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Abstract
Effective navigation relies on knowledge of one's environment. A challenge to effective naviga-

tion is accounting for the time and energy costs of routes. Irregular terrain in ecological environ-

ments poses a difficult navigational problem as organisms ought to avoid effortful slopes to

minimize travel costs. Route planning and navigation have previously been shown to involve

hippocampal place cells and their ability to encode and store information about an organism's

environment. However, little is known about how place cells may encode the slope of space and

associated energy costs as experiments are traditionally carried out in flat, horizontal environ-

ments. We set out to investigate how dorsal-CA1 place cells in rats encode systematic changes

to the slope of an environment by tilting a shuttle box from flat to 15 � and 25 � while minimiz-

ing external cue change. Overall, place cell encoding of tilted space was as robust as their

encoding of flat ground as measured by traditional place cell metrics such as firing rates, spa-

tial information, coherence, and field size. A large majority of place cells did, however, respond

to slope by undergoing partial, complex remapping when the environment was shifted from

one tilt angle to another. The propensity for place cells to remap did not, however, depend on

the vertical distance the field shifted. Changes in slope also altered the temporal coding of

information as measured by the rate of theta phase precession of place cell spikes, which

decreased with increasing tilt angles. Together these observations indicate that place cells are

sensitive to relatively small changes in terrain slope and that terrain slope may be an important

source of information for organizing place cell ensembles. The terrain slope information

encoded by place cells could be utilized by efferent regions to determine energetically advan-

tageous routes to goal locations.
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1 | INTRODUCTION

Navigation that accounts for the energetically-demanding aspects of

terrain topology has the potential to save an organism a great deal of

time and energy compared to that which only considers the distance

to a goal. In practical terms this is instantiated in the empirically vali-

dated (Scarf, 2007), century old, Naismith's rule (Naismith, 1892) for

planning hiking routes: Account for 1 hr for every three miles

(4,828 m) on flat terrain and one additional hour for every 2,000 feet

(610 meters) of ascent. Over and above the costs associated with the

extra time, humans (Hoogkamer, Taboga, & Kram, 2014; Margaria,

Cerretelli, Aghemo, & Sassi, 1963; Minetti, Moia, Roi, Susta, & Ferretti,

2002) and rodents (Armstrong, Laughlin, Rome, & Taylor, 1983;

Brooks & White, 1978; Chavanelle et al., 2014) expend significantly

more energy when travelling on inclined surfaces compared to travel-

ling on flat ground. Many other species, including elephants (Wall,

Douglas-Hamilton, & Vollrath, 2006) and monkeys (Di Fiore & Suarez,

2007) appear to factor in these time and energy costs when navigat-

ing, as they avoid traversing over hills in their natural habits when

alternatives are available. In particular, monkeys will travel along ener-

getically advantageous “highways” year after year, suggesting that

they possess a representation of the environment that includes the
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effort demands of routes (Di Fiore & Suarez, 2007). However, while

topology-related factors clearly influence navigation, it is not clear

how the brain represents the potentially costly three-dimensional

(3D) nature of ecological environments (Jeffery, Jovalekic, Verriotis, &

Hayman, 2013).

Place cells (O’Keefe & Dostrovsky, 1971; O’Keefe & Nadel,

1978) are hippocampal neurons that appear to have a role in repre-

senting the spatial environment. These cells are active at a specific

location in an environment such that an ensemble of many place

cells will encode an entire region as well as many features of that

environment (for review; Eichenbaum, 2004). A diverse range of

external sensory inputs have been shown to modulate and drive the

selective firing of place cells such as environmental contexts

(Muller & Kubie, 1987; Smith & Mizumori, 2006), landmarks

(Gothard, Skaggs, Moore, & McNaughton, 1996; Knierim, Kudri-

moti, & McNaughton, 1998), objects (Komorowski, Manns, & Eichen-

baum, 2009; McKenzie et al., 2014), and odors (Jeffery & Anderson,

2003). The vestibular system also has a part to play as lesions of this

region abolish the spatial selectivity of place cells (Russell, Horii,

Smith, Darlington, & Bilkey, 2003; Stackman, Clark, & Taube, 2002)

as well as impair spatial memory and navigation (Smith, 1997; Smith

et al., 2005). These findings suggest that self-motion (Wallace, Hines,

Pellis, & Whishaw, 2002), gravitational, and head/body orientation

(Stackman & Taube, 1997; Taube, 1998) information provided by the

vestibular system are vital to a place cell's functionality and the neu-

ral representation of space.

As a result of their vestibular inputs, place cells may be espe-

cially attuned to gravitational and head/body orientation information

which may allow them to encode the topology space. Previous stud-

ies have, for example, shown that place cell activity is sensitive to

changes in slope. For example, when half of a rectangular track was

tilted (Knierim & McNaughton, 2001), some place cells altered their

activity by firing in a different location or shutting off all together

with new place cells becoming active; a phenomenon known as

“remapping.” In a separate study (Jeffery, Anand, & Anderson, 2006)

it was shown that the rotation of a tilted open field caused the

ensemble of place cells that represented the field to shift their fields

in relation to the rotation, indicating that the cells were sensitive to

the slope direction.

Despite these findings, it remains unclear how place cells, and

ultimately the cognitive maps that might be used for navigation,

encode terrain slope. Previous experiments investigating this question

(Jeffery et al., 2006; Knierim & McNaughton, 2001) used steep slope

angles which did not allow for the full investigation of the cell's sensi-

tivity to terrain slope; are place cells responsive to small changes in

slope angle or do they require a substantial slope to alter their firing

patterns? Furthermore, the latter study (Knierim and McNaughton,

2001) is the only previous investigation where the slope of the envi-

ronment was changed systematically. Unfortunately, in this previous

experiment changes to the tilt of the apparatus were accompanied by

changes to the rat's view of the external environment which may have

confounded any effects observed.

More generally, debate continues as to whether or not land trav-

elling mammals encode the vertical axis of space (Taube & Shinder,

2013). One proposal is that encoding of height within a cognitive map

is minimal (Hayman, Verriotis, Jovalekic, Fenton, & Jeffery, 2011) and

that multiple planar maps are used to represent each surface which

are then pieced together to encode 3D space (Jeffery et al., 2013).

Alternatively, it has been proposed that mammalian brains may be

capable of encoding space in different ways depending on the envi-

ronment and how an organism travels through it (Savelli & Knierim,

2011; Ulanovsky, 2011). For example, surface locomotion may result

in the generation and use of anisotropic (vertical space is encoded dif-

ferently than horizontal space) planar maps (Ulanovsky & Moss, 2007)

while flying results in the use of isotropic (horizontal and vertical

space are encoded in the same manner) volumetric maps (Finkelstein

et al., 2015; Yartsev & Ulanovsky, 2013).

In the present experiment we set out to gain a better understand-

ing of how rodent place cells respond to and represent tilted surfaces

and in doing so to shed light on how cognitive maps encode three-

dimensional space. We recorded place cells from dorsal CA1 as rats

ran back and forth on a cue-devoid linear track which could either lie

flat (0 �) or be tilted to 15 � and 25 �. Our data show that place cells

were sensitive to as little as 10 � (15 � to 25 �) changes in tilt and partial

remapping was observed between all tilt conditions. Furthermore, the

amount of remapping observed was positively correlated with how dif-

ferent the angle was between any two conditions. Nonetheless, a sub-

group of place cells also remained stable across tilt conditions,

continuing to represent a location on the track, irrespective of slope.

Together, these data suggest that the firing of a subpopulation of place

cells is modulated by the slope of an environment with individual place

cells having different levels of sensitivity to slope angle. We also pro-

vide further evidence that the rat, a land-travelling mammal, utilizes an

anisotropic encoding scheme for representing 3D space.

2 | MATERIALS AND METHODS

2.1 | Subjects

Seven male Sprague Dawley rats were aged between 4 and 6 months

old and weighed between 350-500 grams were obtained from the

University of Otago's Hercus-Taieri Resource Unit. Upon arrival rats

were housed in groups of three. Grouped rats were housed in plastic

cages with wire metal lids (40 × 55 × 27 cm3). The animal housing

room was maintained at a 12 hr light/dark cycle and kept between

20 and 22 �C. Rats were given 2 weeks from the time of arrival to

acclimate to the new facility where they had ad libitum access to food

(18% Protein Rodent Diet, Teklad Global) and water. After 2 weeks,

rats were food deprived to no less than 85% of their free-feeding

weight to stimulate interest in the food reward (Coco Pops cereal, Kel-

logg Company) used for training and given in the experimental phase.

Water continued to be available ad libitum throughout the study. All

experimentation was done during the light phase.

2.2 | Apparatus

The experiment was conducted in a wooden shuttle box measuring

120-cm long by 24-cm wide with 60-cm tall walls. The entire appara-

tus was painted matte black and was devoid of any visual cues. The

768 PORTER ET AL.



floor was a matte black rubber mat with a diamond pattern to provide

the animals with grip while running. At each end of the shuttle box

was a matte black plastic semi-circular well where the food reward

(Coco Pops) was dispensed. The Coco Pops were delivered through a

PVC tube so that the experimenter could unobtrusively provide the

rat with a food reward without interfering with cues inside the box.

The apparatus could be laid flat on the ground so that the floor

of it was horizontal (0 �), and also tilted to two different inclines, 15 �

and 25 � (Figure 1a). A camera was used to record the position of the

rat based on infrared LEDs fixed to the data acquisition system's

headstage. This camera was mounted to the apparatus at its mid-

point so that its field of view of the maze remained constant when

the apparatus was tilted. To minimize any extra-maze cues, the only

source of light in the room was a computer monitor 2.3 m away from

the apparatus. The monitor's brightness was dimmed as low as possi-

ble. All other sources of light in the room were covered including the

LEDs on equipment and the door jambs. Furthermore, the wall clos-

est to the apparatus was painted matte black, as seen in

Figure 1a. The two walls perpendicular to the apparatus, the only

two possibly viewable by the rats when the apparatus was tilted,

were both over a meter away and devoid of any cues. Because of

the measures that were used to minimize extra-maze cues, combined

with the known poor visual acuity of albino rats (Prusky et al., 2002),

it is extremely unlikely the rats could detect any visual changes asso-

ciated with tilt.

2.3 | Preoperative training

During the first 5 days of preoperative training, rats were familiarized

to the recording room, experimenter, and apparatus. Rats were placed

in the experimental apparatus and allowed to free forage for Coco

Pops randomly scattered throughout. Once rats were readily foraging

in the apparatus they were encouraged to shuttle between the two

endzones by making Coco Pops only available at either end. When

rats were readily shuttling while the apparatus was at 0 � we began to

tilt the apparatus. Initially, rats were allowed to shuttle for five

minutes with the apparatus at 0 � and given two Coco Pops upon

arrival at the endzone. The apparatus was then tilted to 15 � with the

rat still in the apparatus. The rat then shuttled at 15 � for five minutes

for the same reward amount. Following this, the apparatus was tilted

to 25 � and the rat shuttled for a third 5-min session with the same

reward amount. Each day the side of the apparatus which was ele-

vated was alternated. Some rats shuttled in the tilted conditions on

the first day of exposure while others took up to 7 days to shuttle in

all tilt conditions. Once a rat was shuttling for five minutes in each

condition, a lap count measure of performance was utilized. A lap con-

sisted of the rats running from one endzone to the opposite endzone

and then back. Rats were trained each day until they were readily

shuttling for 20 laps in each of the three tilt conditions. It took an

average of 2 days for rats to reach the 20 lap criterion. All rats were

then run on the 20 lap per condition sequence for at least 1 week to

FIGURE 1 Experimental setup and behavioral results. (a) Pictures of the experimental apparatus at the three tilt conditions with the location of

the camera marked. (b) Schematic of the apparatus, the boundaries (dashed line) of the running region of interest and two endzones. The solid
black tracing is the tracking data from one recording session showing the rat's running pattern. (c) Experimental sequence. Rats were run for six
consecutive days with tilt condition presentation order counterbalanced across days. (d) Average running speed of the rats across all tilt-slope
direction conditions. Rat's speed slowed with increasing tilt angle and was slowest for downhill runs. Bars sharing the same letter are significantly
different from one another. (a) Tukey's, p = 0.004 between uphill 15 � and downhill 15 �; (b) Tukey's, p < 0.001 between uphill 25 � and downhill
25 �. (e) The amount of space rats utilized while shuttling. Rat's tended to take more irregular routes on tilted conditions. Bars sharing the same
letter are significantly different from one another. (a) Tukey's, p < 0.0001 between 0 � and 15 �; (b) Tukey's, p < 0.0001 between 0 � and 25 �
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ensure consistent behavior (no stopping or turning around during a

lap). At this point rats were ready to be implanted with microdrives.

2.4 | Surgery

All experimental protocols were approved by the University of Otago

Animal Ethics Committee and conducted in accordance with

New Zealand animal welfare legislation. Anaesthesia was induced

through 5% isoflurane (Merial New Zealand) in oxygen and maintained

at 2–2.5% during surgery. Once induced, animals were given the anal-

gesics Carprofen (a nonsteroidal anti-inflammatory drug, 1 mg kg−1)

and Temgesic (buprenorphine, 0.33 mg kg−1) as well as a prophylactic

antibiotic, Amphoprim (trimethoprim and sulfamethazine, 0.2 mL,)

before being placed into a stereotaxic frame with non-puncture ear

bars (David Kopf Instruments). The scalp was shaved and sterilized

with Betadine (Povidone-iodine) followed by a subcutaneous injection

of Lopaine (lignocaine hydrochloride 20 mg mL−1; 0.1 mL diluted in

0.4 mL of sterile saline) as a local anesthetic in the scalp.

Six rats were implanted with 8-channel Scribe microdrives

(Bilkey & Muir, 1999) and one rat was implanted with a custom

64-channel microdrive array. The electrodes of all drives were pre-

pared as tetrodes (four electrodes tightly spun and heated together);

two tetrodes for the 8-channel drive and 15 for the 64-channel drive.

Electrodes consisted of 25 μm nichrome, heavy formvar insulated

wire (Stablohm 675 HFV NATRL; California Fine Wire Company) for

Scribe microdrives. For the 64-channel microdrive array, the elec-

trodes were made from 17.5 μm platinum 10% iridium, polymide insu-

lated wire (California Fine Wire Company). All electrodes were gold

(nichrome) or platinum (platinum 10% iridium) electroplated to reduce

their impedances to between 200 and 250 kΩ (NanoZ; Neuralynx).

Tetrodes were stereotaxically targeted at the dorsal aspect of the hip-

pocampal CA1 subregion of the right hemisphere [anteroposterior,

−3.7 mm; mediolateral, + 2.2 mm (Paxinos & Watson, 2007)]. Tet-

rodes were lowered �1.5 mm from the dura into the brain. Rats were

also implanted with a single local field potential (LFP) electrode

(200-μm thick insulated nichrome wire; Johnson Matthey) into the

ACC (anteroposterior, + 2.0 mm; mediolateral, + 0.4 mm). The ACC

LFP data is not presented in this article. A skull screw over the cere-

bellum served as a ground connection. Post-surgery rats received sec-

ondary doses of Temgesic, Carprofen, and Amphoprim. Rats were

given 10 days to recover before behavioral testing resumed.

2.5 | Postoperative training

Postoperative training was carried out to ensure rats could still per-

form the task adequately, adjust to their implant, and to optimize elec-

trode placement. Rats’ food was again reduced to maintain 85% of

their free feeding weight. For each day of postoperative training rats

were plugged into the data acquisition system's tethered headstage.

On the first day of postoperative training, Coco Pops were randomly

placed within the apparatus and the rat was given 15 min to forage

freely to adjust to the weight of their implant. On subsequent days,

rats shuttled for 20 laps on each tilt condition, 0 �, 15 �, and 25 �,

counterbalancing for which end of the apparatus was elevated. Nearly

all rats were able to carry this out on the first day. However, a few rats

took between three to 5 days to acclimate to their implants and carry

out all 60 laps. All rats had a minimum of seven sessions of postopera-

tive training (20 laps per condition) prior to starting the experimental

protocol.

2.6 | Electrophysiological recordings

During postoperative training single unit and local field potential (LFP)

data were closely monitored. Tetrodes were lowered towards dorsal

CA1 (dCA1) over the course of 2 to 4 weeks until well isolated single

units were identified. During this period rats were running the postop-

erative training outlined above. Neurophysiological and animal move-

ment data were acquired with an Axona multichannel data acquisition

system (DacqUSB; Axona, Ltd.) for both the 8- and 64- channel

microdrives. Single unit data was bandpass filtered between 600 and

6,000 Hz and digitized at 48 kHz. Signals were amplified between

5,000 and 9,000 times. For each tetrode, one electrode with minimal

spiking activity on a different tetrode served as a reference. Action

potentials were detected by threshold crossing of �70 μV. LFP data

was sampled at 4,800 Hz and bandpass filtered between 1 and

500 Hz.

2.7 | Experimental protocol

Once dCA1 single units were being consistently obtained day to day

the experimental sequence began. The experimental sequence con-

sisted of six recording sessions, one per day for 6 days. Each day rats

consecutively ran �20 laps in each of the three tilt conditions, 0 � flat,

15 � tilt, and 25 � tilt. One lap consisted of the rat running from one

end of the shuttle box to the other, consuming the reward at the end-

zone, and returning to the start endzone to consume its reward. After

�20 laps under one condition, the rat remained in the apparatus and

ran one more lap while the apparatus was tilted to the next condition.

Tilt condition presentation order was counterbalanced across days

such that no condition was experienced in the same order position

(Figure 1c) and for the first 3 days the north endzone was elevated,

while for the second 3 days the south endzone was elevated.

During the experimental sequence tetrodes were not manipu-

lated. Three rats were run on the whole experimental sequence once

while three were run on it twice with at least a 2-day break in

between data collection. In between the two 6-day data collection

sequences tetrodes were manipulated in order to obtain recordings

from new single units. Tetrodes were lowered �40–80 μm per day

until new units were obtained (visual inspection of waveforms online

and offline) or until the tetrodes moved out of the dCA1 layer.

2.8 | Analysis

For each recording, single units were manually isolated offline in Off-

line Sorter (Version 3; Plexon) primarily using peak-to-valley distance

and principal components analysis of the waveforms. The single unit

spiking data was then exported to Matlab along with the behavioral

tracking data. All data analysis was carried out using Matlab with

native and custom written scripts. All measurements are stated as

means ± standard error of the mean.
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2.9 | Behavior analysis

The apparatus was broken up into two regions of interest (ROIs); run-

ning and endzones (Figure 1b). The endzones consisted of the two

ends of the shuttle box where the reward was dispensed and con-

sumed. The area in between the two endzone boundaries (103 cm

long) was considered the running ROI where rats were actively shut-

tling between endzones. All analysis reported here was restricted to

the running ROI. One trial counted as the rat running from the bound-

ary of one endzone to the boundary of the opposite endzone (half a

lap). Trials where the rat did not complete the end to end run were

excluded. Failed shuttles were, however, quite rare, typically occurring

on only one to two trials per condition. Trials where the rat took lon-

ger than 7 s to shuttle (had an average speed below 15 cm s−1) were

also excluded to keep trial-to-trial speeds consistent. A trial's slope

direction was determined to be uphill or downhill based on which

endzone the rat departed from. Trials where the rat originated from

the endzone on the ground and shuttled to the elevated endzone

were considered uphill and vice versa for downhill. For the non-tilt

(0 �) condition, “uphill” and “downhill” trials correspond to the same

running direction in relation to the tilted conditions occurring during

that session.

2.10 | Single unit analysis

For every single unit, the firing rate of each trial was determined by

the duration of the trial and the number of spikes that cell fired during

that trial. Condition (tilt by slope direction) firing rates were deter-

mined by dividing total trial durations for that condition by the num-

ber of spikes that occurred in that condition. All analyses were

restricted to cells categorized as place cells. To be considered a place

cell, single units had to have discharged at least 100 spikes and to

have a mean firing rate of at least 0.1 Hz for at least one of the six

possible conditions (three tilt, 0 �, 15 �, 25 �; two slope directions,

uphill and downhill). In addition, a place cell had to have a spatial infor-

mation score (see below) of at least 1 bit/spike and spatial coherence

(see below) > 0.5 for at least one condition. Data was pooled across

animals, however, the general patterns described were consistent

across all animals tested.

2.11 | Place cell metrics

To determine the peak firing rate and place field size, the floor of the

shuttle box was subdivided into 2.5 cm2 bins. An occupancy map

based on the tracking data was then created based on the amount of

time the rat spent in each bin. Bins with an occupancy time <100 ms

were removed. A spike map was then created for each single unit

based on the number of spikes which occurred in each bin. Element-

wise division was used between the spike map and occupancy map to

create a firing rate map where each bin contained the firing rate for a

cell. The peak firing rate for a place cell was determined by the bin

which had the highest firing rate.

A place field map was created for each cell based on the firing

rate map. Place field maps utilized a firing rate criterion to remove

bins where the cell was not substantially active in and/or did not dis-

play place field-like activity. First, a Gaussian smoothing kernel was

applied to the firing rate map with a 2.5 cm2 (1 sigma) smoothing win-

dow. Following this, each bin of the place field map was checked to

see if it had a firing rate of at least 15% of the peak firing rate and had

seven neighboring bins that also met this firing rate criterion. If a bin

did not meet these criteria it was set to 0 on the place field map so it

would not be included in the place field size calculation. Following this

process of removing underactive bins, the number of distinct place

fields was found using Matlab's bwlabel function for finding con-

nected components. Afterward, each field was analyzed separately for

its size (total bins with elevated firing), length, width, and aspect ratio

(length/width). If a place cell had multiple fields, we chose the largest

field to be its “main field.” All further place cell analysis described

below was carried out on the unsmoothed firing rate maps (not the

place field maps).

Spatial information measures the amount of information, in bits

per spike, that a given spike conveys about the rat's location within an

environment (Skaggs, Mcnaughton, Gothard, & Markus, 1993). The

more spatial information a cell's spikes convey, the more that cell can

be relied upon to decode the rat's position within the environment.

The formula for spatial information is as follows:

Information=
XN

i=1

pi
λi
λ

log2
λi
λ

where the environment is divided into N non-overlapping bins with

i = 1,…, N, pi is the occupancy probability of bin i, λ i is the mean firing

rate for bin i, and λ is the overall mean firing rate of the neuron.

Sparsity was also measured for each place cell (Skaggs, McNaugh-

ton, Wilson, & Barnes, 1996). Sparsity is akin to information in that it

measures the portion of the environment in which a cell is active. The

formula for sparsity is:

Sparsity =
½λ�
½λ2� =

ð
X

piλiÞ2X
piλ2i

where the square brackets [] denote the expected value average over

all locations. All other symbols are as described for the Information

equation.

Spatial coherence is a measure of how spatially concentrated a

place cell's activity is (Muller & Kubie, 1989). Spatial coherence is

measured by the average z-transformed correlation of the firing rate

of a given bin to the mean firing rate of the surrounding eight bins,

carried out for every bin of the apparatus.

When analyzing the place cell metrics described above, only place

cells which were active (met the place cell criteria) on a given condi-

tion contributed to that condition. If a place cell was not active on a

given condition, its data was not included for that condition. For

example, if a place cell was only active on 25 � uphill, the metrics of its

activity on 25 � uphill were used, while the metrics for the other five

conditions were not included in the calculation of those five condi-

tion's averages.

2.12 | Place cell sequence plots

To visualize the activity of all the recorded place cells during a condi-

tion, sequence plots were created using firing rate maps. Sequence

plots show the activity of many place cells by collapsing the short axis
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of the apparatus by averaging the firing rates of each short axis col-

umn along the long axis. Because of the narrow width of the shuttle

box, there tended to be little deviation in place field width across the

short axis. This transformation results in a one-dimensional

(1D) vector of 2.5 cm2 bins for the long axis of the apparatus. For our

sequence plots, each row is a 1D vector of one place cell. Place cells

can then be ordered based on the location of their place field, as

determined by the bin with the peak firing rate. Place cell activity for

any condition, say 15 �, may then be arranged based on their field

location in the apparatus in the 0 � condition. This method allows for

the visualization of how much place cell activity changes when the

apparatus is tilted from 0 � to 15 �. For visual clarity the firing rates of

each place cell were normalized to be between 0 (minimum firing rate)

and 1 (max firing rate) for a consistent z axis. Firing rates for uphill

plots and downhill plots were normalized separately.

2.13 | Spatial activity correlations

While the place cell metrics described above capture how all active

place cells were responding to tilt, we were also interested in how

individual place cells were changing their activity due to changes in

tilt. To test this, we utilized the occupancy maps for each place cell for

each tilt condition and determined which bins were occupied on all

three tilt conditions within a slope direction. Then, for each tilt condi-

tion the firing rate in each of the common-occupied bins were turned

into a 1D vector and correlated between each pair of tilt conditions.

There had to be a minimum of three common-occupied bins with

non-zero firing rates to avoid spurious correlation values. To deter-

mine the importance of spatial location, bin firing rates were randomly

shuffled then correlated 10,000 times. The average correlation values

from these 10,000 iterations were then compared to the actual corre-

lation values.

2.14 | Remapping

Remapping analyses were carried out by comparing how place cells

changed their activity within or between tilt conditions while keeping

slope direction (uphill/downhill), and thus running direction, constant.

Only place cells that met the place cell criteria for one or both of the

two conditions being compared were deemed “active” and underwent

more granular remapping analysis. Remapping analysis was conducted

on the change in activity from the shallower tilt angle to the steeper

tilt angle. Place cells which were not active on the two conditions

being compared were deemed “inactive.” Several different types of

remapping were considered. Cells could “turn on” or “turn off” if they

met the place cell criteria for one epoch but not the other (one type

of complex remapping). For place cells which did meet the place cell

criteria for both conditions in question, we determined if these cells

field-remapped (the second type of complex remapping), rate

remapped, or remained stable. First we tested if a place cell field-

remapped by comparing the location of the bin with the maximum fir-

ing rate using the 1D place field maps of the two cells for both condi-

tions. If their maximum firing rate bins differed by 20 cm, or �20% of

the running area, the place cell “field-remapped” in that its field loca-

tion shifted from one epoch to the other. If the place cell did not field-

remap, it was then determined whether its firing activity differed sig-

nificantly between the two conditions. The firing rates of each trial for

one condition were tested against the trial firing rates of the other

condition with a Wilcoxon rank sum test. If the firing rates signifi-

cantly differed (p < 0.05) then the place cell was considered to have

“rate remapped” between the two conditions. Finally, if the activity of

the place cell did not meet any of these remapping criteria between a

pair of conditions it was considered to be “stable.”

Further remapping analysis was carried out on place cells divided

into “bottom” and “top” place cells depending on where their maxi-

mum firing rate was located in the maze in the 0 � condition, with

“top” being that half of the maze that was raised highest in the tilt

conditions.

2.15 | Phase precession analysis

To quantify how the timing of spikes relative to the underlying theta

rhythm changed as animals moved through each place field, an analy-

sis of phase precession (O’Keefe & Recce, 1993; Skaggs et al., 1996)

was conducted. For phase estimation, the CA1 LFP was bandpass fil-

tered between 7 and 9 Hz and the Hilbert transform was applied. The

phase reference was always to the LFP in the CA1 pyramidal cell layer

theta, and 0 � corresponds to the trough in the negative portion of the

filtered LFP. Place field position was determined automatically by

dividing the shuttlebox into 4 × 20 pixels and selecting clusters of

pixels that were in the region of the apparatus that excluded reward

areas and where cells fired at above average firing rate and had at

least two neighbors that also did so. Place fields were detected sepa-

rately for each of the slope conditions and where more than one place

field was found for a cell in a condition, data from the largest field was

analyzed. All place field determination and data analysis were from

data obtained as the animal ran in the same direction, either up the

slope or on the flat.

For all spikes that occurred with a place field, spike phase was

determined by matching animal position in the field to the instanta-

neous phase of the 7–9 Hz theta rhythm. The relationship between

phase and position in each place field was measured using procedures

described previously (Kempter, Leibold, Buzsaki, Diba, & Schmidt,

2012). Briefly, his involves using circular-linear regression procedures

to provide a robust estimate of the slope and phase offset of the

regression line, and a correlation coefficient for circular–linear data

that is a natural analogue of Pearson's product-moment correlation

coefficient for linear–linear data. This procedure gets around the

potential problems associated with using linear-linear correlation on

circular data. The fits were constrained to have a slope of no more

than ± 2 theta cycles per place field transverse. Previous studies indi-

cate that phase precession occurs with a negative slope (O’Keefe &

Recce, 1993). Phase precession analysis was conducted by combining

spiking data from all passes through the place field for all cells that

had a total of at least 50 spikes within the place field in the condition

of interest and where the magnitude of the amplitude envelope of the

filtered EEG, as derived from the Hilbert transform and tested for

each spike at the time of firing, was above the mean. These con-

straints removed noise in the data potentially produced by low firing-

rate cells or spikes that occurred when EEG amplitude was low and
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therefore phase determination might be problematic. Analysis of fir-

ing, phase-position slope and correlation data was conducted using a

between subjects ANOVA on individual cell data. The phase offset

data, which corresponded to the theta phase at which spiking

occurred as the animal entered the field was compared across condi-

tions using circular statistics, including the Watson-Williams test for

comparison of circular data (Zar, 1999).

2.16 | Histology

After completion of behavioral testing the placement of the tetrodes

were confirmed by creating a lesion at the tip of each tetrode by passing

2 mA of current for one second on two wires of each tetrode while the

rat was deeply anesthetized with isoflurane. Rats were subsequently

overdosed on isoflurane in a large bell jar and perfused transcardially

with 120 mL of 0.9% saline followed by 120 mL of 10% formalin in

saline. Brains were removed and placed in 30% sucrose solution until

they sunk. Brains were then frozen and sliced with a microtome (Lecia

Biosystems, LLC) to 60-μm-thick coronal sections. Sections were

mounted and stained with thionine acetate (Santa Cruz Biotechnology)

and tetrode placement was confirmed with a lower power (1.5×) digital

microscope (Lecia Biosystems, LLC) and tetrode movement logs.

3 | RESULTS

3.1 | Rodent behavior and place cell properties

We recorded single units from the dorsal CA1 subregion of well-

trained rats as they shuttled back and forth in a shuttle box which

could be laid flat (0 �) or tilted to 15 � or 25 � to manipulate tilt

(Figure 1a). Behavioral and neurophysiological data were only ana-

lyzed in the running region of interest with the rewarded endzone

regions excluded (Figure 1b). Data was collected over six consecutive

days, with counterbalancing for tilt condition presentation order and

which side was elevated (Figure 1c). The rats completed an average of

18.8 (Standard Error of Mean; SEM ± 0.17) successful trials (i.e., did

not turn around, took <7 s) for each tilt angle-slope direction (tilt

angles: 0 �, 15 �, and 25 �; slope directions: uphill and downhill). Rat's

running speeds were significantly influenced by tilt (F (2, 74) = 19.88,

p < 0.0001), slope direction (F (1, 37) = 9.897, p = 0.0033), and their

interaction (F (2, 74) = 10.33, p < 0.0001; Figure 1d). On average, rats

slowed down with an increasing tilt angle, running an average speed

of 33.1 cm s−1 (SEM ± 0.9) on 0 �, 32.1 ± 0.8 cm s−1 on 15 �, and

28.3 ± 0.7 cm s−1 for 25 �. Surprisingly, rats were significantly faster

on 15 � (33.4 ± 1.1 cm s−1) and 25 � (30.0 ± 1.0 cm s−1) uphill than on

15 � (31.5 ± 1.2 cm s−1; (Tukey's; q (74) = 5.363, p = 0.004) and 25 �

(26.6 ± 1.0 cm s−1; Tukey's; q (74) = 6.98, p < 0.001) downhill,

respectively. Running speeds on 0 � “uphill” (32.7 ± 1.2 cm s−1) and

“downhill” (33.4 ± 1.2 cm s−1) did not differ significantly (Tukey's;

q (74) = 1.58, p = 0.874). Anecdotally, rats tended to employ a fast

hopping-like gait when travelling uphill and a more cautious walk for

downhill runs. Tilt also significantly affected (F (2, 74) = 13.51,

p < 0.001) the way in which rats travelled in the shuttle box; as the tilt

angle increased, rats ran more irregular routes as observed by the total

number of 2.5 cm2 bins they occupied in a given condition (slope

direction: F (1, 37) = 0.8214, p = 0.3706); interaction:

F (2, 74) = 2.427, p = 0.0953; Figure 1e). Rats utilized significantly

more area to run on 25 � compared to 0 � (Tukey's; p < 0.0001) and

15 � (p = 0.0001). In conjunction with previous physiological studies

on rats running inclined and declined treadmills (Armstrong et al.,

1983; Brooks & White, 1978; Chavanelle et al., 2014), the reduction

in running speed and more irregular paths likely indicate the difficulty

of travelling on sloping terrain.

3.2 | The effects of tilt on place cell encoding

A total of 225 putative single units were recorded across all recording

sessions from the seven rats. Of those cells, 99 met our strict place

cell criteria for inclusion in subsequent analyses with an average of

14.1 ± 4.0 place cells (PCs) recorded per rat (Rat 1, 25; Rat 2, 4; Rat

3, 1; Rat 4, 6; Rat 5, 18; Rat 6, 17; Rat 7, 28). We were interested in

whether there were systematic changes to standard measures of place

cell activity as our apparatus was tilted. Overall, tilt and slope direction

appeared to have little effect on most measures of place cell activity

(Table 1). Two-way ANOVAs with tilt (0 � , 15 �, 25 �) and slope direc-

tion (uphill, downhill) as factors revealed no significant difference

TABLE 1 Place cell metrics across tilt-slope direction conditions

Uphill Downhill

0 � 15 � 25 � 0 � 15 � 25 �

Firing rate (Hz) 3.31 ± 0.25 3.63 ± 0.37 3.58 ± 0.38 3.81 ± 0.26 3.64 ± 0.33 3.23 ± 0.25

Peak firing rate (Hz) 32.7 ± 2.4 33.5 ± 3.4 36.6 ± 3.2 33.7 ± 2.3 36.5 ± 2.7 35.4 ± 2.5

Information score (bits/spk) 1.62 ± 0.08 1.57 ± 0.07 1.68 ± 0.06 1.62 ± 0.07 1.72 ± 0.08 1.71 ± 0.07

Sparsitya 0.24 ± 0.01 0.25 ± 0.01 0.22 ± 0.01 0.25 ± 0.01 0.23 ± 0.01 0.22 ± 0.01

Spatial coherence (r) 0.90 ± 0.04 0.98 ± 0.05 0.94 ± 0.05 1.10 ± 0.06 1.01 ± 0.05 0.94 ± 0.04

Number of place fields 1.30 ± 0.10 1.33 ± 0.12 1.23 ± 0.08 1.21 ± 0.07 1.21 ± 0.06 1.25 ± 0.07

Total fields/occupancy (%) 27% ± 2% 24% ± 2% 26% ± 1% 24% ± 1% 24% ± 1% 23% ± 2%

Main field/occupancy (%) 26% ± 2% 22% ± 1% 25% ± 2% 23% ± 2% 23% ± 1% 22% ± 1%

Place field aspect ratio 3.23 ± 0.32 3.13 ± 0.33 3.09 ± 0.40 3.31 ± 0.23 2.89 ± 0.16 2.85 ± 0.17

Infield firing rate (Hz) 12.4 ± 1.26 14.2 ± 2.01 14.1 ± 1.33 15.0 ± 1.31 15.8 ± 1.53 14.2 ± 1.34

Outfield firing rate (Hz) 1.08 ± 0.11 1.32 ± 0.14 1.18 ± 0.15 1.18 ± 0.09 1.16 ± 0.13 1.13 ± 0.10

a indicates significant effect (p < 0.05) for tilt or slope direction (see text for details).
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(p > 0.05) for either factor or their interaction when comparing mean

firing rates, peak firing rates, spatial information, or spatial coherence.

Tilt angle did have a small but significant effect (F (2, 206) = 3.056,

p = 0.0492) on the sparsity of place cell firing (slope;

(F (1, 206) = 0.414, p = 0.5204) interaction; (F (2, 206) = 0.565,

p = 0.5692)). Tukey's test for multiple comparisons revealed a signifi-

cant difference between the average sparsity of place cell activity on

0 � compared to 25 � (Tukey (206) = 3.401, p = 0.0448), and no differ-

ences between 0 � to 15 � and 15 � to 25 � (p > 0.05). Because of the

differences in the number of bins rats occupied across conditions, we

measured place field sizes as a percentage of occupied area covered

by the place field (place field size/total bins occupied). Neither tilt nor

slope direction affected the number of fields place cells had, the total

coverage of all place fields, or the size or aspect ratio of a cell's main

place field (p > 0.05). Furthermore, infield firing rates and outfield fir-

ing rates did not differ across tilt or slope conditions (p > 0.05).

3.3 | Place cells remap in response to tilt

Previous studies have demonstrated that place cells will alter their

activity, or “remap” in response to manipulations to an environment,

such as changes to the shape of environments or visual cue locations

(Muller & Kubie, 1987). We were initially interested in how place cell

activity was remapping in response to changes in tilt. A diverse range

of remapping responses to the tilt manipulation were observed from

place cells recorded in different animals (Figure 2). Most place cells

met the place cell criteria for either one (38% Figure 3a;

e.g., Figure 2a), two (29%; e.g., Figure 2b), or three of the slope x

direction conditions (20%; e.g., Figure 2c,d,f ), with very few meeting

the criteria for four (7%), five (2%), or all six (3%; e.g., Figure 2e). On

average, cells met the place cell criteria for 2.1 conditions

(SEM ± 0.12). There was no significant difference in the number of

place cells active for a given tilt angle (0 � = 78, 15 � = 70, 25 � = 74;

X2 (2) = 0.27, P = 0.867), however there were significantly more place

cells active on downhill conditions (n = 125) versus uphill conditions

(n = 87; X2 (1) = 6.81, p = 0.009; Figure 3b). During both uphill and

downhill conditions, most place cells were active on one of the three

tilt conditions, with fewer active on two or three condition (Figure 3c).

The number of tilt conditions place cells were active for did not dif-

fer significantly between uphill and downhill conditions (X2

(2) = 2.12, p = 0.333). Most place cells (71%) exhibited directional

selectivity (Figure 2a–d,f ) and only met the place cell criteria for one

slope direction (Figure 3d). In contrast, 29% of place cells showed

bidirectional activity and were active on both uphill and downhill

runs (Figure 2e). There were no significant differences in the number

of unidirectional versus bidirectional place cells across the tilt condi-

tions (X2 (2) = 2.22, p = 0.329). Taken together, place cells tend to

be unidirectional and selectively active on specific tilt-slope direction

conditions.

3.4 | Place cell remapping across conditions

We wanted to further quantify the types of remapping cells were

undergoing as the tilt of the environment was manipulated. We ana-

lyzed whether or not place cells remapped between conditions and if

they did remap, what type of remapping they underwent. For each

place cell, we asked how it was changing its activity between each pair

of tilt conditions while keeping slope direction constant (Figure 3e). A

Chi-squared test determined there were no differences in the number

of place cells undergoing rate or field remapping, turning on or off, or

remaining stable across the condition pairs (X2 (25) = 29.29,

p = 0.252). Because there were no differences, we will present the

FIGURE 2 Six example place cell firing rate maps (a–f ), with firing of each cell illustrated across all six conditions. Every subplot shows the

experimental apparatus as a series of 2.5 cm2 bins with the x and y axes corresponding to position in the shuttle box. The z-axis is the firing rate
of the cell in spikes per second (Hz) for each bin where warmer colors indicate a higher firing rate. For each place cell, the firing rate color scale
across the three conditions is determined by the highest peak firing rate of the six tilt conditions. The left column of a plot shows Downhill runs
while the right column shows Uphill runs. Each row of a plot corresponds to one of the three tilt conditions; top, 0 �; middle, 15 �; bottom, 25 �.
Note that several cells fired specifically for one or two tilt conditions (e.g., a and b) [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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average percentage of place cells across the six condition pairs

which underwent each type of remapping. On average, 51% ± 3%

of recorded place cells were inactive between a given pair of tilt

conditions. If a place cell was active on two conditions, complex

remapping was the most common form of activity change with

place cells either turning on (16% ± 1%) or shutting off between

conditions (14% ± 1%). Field remapping was quite rare, with an

average of just 1.3% ± 0.4% cells remaining active on two condi-

tions but with distinct place field locations. Rate remapping, where

place cells have a stable field location but significantly alter their

firing rate between two conditions, was more common with an

average of 7% ± 1% place cells. Lastly, an average of 10% ± 2% of

place cells had stable activity between two conditions. These

results further indicate that the degree of change between tilt

angles does not have an effect on the magnitude or type of place

cell remapping. Rather, any change to the tilt of an environment

results in place cell ensembles undergoing consistent but substan-

tial partial-complex remapping.

3.5 | Place cell sequence plots

To visualize the place cell remapping that was occurring across tilt

conditions we generated a series of sequence plots. Here, all 99 place

cells that were active for at least one slope direction-tilt condition (tilt:

0 �, 15 �, and 25 �; slope direction: uphill and downhill) were included

in the plots. For each place cell, the firing rates across the apparatus in

all conditions is displayed as heat maps and for each condition. Place

cells are ordered according to their place field position in the appara-

tus using one tilt × slope direction condition as a baseline and plotting

the other conditions relative to this baseline.

Sequence plots were created and ordered according to the place

field sequence order for all three tilt conditions (0 �, 15 �, 25 �), sepa-

rately for each slope direction (uphill or downhill) (Figure 4). A grey

outline of the sequence plot and asterisk in the condition title indicates

which condition is being used to organize the place cells by their field

location in that condition. Changes in the tilt of the apparatus results in

a wide range of remapping activity with some place cells turning on or

off while others remain active across tilt conditions with changes to

their field location or firing rate. Overall, place field sequences tend to

hold their ordered sequence across the different tilts, suggesting that at

least some place cell fields are stable on different tilt angles. We also

ordered place cells from one slope direction, and thus running direction,

to the other which showed a near total breakdown in place field

sequence across the environment (data not shown). Thus, tilting a fixed

environment causes substantial, partial-complex remapping of place cell

populations for both uphill and downhill trajectories.

3.6 | Place cell activity across tilt and slope
conditions

To quantify the effects of tilt shown in the sequence plots, a spatial

correlation analysis was utilized to test how individual place cells were

being affected by changes in tilt and slope direction. We hypothesized

that place cells may use tilt angle as a way to discriminate between

experiences. If this is so, conditions where the tilt angle is more similar

(15 � to 25 �; 10 � difference) should be more correlated to each other

compared to conditions where the tilt angle is more different (0 � to

25 �; 25 � difference). For each place cell we computed a correlation

comparing the firing rates of each bin commonly-occupied between

the two conditions, for every tilt-slope direction pair. We then aggre-

gated the correlation values from every place cell for each pair of con-

ditions (Figure 5). A two-way ANOVA showed no significant effect for

slope direction (F (1, 285) = 3.51, p = 0.0620), the difference in tilt

angle between tilt pairs (F (2, 285) = 0.8864, p = 0.4133), or their

interaction (F (2, 285) = 0.0500, p = 0.9516). We further tested these

FIGURE 3 Place cell encoding of tilt conditions. (a) The number of tilt-slope direction conditions place cells were active for. (b) The percent of

place cells active for each tilt-slope direction condition. (c,d) The number of tilt conditions (c) or slope direction conditions (d) place cells were
active for. (e) Types of remapping observed between pairs of tilt conditions within a slope direction comparing shallower angles to steeper angles
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data against correlation values generated from randomly shuffling fir-

ing rate bin locations for each condition pair. For all six pairs of condi-

tions, the actual correlation values were significantly greater from

those that would be generated by chance if spatial specificity was

irrelevant (Wilcoxon rank sum test; p < 0.001). These data suggest

that overall dCA1 place cells treat each tilt condition as a unique envi-

ronment and form distinct maps for each condition, however, these

maps are not completely unrelated.

FIGURE 4 Place cell sequence plots. Thus, the x axis represents the longitudinal extent of the apparatus and each row of the y axis is a place cell.

Place cells are ordered based on their field location of one of the three tilt conditions (0 �, 15 �, and 25 �; from left to right) which served as the
baseline. The baseline condition is indicated by a grey border and an asterisk in the title. The z axis is a cell's normalized firing rate; warmer colors
represent a higher firing rate. Changes to the tilt have a substantial complex remapping effect on place cells as evidenced by the number of cells
that turn on or off with a change in condition. Cells that are active for multiple tilt conditions generally have a stable place field location in the
maze as indicated by the preserved place field location sequence across changes in tilt[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

FIGURE 5 Place cell activity correlations across tilt-slope direction conditions. All plots show a histogram of correlations values of place cell

activity between pairs of conditions. The dotted line is the average correlation value from shuffling the location of firing rate bins. No significant
differences were found in the difference in tilt angle to the degree of place cell activity difference on uphill or downhill runs
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3.7 | Place cell remapping between and within
conditions

To confirm that the place cell activity changes apparent across the dif-

ferent tilt conditions were due to changes in tilt and not simply due to

changes in place cell activity over time, we compared within-tilt condi-

tion changes with those observed between different tilt conditions

across similar time windows. Place cell activity was compared within

the second and third tilt conditions for each recording session by ana-

lyzing how place cells remapped from the first 10 trials to the second

10 trials. To test the effect of changing tilt, the latter 10 trials from

the first tilt condition were compared to the first 10 of the second

condition and the latter 10 of the second to the first 10 of the third.

When place fields were characterized by the type of remapping

observed across these two comparisons, it was apparent that remap-

ping was quite different in the tilt-change comparison compared to

the within-condition situation (X2 (4) = 23.5, p < 0.001, Chi-squared

test; Table 3). We further combined all forms of remapping into one

category to test against stable place cells. Place cells were significantly

more likely to remain stable within a tilt condition compared to

between tilt conditions (X2 (1) = 16.6, p < 0.001). Together, these

data indicate that the change in place cell response across tilt angles

cannot simply be explained as instability over time.

3.8 | Elevation change has no effect on remapping

We next set out to test whether or not the tilt-associated remapping

we were observing was related to the tilt per se or to the vertical tran-

sition in space that occurred across most of the apparatus as it was

shifted from the flat to tilted condition. We hypothesized that if place

cells were encoding the elevation of the apparatus it would be

expected that the further a place field moved through 3D space (pri-

marily vertically) the more likely it would be for a place cell to remap.

To these ends we divided the apparatus up into two halves with the

knowledge that overall one half (high) was shifted through space to a

greater extent than the other half (low) when the apparatus was

shifted from the flat to the sloped condition (see Figure 1a). We first

considered all place cells which met the place cell criteria for the 0 �

tilt condition in either slope direction. The place cell's field location in

the bottom or top of the apparatus was determined from the bin of

the 1D place field map that had the maximal firing rate. For those

place cells that were active in the 0 � condition we then asked how

changes in elevation altered their activity. We discovered that place

cells with fields on the low half of the apparatus were just as likely to

remap (turn on/off/field/rate) or remain stable as place cells with

fields on the high half of the apparatus (X2 (1) = 1.635, p = 0.201;

Table 2). Differentiating between complex remapping (turn on/off,

field remap), rate remapping, and stable place cells also shows no sig-

nificant effect for a field's vertical transition (X2 (2) = 2.89, p = 0.236).

This analysis was also repeated using a place cell's center of mass

location rather than maximal firing rate location to determine the

top/bottom categorizing factor, with no difference in results

(p > 0.05). Thus, remapping is likely driven directly by the change in

the slope, with cells remapping to encode a particular whole-tilt

“context,” rather than being an effect of the vertical transition of part

of the apparatus.

3.9 | Phase precession analysis

Data for phase precession analysis was gathered from 78 cells that

met the sampling criteria at zero degrees of tilt, 79 cells at 15 degrees

and 92 cells at 25 degrees (Figure 6a). All analysis was conducted for

travel up the tilted surface or for the equivalent direction on the flat.

A quantification of phase precession characteristics was provided

through the circular-linear correlation procedure, which indicated no

difference between tilt conditions in terms of the proportion of cells

that generated statistically significant (p < 0.05) circular-linear fits

(X2 = 4.91, p = 0.09). Overall, there was also no difference in the cir-

cular linear correlation coefficient calculated for the three different

slope conditions (F (2,245) = 1.359, p = 0.259. However, a compari-

son of the best fit line through the data indicated some differences

between tilt conditions. For all groups, the initial firing as the animal

entered the place field tended to occur on the rising phase of the

theta cycle as we recorded it at the CA1 pyramidal cell layer, equiva-

lent to firing occurring just after the peak of theta at the fissure as

described previously (Skaggs et al., 1996). There was, however, a sig-

nificant shift towards an earlier firing phase as the tilt of the apparatus

increased (Rayleigh's F = 7.25, p < 0.001; Figure 6b). A comparison of

the slope of the best-fit to the data measuring the precession across

the theta cycle indicated that slope decreased to become less-

negative as the tilt of the apparatus increased (F (2,246) = 3.64,

p = 0.028; Figure 6c). These changes in phase precession did not

appear to be artifacts of other changes in cell firing or animal move-

ment as no significant between-tilt differences were observed in

mean firing rate within the field, place field width, place field position,

theta frequency, theta amplitude or animal speed within the field

(all p > 0.1).

TABLE 3 Frequency of remapping types observed in place cells

between 0 � and tilt conditions (15 � and 25 �) based on main place
field location within the apparatus

Within Between

Inactive 379 228

Turn on 36 60

Turn off 55 45

Field remap 4 4

Rate remap 13 10

Stable 107 49

TABLE 2 Frequency of remapping types observed in place cells

between 0 � and tilt conditions (15 � and 25 �) based on main place
field location within the apparatus

Top Bottom

Inactive 44 45

Turn on 17 24

Turn off 24 11

Field remap 3 2

Rate remap 4 7

Stable 6 11
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4 | DISCUSSION

To understand how a change in the slope of a traversed surface influ-

enced the hippocampal representation of space, we analyzed the

activity of dCA1 place cells as rats shuttled back and forth in a high-

sided box tilted at 0 �, 15 �, and 25 � angles. Our data indicated that

place cells had no loss of spatial specificity on tilted environments as

demonstrated by standard place cell metrics. Nevertheless, place cells

are sensitive to changes to the tilt angle of an environment. We

showed that any change to the tilt of the shuttle box led to substantial

partial remapping of place fields. However, the magnitude of the dif-

ference in tilt angle between conditions did not reflect the degree of

remapping observed. In addition, the probability of a place cell remap-

ping was not affected by how far the animal moved in the vertical

dimension of space which supports the proposal that rodent place

cells encode space anisotropically (Jeffery et al., 2013).

A well-studied characteristic of hippocampal place cells is their

ability to “remap” their activity in response to changes to the environ-

ment (Colgin, Moser, & Moser, 2008; Leutgeb et al., 2005; Muller &

Kubie, 1987). Most commonly, changes to the shape or size of the

environment or the locations of prominent cues can result in alter-

ations in place cell firing, including changes in firing rate or changes in

the location of the place field. Place cell remapping to changes in the

tilt of an environment have, however, seldom been investigated

despite previous studies showing that place cells respond to changes

in vestibular information (Russell et al., 2003; Stackman et al., 2002)

and can use slope as an orienting cue (Jeffery et al., 2006). Our data

showed that a high proportion of place cells remapped as the tilt of

the shuttle box was manipulated. As a result, many cells were only

responsive to one or two of the tilt slope-direction conditions;

demonstrating the sensitivity of place cells to slope terrain. However,

place cell encoding does not seem to be coupled to changes in slope

angles as irrespective of whether the shuttle box slope was altered by

10 � (15 � to 25 �) or 25 � (0 � to 25 �), similar levels and types of

remapping were observed. These data indicate that the hippocampus

is encoding each tilt condition as a discrete context with terrain slope

as a differentiating cue.

A subset of place cells did remain active, with a stable place field

location and firing rate, on more than one tilt condition. These place

cells may aid in associating together these experiences (Eichenbaum,

2004; Leutgeb, Leutgeb, Treves, Moser, & Moser, 2004; McKenzie

et al., 2014). Stable place cells, especially those active on two tilt con-

ditions within a slope direction, may accomplish this associative func-

tion by having a broader terrain slope tuning curve than other cells.

An alternative, and not mutually exclusive, explanation is that subsets

of place cells are utilizing different reference frames for their spatial

specificity (Gothard et al., 1996; Knierim & Hamilton, 2011; Wiener,

Korshunov, Garcia, & Berthoz, 1995; Zinyuk, Kubik, Kaminsky,

Fenton, & Bures, 2000). These stable place cells, especially those

active on all three tilt conditions within a slope direction, may be

driven by egocentric, path integration information which is resilient to

changes in terrain slope and remain stable when terrain slope is

altered.

To our knowledge only one previous study has investigated how

place cells respond to tilting an environment (Knierim & McNaughton,

2001). Knierim and McNaughton (2001) showed that when part of a

square track was tilted from 0 � to 45 �, partial remapping occurred.

No consistent change in other metrics, such as peak firing rate, was

found. In this previous study, however, the track had no side walls and

was located such that animals had a clear view of distal visual cues in

FIGURE 6 Phase precession. (a) Examples of the phase precession of place cell spiking against theta activity as the animal traverses the place

field from left to right. Zero degrees 0 � corresponds to the trough in the negative portion of the filtered LFP recorded at the CA1 cell layer. Data
points are reproduced twice over two theta cycles. The left plot is recorded from an animal moving on a flat surface while the middle two are
tilted at 15 � and the rightmost, 25 �. (b) Place cell firing phase, with reference to the underlying local theta as the animal enters the place field, is
systematically shifting to earlier in the cycle as the apparatus is tilted. Data are mean angle and circular sem. (c) Phase precession slope decreases
as the apparatus is tilted. The data are degrees per cycle
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the recording room. For this reason, we cannot be sure if the remap-

ping observed in this previous study was a result of the tilt itself, or a

response to the apparent shift of the distal cue locations that would

have accompanied the track manipulation. In contrast, in the present

study we have endeavored to minimize the influence of the tilt manip-

ulation on distal cues by depriving the animal of any visual clues that

might have become associated with a tilt condition. Our remapping

findings are therefore consistent with those previously reported by

Knierim and McNaughton (2001), but further constrain interpretations

of the effect tilt has on place cell encoding.

A recent study by Hayman, Casali, Wilson, & Jeffery (2015) found

that medial entorhinal (MEC) grid cell activity was disrupted between

flat and tilted (40 �) terrain. Primarily, grid cells had decreased spatial

coherence and lower symmetry with larger and more numerous fields.

We had hypothesized that hippocampal place cell activity may also be

disrupted on tilted terrain in a similar fashion because experimental

and computational evidence has demonstrated that the MEC and grid

cells are an important source of information for hippocampal place

cells (McNaughton, Battaglia, Jensen, Moser, & Moser, 2006;

Ormond & McNaughton, 2015; Savelli & Knierim, 2010). We did not

observe any significant changes in place cell activity across our three

tilt conditions. It may be possible that place cells activity could be dis-

rupted on very steep slopes, such as the one used by Hayman

et al. (2015), and that 25 � is not sufficient to disrupt encoding. How-

ever, our findings are in line with recent experimental (Miao et al.,

2015; Rueckemann et al., 2016) and computational models (Azizi,

Schieferstein, & Cheng, 2014) which show that hippocampal place cell

activity can be resilient to disruptions to the MEC. Hippocampal units

may rather rely on other, non-MEC spatial inputs, such as head direc-

tion (Stackman & Taube, 1998; Taube, Muller, & Ranck, 1990) and

border cells (Lever, Burton, Jeewajee, O’Keefe, & Burgess, 2009), to

generate the spatial selectivity of place cells (Bush, Barry, & Bur-

gess, 2014).

Because our tilt procedure involved pivoting the shuttle box

around one of its ends (Figure 1), the shift in the vertical position of

any location in the apparatus during a tilt manipulation depended on

the distance from that location to the pivot point. We used this differ-

ence to allow for an investigation of the remapping of place fields in

the half of the box close to the pivot (small vertical shift) compared to

those in the half distal to the pivot (large vertical shift). If the hippo-

campal representation of space in rats were volumetric and isotropic,

as suggested by the discovery of 3D, spherical place fields in freely

flying bats (Yartsev & Ulanovsky, 2013), one might anticipate that

place cells with fields in the half of the box that had the greatest verti-

cal movement through space would have a higher likelihood of remap-

ping as the animals were shifted out of, or into, the vertical confines

of particular place cell fields. Our analysis indicated, however, that the

propensity for a place cell to remap was not affected by the half in

which the cell's field was located, suggesting that in surface-travelling-

mammals, such as rats, representations of space both by hippocampal

place cells (Hayman et al., 2011) and entorhinal grid cells (Hayman,

Casali, Wilson, & Jeffery, 2015) are planar and anisotropic (Jeffery

et al., 2013).

An analysis of phase precession processes indicated that there

were systematic changes to the way that spike firing related to the

underlying local theta rhythm as tilt changed. In particular, firing began

earlier in the theta cycle when the animal was entering a place field

on a tilted surface. Furthermore, the amount of phase precession

decreased as the slope increased. These effects could not be

explained as artifacts of changes in variables such as theta frequency

or amplitude, or animal running speed. It is unclear what function, if

any, this change represents, however, it is possible that it might alter

how the hippocampus “interpreted” the environment. Previous studies

suggest that phase precession provides a constant “look-ahead” func-

tion that allows for the planning of future trajectories (Skaggs et al.,

1996; Wikenheiser and Redish, 2015). At any particular moment, a

decrease in the slope of phase precession would compress the com-

ponents of these trajectory predictions into a narrower time window.

A potential consequence of this change is the enhancement of plastic-

ity between cells representing distal regions through the opening of a

temporal window for synapse potentiation that might not exist when

spikes are temporally more distant (Dan & Poo, 2004). One result of

this effect might be an expansion of place field size as cells gain

greater influence over the firing of their distal (in terms of place field)

neighbors. We did not see evidence of this expansion, although it has

previously been observed to co-occur with reduced phase precession

slope (Shen, Barnes, Mcnaughton, Skaggs, & Weaver, 1997; Terrazas

et al., 2005). It is possible, however, that such an expansion effect

might only occur during the initial exposure to an environment, and

then influence subsequent responses to other similar environments,

such that in our well-trained animals, the expression of this effect

occurred on all slopes. This could be tested in future studies by only

exposing animals to one slope condition and then examining the con-

sequences on place field size. If an initial exposure to a novel slope

does produce an expansion of place field size then this might lead to a

perception that sloped surfaces extend further than they actually do

(Proffitt, Stefanucci, Banton, & Epstein, 2003; Stefanucci, Proffitt,

Banton, & Epstein, 2005; Witt, Proffitt, & Epstein, 2004). It is tempt-

ing to speculate that this might underlie a neural instantiation of Nai-

smith's rule that slopes will take longer to traverse relative to the

same distance on flat ground, although further studies will be required

to determine whether this is so.

Overall, we have observed that a subset of hippocampal place

cells are sensitive to changes to terrain slope. The encoding of terrain

slope is a vital element of efficient navigation allowing an organism to

avoid the time and energy costs associated with traveling uphill

(Armstrong et al., 1983; Brooks & White, 1978; Chavanelle et al.,

2014; Hoogkamer et al., 2014; Margaria et al., 1963; Minetti et al.,

2002). Additionally, our findings contribute to the wider field of cost-

benefit analysis in the context of spatial navigation. Growing evidence

has shown that place cells respond to the value of an experience

(Allen, Rawlins, Bannerman, & Csicsvari, 2012; Ambrose, Pfeiffer, Cor-

respondence, & Foster, 2016; Cheyne, 2014; Gauthier & Tank, 2017;

McKenzie et al., 2014). Our data show that there are more place cells

active on downhill runs versus uphill runs on the tilt conditions. This is

unlikely to be due to speed differences, which if anything, would pro-

duce the opposite effect, with the slower downhill movement usually

associated with reduced firing. Rather, this may indicate that the

downhill route may have a greater relative value (benefit minus effort

cost) and so has a larger ensemble of place cells representing
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it. Indeed, previous studies have shown that place cells over-represent

goal locations (Cheyne, 2014; Hollup et al., 2001) and preferred routes

(Mamad et al., 2017).

During decision making, possible behaviors as well as their

remembered values may be sent to downstream structures through

the reactivation of place cell ensembles via sharp-wave ripple replay

events (Jadhav, Kemere, German, & Frank, 2012; Pfeiffer & Foster,

2013; Singer, Carr, Karlsson, & Frank, 2013) or theta sequences

(Johnson & Redish, 2007; Wikenheiser & Redish, 2015). Our findings

that place cells can encode terrain slope may aid in providing down-

stream cortical structures, such as the anterior cingulate cortex

(Remondes & Wilson, 2013,2015), not only with previous and possible

routes through an environment but with effort information associated

with those routes (Cowen, Davis, & Nitz, 2012; Hillman & Bilkey,

2010,2012). As a result, prefrontal regions may selectively retrieve

and reactivate the highest value hippocampal representations (Ito,

Zhang, Witter, Moser, & Moser, 2015; Navawongse & Eichenbaum,

2013; Preston & Eichenbaum, 2013), resulting in the further differen-

tiation of hippocampal ensembles based on value.
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