structural analyses. 
Moreover, some human proteins possess intrinsically disordered regions 
that are not conducive to structural analysis. Therefore, the quality of 
models predicting protein structure varies across different structural 
domains. AlphaFold is considered to be particularly advantageous in 
such situations as it provides the predicted local-distance difference test 
(pLDDT) to reflect the confidence level of each atomic coordinate. It is 
preferable to use high-confidence regions to develop structure-based 
variant prediction models. Alternatively, visual inspection algorithms, 
such as phenix.process_predicted_model and ISOLDE may also be uti-
lized[27]. 

3. Missense variant prediction using AI 

Table 1 presents various state-of-the-art computational methods, 
many of which can be accessed through a web server. AI-based variant 
effect predictors based on primary amino acid sequences have emerged 
in the past few years. There are two main computational approaches. 
The first approach, supervised training, relies on clinical labels of 
pathogenic versus benign variants[28–31]. Given the influencing factors 
including label bias, label sparsity, label noise, and data leakage, this 
approach causes inflated prediction accuracy in the specific testing 

scenarios. The second approach, which involves unsupervised models of 
evolutionary sequences, has significantly contributed to the advance-
ment of predicting the functional effects of variants[12,32,33]. These 
unsupervised generative models predict variant effects directly from 
MSA without relying on labels, which grants its theoretical generaliz-
ability. However, these sequence-based models have been limited in 
their ability to address clinical variant interpretation due to the lack of 
understanding of the protein structures that are more related to function 
[34]. 

Due to the non-negligible contribution of 3D structure to protein 

Table 1 
State-of-the-art computational methods for variant interpretation.  

Predictor Structure 
accepted 

Predicted 
structure 
accepted 

△△G 
accepted 

Website 

DEOGEN2[28] N N N http://deogen2. 
mutaframe.com/ 

PERCH[29] N N N http://BJFengLab. 
org/ 

REVEL[30] N N N https://sites.googl 
e.com/site/revelg 
enomics/ 

CADD[31] N N N https://cadd.gs. 
washington.edu/ 

EVE[12] N N N https://evemodel. 
org/ 

EVmutation 
[32] 

N N N http://evmutation. 
org/ 

SIFT[33] N N N http://sift-dna.org/ 
sift4g 

AUTO-MUTE 
[41] 

Y Y Y http://binf.gmu. 
edu/automute/ 

CUPSAT[42] Y Y Y http://cupsat.tu-bs. 
de/ 

DDGun3D[43] Y Y Y https://folding.bio 
fold.org/ddgun/ 

Dynamut2.0 
[44] 

Y Y Y https://biosig.lab. 
uq.edu.au/ 
dynamut2/ 

I-Mutant2.0 
[45] 

Y Y Y https://folding.bio 
fold.org/i-mutant 
/i-mutant2.0.html/ 

MutPred2[13] Y N N http://mutpred. 
mutdb.org/ 

PMut[46] Y N N http://mmb2.pcb. 
ub.es:8080/PMut/ 

VIPUR[47] Y N N https://osf. 
io/bd2h4/ 

gMVP[48] Y N N https://github. 
com/Shen 
Lab/gMVP/ 

PolyPhen-2 
[49] 

Y N N http://genetics. 
bwh.harvard. 
edu/pph2/ 

SNAP2[50] Y N N https://rostlab.org/ 
services/ 
snap2web/ 

AlphScore[36] Y Y N https://github.co 
m/Ax-Sch/AlphSco 
re/ 

Missense3D 
[75] 

Y Y N http://missense3d. 
bc.ic.ac.uk/ 

SNPMuSiC[76] Y Y N https://soft.dezyme 
.com/ 

SNPs&GO3d 

[77] 
Y Y N https://snps.biofo 

ld.org/snps 
-and-go/snps 
-and-go-3d.html/ 

vERnet-B[16] Y Y N https://ai-lab.bjrz. 
org.cn/vERnet/ 

AlphaMissense 
[52] 

Y Y N https://console.cl 
oud.google.com/ 
storage/browser/ 
dm_alphamissense/  
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function, the local structural properties have been widely used to be 
combined with sequence features. The combination of structural fea-
tures showed significant improvement in the performance of variant 
prediction. Protein structure-based learning models can be classified 
into feature-based machine learning and graph-based deep learning. 
Classical machine learning methods rely on features that are manually 
designed by experts, such as transmembrane helices signal peptides or 
other motifs[35,36]. Deep learning methods usually consider structural 
data as graphs or images and extract task-specific features directly using 
convolutional neural networks (CNNs)[37,38] or graph convolutional 
networks (GCNs)[39,40]. Structure-based algorithms for predicting the 
functional effect of one amino acid substitution (Fig. 1) can be divided 
into two categories of methods based on their utilization of free energy. 
Energy-based methods utilize experimentally-measured differences in 
free energy (ΔΔG) between wild-type (WT) and variant structures to 
train prediction models[41–45], whereas non-energy-based methods 
directly use structural features such as hydrophobicity and surface 
accessibility[13,46–50]. 

Building upon the increased structural coverage achieved by incor-
porating AlphaFold models, our group successfully applied the predicted 
structure models to identify pathogenic missense SNVs[16]. This work 
demonstrated the potential of utilizing AlphaFold2-predicted protein 
tertiary structures for rich feature learning, although they had been 
considered to fall short in predicting the effect of point mutations[51]. 
Furthermore, AlphaMissense introduced an additional approach derived 
from AlphaFold2, enabling the development of a proteome-wide variant 
effect prediction method by leveraging the structural information[52]. 
AlphaMissense demonstrated an innovative approach to variant effect 
prediction by incorporating protein structural information which 
enabled the inclusion of the two key capabilities of AlphaFold2: the 
high-precision protein structure model and the ability to learn evolu-
tionary constraints based on Evoformer block. 

4. Construction of datasets for machine learning 

For supervised AI prediction, benchmark datasets are used as infor-
mation sources for training and testing models. The supervised variant 
prediction methods follow two broad strategies according to the type of 
training labels. The first class of methods directly leverage the variant 
interpretation on human-curated variation databases, which are gener-
ated by experimental assays or clinical evidence. As per the basis of 
classification, these variation benchmark databases can be further 
divided into effect-specific databases and disease-specific databases. 
Variants are classified in effect-specific databases according to the pro-
tein’s specific function, such as stability[53–55], solubility[56], and 
binding free energy[54,57]. Disease-specific databases represented by 
Clinvar[5], collect disease-associated phenotypes of variants by clinical 
data sharing or functional assessments related to pathogenic 
mechanisms. 

The second class of methods avoid using human classification and 
train with weak labels instead[58,59]. In this strategy, variants are 
defined based on their frequencies observed in human or other primate 
species. These approaches[52,59,60] mitigate the impact of biases 
introduced by human annotation and prevent data leaks between 
training and testing sets. Specifically, it is supported by the assertion 
that most of the common variants in primate species are clinically 
benign in human. Notably, as a result of the incorporation of numerous 
false labels, these methods still necessitate the use of known labels to 
assess their actual performance. Table 2 lists the databases widely used 
in protein effect prediction tasks. 

5. Challenges in the development of structure-based variant 
prediction 

Several studies[11], including ours, have observed significant vari-
ations in the accuracy of a particular method when being applied to 
different datasets. The training datasets used in this context are typically 

Fig. 1. Diversity of approaches adopted by structure-based variant prediction. The figure illustrates the main sources of information and multiple strategies that were 
used to develop variant effect predictors. 
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derived from experimental or clinical databases. Since these databases 
are regarded as benchmarks, the potential error labels in the benchmark 
databases arise the first challenge. This is evident through the incon-
sistent interpretations of several variants across different databases, 
indicating a need for caution during data interpretation. Besides the 
basic approach of deleting ambiguous data, our work has carried out a 
cross-training solution to eliminate the influence of the remaining un-
faithful samples[16]. Another commonly used method is to train with 
weak labels instead of human-curated classification[52,59,60]. 

Another challenge is the class imbalance of variants in nature, 
especially between the pathogenic and benign ones. Due to their specific 
functional roles, some proteins are enriched in benign variants whereas 
others are enriched in pathogenic variants[61]. However, the skewed 
datasets can lead to a selection bias toward positive or negative samples. 
It is therefore essential to incorporate more efficient methods, such as 
EasyEnsemble[62], SMOTE[63], AdaCost[64], and RUSBoost[65], to 
address the imbalance by effectively using samples from the majority 
class. Class imbalance problems can be addressed at the data level, 

algorithm level, or through hybrid approaches[66]. These methods can 
be further grouped into the following techniques: re-sampling 
(under/over-sampling), cost-sensitive learning, and ensemble learning. 

Inevitable conflict exists between precision and generalization abil-
ity, as highlighted by previous studies[16,52]. Compared to 
gene-specific techniques such as vERnet-B, generalizable methods like 
AlphaMissense do not necessitate the training of a separate recognition 
model for every protein. However, it may result in imprecision in 
identifying the effects of minor structural alterations caused by the 
substitution of a single amino acid. Furthermore, conformational 
changes caused by a mutation can potentially affect protein function via 
a variety of mechanisms[67], indicating that the same structural alter-
ation may lead to completely opposite phenotypic consequences for 
different proteins. Therefore, further investigations on these methods 
are warranted to achieve a better balance between precision and 
generalization. 

A challenge in implementing the structure-based deep learning is the 
representation of protein structures. These structures consist of poly-
peptide chains that can be hierarchically organized into primary, sec-
ondary, tertiary, and quaternary structures[68]. Due to such complexity, 
various protein representations can be used for deep learning, including 
molecular graph[69] and 3D projection[70] based on the protein’s 
original 3D shape (Fig. 2). AlphaFold-derived methods can utilize the 
AlphaFold context[52], which is AlphaFold’s intrinsic understanding of 
structure, to further learn its relationship with function. Constructing 
the amino acid networks (AANs)[16] is another mean to provide more 
detailed structural information, thus enabling the presentation of pro-
tein structures for deep learning purposes. 

Another limitation of the structure-based approaches is that the 
existing structure prediction algorithms only provide an optimal static 
structure, which may not account for conformational changes in pro-
teins resulting from compound binding, complexes, or condensates with 
various quaternary structures. Although the molecular dynamics (MD) 
simulation is theoretically appealing, this method remains a huge 
challenge even for moderately sized proteins[14]. Traditional MD sim-
ulations are limited by the computational intractability of algorithms as 
well as the context dependence of protein stability. Recent studies have 
demonstrated that more sampling can enhance the prediction of multi-
ple conformational states[71–73]. However, further evidence is needed 
to establish the reliability and usability of these methods in revealing the 
conformational landscape. Nevertheless, the combination of AlphaFold2 
with molecular dynamics simulation[74] holds great promise for opti-
mizing structure-based variant predictors. 

6. Future direction and concluding remarks 

Deep learning for structural and functional prediction is becoming a 
popular direction, as evidenced by the increasing number of related 
publications over the last few years[75–77]. Despite posing challenges 
[34] and presenting a range of perspectives, previous studies have 
shown the feasibility of this approach and provided insights for gener-
ating even more precise variant effect learning models. The remarkable 
advances in protein structure prediction not only highlight the potential 
value of AI in structural biology but also pave the way for future genetic 
information research with AI. Structural AI prediction promises to tackle 
the crucial problems in the post-sequencing era and to enrich the toolbox 
of precision treatment. 

In addition, using well-trained models to predict a batch of random 
mutations can specify the evolutionary tendency of a protein’s function, 
thereby creating novel variants with the expected function. This 
approach can expedite drug discovery by reducing the number of wet 
experiments that validate the function of the selected variants, implying 
a favorable application of AI-based structure prediction for protein 
function. Therefore, the ongoing studies are developing novel algo-
rithms specifically for modeling protein structures to enhance the pre-
cision of functional prediction, coupled with reliable validation for the 

Table 2 
Widely used variation benchmark databases for developing variant effect 
predictors.  

Database Description Category Website 

ProTherm[53] Thermodynamics of 
protein mutants 

Effect- 
specific 

https://web.iitm. 
ac.in/bioinfo2/pr 
othermdb/ 

SKEMPI2.0[54] Protein-protein binding 
energy, thermodynamics, 
and kinetics of protein 
mutations 

Effect- 
specific 

https://life.bsc. 
es/pid/skempi2/ 

MPTherm[55] Thermodynamics of 
membrane protein 
mutants 

Effect- 
specific 

https://www.iitm. 
ac.in/bioinfo 
/mptherm/index. 
php/ 

Dataset used for 
PON-SOL[56] 

Solubility of amino acid 
substitution 

Effect- 
specific 

http://structure. 
bmc.lu.se/VariBe 
nch/solubility.ph 
p/ 

PROXiMATE 
[57] 

Thermodynamics of 
protein-protein complex 
mutations 

Effect- 
specific 

http://www.iitm. 
ac.in/bioinfo/P 
ROXiMATE/ 

Dataset used for 
WALTZ-DB 
[78] 

Amyloid forming for 
variants of hexapeptides 

Effect- 
specific 

http://structure. 
bmc.lu.se/Vari 
Bench/amyload1. 
php/ 

Nabe[79] Binding energy of protein- 
nucleic acid complex 

Effect- 
specific 

http://nabe.den 
glab.org/ 

Clinvar[5] Clinical significance of 
disease-related gene 
variants 

Disease- 
specific 

https://www.ncbi. 
nlm.nih.gov/clinv 
ar/ 

UMD[80] Mutational landscape and 
significance across 12 
major cancer types 

Disease- 
specific 

http://www.umd. 
be/VHL/ 

IARC TP53[81] Phenotypes of TP53 
mutants in different 
human tumors 

Disease- 
specific 

http://p53.iarc.fr/ 

DoCM[82] Validated cancer-causing 
mutations 

Disease- 
specific 

http://www. 
docm.info/ 

OMIM[83] Overviews of genetic 
phenotypes for disorders 

Disease- 
specific 

https://omim.org/ 

HGMD[84] Published gene lesions 
responsible for human 
inherited disease 

Disease- 
specific 

https://www. 
hgmd.cf.ac. 
uk/ac/index.php/ 

BRCA Exchange 
[85] 

A global resource for 
variants in BRCA1 and 
BRCA2 

Disease- 
specific 

https://brcaexch 
ange.org/ 

gnomAD[58] Allele frequencies of 
variants among human 
populations 

Frequency https://gnomad. 
broadinstitute. 
org/ 

Great ape 
genome 
sequencing 
project[59] 

Genetic diversity among 
great ape populations 

Frequency http://biologi 
aevolutiva.org/ 
greatape/  
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newly predicted functional proteins. 
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