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1  |  INTRODUC TION

To predict how populations will be impacted by human- induced 
environmental change, it is necessary to understand how their nu-
merical dynamics will be altered (Chevin et al., 2010; Coulson et al., 
2011). One way to do this is to ask how human- induced biotic and 
abiotic environmental change will affect the survival and reproduc-
tive rates that determine temporal variation in population growth 

and fitness (Tuljapurkar, 2013; Tuljapurkar & Caswell, 2012). These 
rates are functions of (i) ecosystem, community and population 
level processes and (ii) individual attributes such as age, sex and 
phenotypic trait values (Ellner et al., 2016). The phenotypic traits 
that contribute to determining survival and reproductive rates are, 
by definition, fitness- related traits under selection (Lande, 1982). 
The functions that link phenotypic trait values to survival and re-
cruitment are termed fitness functions. Any human- induced biotic 
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or abiotic environmental driver that alters survival and recruitment 
consequently has the potential to alter selection pressures and 
the rate, and potentially direction, of evolution. Evolution of these 
fitness- related traits in response to human- induced environmental 
change is a type of biotic change and can in turn influence survival 
and recruitment rates, and consequently the population dynamics, 
generating eco- evolutionary feedbacks (Hendry, 2016).

Human- induced biotic and abiotic environmental change can 
also impact phenotypic traits via phenotypic plasticity and non-
genetic inheritance (Reed et al., 2011; Salinas et al., 2013; Via & 
Lande, 1985). These processes alter the map between genotype and 
phenotypic trait value such that the same genotype may generate 
different phenotypic trait values in different environments. The 
difference between the two is that phenotypic plasticity leads to 
environment- induced phenotypic changes in the individual experi-
encing environmental change, while nongenetic inheritance causes 
phenotypic changes in its offspring (Pigliucci, 2001). If the pheno-
typic trait an individual expresses is assumed to consist of a breeding 
value, determined by its genotype potentially at very many loci, and 
an environmental component (Falconer, 1960), phenotypic plasticity 
and nongenetic inheritance occur when environmental change al-
ters the value of the environmental component of the phenotype 
(Via & Lande, 1985). Such dynamics are captured by reaction norms 
that describe how environmental variation influences phenotypic 
trait expression within a genotype (Falconer, 1990; Lande, 2009). If 
phenotypic plasticity or nongenetic inheritance change the distri-
bution of phenotypic traits, this can alter survival and recruitment 
rates –  and consequently population dynamics and selection. Such 
dynamics can occur even if the fitness functions themselves are not 
altered by environmental variation (Coulson et al., 2017). Phenotypic 
plasticity and genetic inheritance consequently have the potential to 
generate eco- evolutionary feedbacks in the presence of unchanging 
fitness functions, with human- induced environmental change having 
considerable potential to be a major driver of such feedbacks. The 
question we ask here is how does the impact of human- induced en-
vironmental change on the environmental component of the pheno-
type influence eco- evolutionary dynamics, and the way populations 
respond to environmental change? Our results extend to any type of 
environmental change, but we couch this paper in terms of human- 
induced change, and in particular in the impacts of a deteriorating 
environment.

Environmental variation can have substantial effects on pheno-
typic trait values as is widely appreciated in statistical quantitative 
genetics –  a powerful framework for studying evolution (Falconer, 
1960; Lynch & Walsh, 1998). In quantitative genetic analyses, it is 
often essential to fit variables into statistical models to correct for 
environmental influences on phenotypic trait expression (Kruuk, 
2004; Merilä et al., 2001). For example, variables such as population 
density or weather attributes –  that often show temporal trends as 
a result of human activity –  are sometimes fitted as fixed effects 
into animal models of free- living populations (Fletcher et al., 2015; 
Kruuk et al., 2002; Potter et al., 2021), or year is fitted as a random 
effect (Kruuk, 2004; Lynch & Walsh, 1998). These environmental 

variables statistically adjust for reaction norms, allowing more ro-
bust estimates of additive genetic (co)variances by comparing phe-
notypic trait values amongst individuals of known relatedness once 
the effect of environmental variation on phenotypic trait values has 
been accounted for.

In predictive models widely applied to empirical systems, such as 
the breeder's equation, the additive genetic (co)variances are used 
to make evolutionary predictions but the evolutionary effects of 
environmental variation on phenotypic trait distributions are usu-
ally not incorporated (Chevin et al., 2010). We know that models 
such as the breeder's equation can provide accurate estimates of 
evolution over a single generation, but given the potential effects of 
environmental variation on selection via phenotypic plasticity and 
nongenetic inheritance, and via impacts on the fitness functions 
directly, these approaches may fail for the longer- term predictions 
required to understand how anthropogenic environmental change 
will impact populations (Morrissey et al., 2010). This leads us to pose 
the following hypothesis: to make multi- generational predictions of 
evolutionary change for populations in human- induced deteriorating 
environments it is necessary to model the effects of the environ-
ment on the dynamics of both the breeding value (via selection) and 
environmental component of the phenotype (via selection, pheno-
typic plasticity and nongenetic inheritance). We test this prediction 
by constructing simple evolutionarily explicit Integral Projection 
Models (hereafter called EE- IPMs) (Childs et al., 2016; Coulson et al., 
2017; Rees & Ellner, 2019).

Integral projection models (IPMs) are discrete- time population 
models structured by one or more continuous traits (Ellner et al., 
2016). In addition, they can be structured by discrete characteris-
tics such as age or sex (Ellner & Rees, 2006; Schindler et al., 2015). 
The models are constructed from mathematical functions typically 
identified from statistical analyses. These functions describe (i) as-
sociations between the values of one or several phenotypic traits 
measured at time t and per- time step fitness (the fitness function) 
and (ii) phenotypic transitions between time t and t + 1 (transition 
functions) (Ellner et al., 2016). Most applications of IPMs assume 
time steps that are shorter than the generation length of the spe-
cies being modelled. The fitness functions are typically divided into 
(i) the expected survival from t to t + 1 (the survival function), and 
(ii) the expected number of offspring produced between t and t + 1 
that survive to recruit to the population at t + 1 (the recruitment 
function), while the transition functions are split into (iii) the values 
of trait(s) measured between t and t + 1 amongst surviving individ-
uals (the development function) and (iv) the values of trait(s) mea-
sured in offspring when they recruit to the population at time t + 1. 
This last function has been referred to as the inheritance function 
by some authors (Coulson et al., 2010), and this has caused con-
fusion (Chevin, 2015). We refer to it here as the parent– offspring 
phenotypic similarity function. IPMs can also be constructed on a 
per- generation time step, where the recruitment function describes 
the association between a phenotypic trait and lifetime reproduc-
tive success, and the parent– offspring phenotypic difference func-
tion describes phenotypic trait similarity between parents and their 
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offspring (Coulson et al., 2018). We use per- generation time step 
models here. Regardless of the approach, functions can be statis-
tically estimated from individual- based phenotypic trait and demo-
graphic data that are used in statistical quantitative genetics and can 
include fixed and random effects describing how elements of the 
biotic or abiotic environment affect associations between trait val-
ues and each response variable (Coulson, 2012; Ellner et al., 2016).

The statistical functions are then combined to produce a projec-
tion model that iterates forward the distribution of phenotypic trait 
values from time t to time t + 1 (Easterling et al., 2000). At each time 
t, the projection model is usually approximated as a Lefkovich stage- 
structured matrix. The random and fixed effects identified in the 
statistical analyses of each function can be included in the projec-
tion model if the modeller desires so or else can be ignored (Coulson, 
2012; Ellner et al., 2016). If the model includes elements of the biotic 
and abiotic environment, including human- induced environmental 
trends, the values in each matrix at each time t may vary between 
successive time steps. This generates a series of time- varying matri-
ces that can often be analysed using approaches from random matrix 
theory (Tuljapurkar, 2013; Tuljapurkar & Caswell, 2012).

In evolutionarily explicit IPMs the phenotypic trait distribution is 
described as a multivariate distribution of components of the phe-
notypic trait(s) involved –  for example each trait is decomposed into 
a bivariate distribution of the breeding values and the environmental 
components (Childs et al., 2016; Coulson et al., 2017; Rees & Ellner, 
2019). Selection operates on the phenotypic trait(s) under study, 
and this selection is then transmitted to each component of the 
phenotype. In models where the time step is shorter than the gen-
eration length, the breeding values remain fixed within individuals 
as they age, while, if desired, the environmental component of the 
phenotype may vary with the environment, generating phenotypic 
plasticity. The breeding values are genetically inherited (Childs et al., 
2016), and assumptions about the effects of selection and inheri-
tance on the additive genetic variance need to be explicitly specified 
(Coulson et al., 2017). If desired, the environmental component of 
the phenotypic trait(s) in offspring can be either random, a function 
of that of their parents (nongenetic inheritance), or dependent upon 
the abiotic or biotic environment experienced by the offspring. So 
far, the first option has been most commonly used (Childs et al., 
2016; Coulson et al., 2017; Simmonds et al., 2020). Routinely, ran-
dom developmental noise is incorporated into functions describing 
the dynamics of the environmental component of the phenotype. 
EE- IPMs consequently provide a modelling framework where the 
environmental factors that were part of statistical quantitative ge-
netic analyses can be included in models if desired, yet models can be 
constructed that are consistent with the breeder's equation where 
such environmental variation is not explicitly incorporated into pre-
dictions (Simmonds et al., 2019). EE- IPMs thus allow researchers to 
examine how environmental variation, such as human- induced dete-
riorating environmental trends, can impact evolution over multiple 
generations, including in anthropogenically modified environments.

Evolutionarily explicit Integral Projection Models are quite com-
plex to construct and analyse (Childs et al., 2016), and there is a gap 

in the literature describing how simple versions of these models can 
be quite easily constructed. We attempt to fill this gap here. In doing 
this, we provide some novel biological insight by demonstrating how 
evolution will be fastest when it is cryptic, and slowest when pheno-
typic plasticity and nongenetic inheritance are adaptive.

Statistical quantitative genetics and structured population mod-
elling both use similar data, and both have achieved considerable 
success in shining light on the complex patterns of phenotypic trait 
evolution, life- history evolution and demographic changes observed 
in the wild. EE- IPMs have been parameterized with estimates ob-
tained through application of the animal model (Childs et al., 2016; 
Simmonds et al., 2020). Despite this, the two approaches have 
largely independent histories of development, different lexicons, 
cite different literatures, and are used by different communities. As 
a consequence, crosstalk between advocates of the two approaches 
is not as frequent or constructive as it could be. We do not claim that 
our approach is the only way to link structured population model-
ling and quantitative genetics nor that our integration is complete. 
We also do not generate new theory. Our aims, instead, are (i) to 
illustrate connections between the two approaches and thereby 
to, hopefully, encourage crosstalk, and (ii) explore how a human- 
induced deteriorating environments might be expected to impact 
evolutionary trajectories.

2  |  METHODS

2.1  |  Modelling approach

In general, EE- IPMs assume that (Childs et al., 2016; Coulson et al., 
2017; Rees & Ellner, 2019):

1. An individual i's phenotypic trait value zi is the sum of a breed-
ing value Ai and an environmental component Ei. The bivariate 
distribution of the components of a hypothetical phenotypic 
trait is given in Figure 1a.

2. The environmental component of the phenotype can be deter-
mined by random developmental noise and aspects of the ex-
ternal abiotic or biotic environment θ. Note that such effects are 
frequently corrected for in quantitative genetic statistical analy-
ses, but are rarely incorporated into predictive models (Chevin et 
al., 2010). A temporally deteriorating environment, caused, for 
example, by the establishment of an invasive species, or global 
warming, could consequently result in a negative trend across 
generations in the mean of the environmental component of the 
phenotype. In our modelling approach, we are agnostic to the 
developmental mechanisms underpinning a negative trend in the 
mean of the environmental component of the phenotype attrib-
utable to a deterioration in the environment.

3. Selection operates on phenotypic traits (Figure 1b for a hypothet-
ical example), altering (i) the distribution of the phenotypic trait, 
(ii) the bivariate distribution of the A and E components of the trait 
(Figure 1c) and (iii) the conditional distributions of A and E prior 
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to and postselection (Figure 1d for the change in the conditional 
distribution of E that is attributable to selection).

4. Aspects of the biotic or abiotic environment θ can also influence 
fitness. For example, individuals with the same phenotypic trait 
value may produce different numbers of offspring in good and 
bad environments.

5. Breeding values are genetically inherited such that the mean of 
the parental mid- point breeding value distribution is the same 
as the mean of the breeding value distribution of the next gen-
eration of offspring. We will consider specific assumptions about 
the dynamics of the additive genetic variance in further detail 
below.

6. Nongenetic inheritance can occur when there is an association 
between the environmental components of parental phenotypes 
and the environmental components of offspring phenotypes. 
Note that such effects are sometimes corrected for in quantita-
tive genetic statistical analyses as parental environmental effects 
(Lynch & Walsh, 1998) but are rarely incorporated into predictive 
models. In the models we construct here, we include nongenetic 
inheritance yet are silent on its underlying mechanistic causes.

We also make more assumptions specific to the models we re-
port in this paper:

7. Individuals have an annual life history and survive for one 
time step only. We consequently only construct models on a 
per- generation time step.

8. Phenotypic data are collected at birth, and the reproductive 
success of individuals alive at time t is estimated from matching 

newborn young at time t + 1 to their parents at time t. Fitness is 
consequently lifetime reproductive success.

9. The environment θ can vary with time, influencing the mean 
value of the environmental component of the phenotype in each 
generation.

The bivariate distribution of A and E at time t, N (A, E, t), is oper-
ated on by a kernel, �

((
A�, E�

) | (A, E) , t), that describes all possible 
transition rates from (A, E) at time t to (A′, E′) at time t + 1, including 
those that occur at rate zero because they are biologically impossi-
ble. The primes here depict that the values of A and E can change 
between parents and their offspring. The model can be written as 
follows:

The integral limits are taken to be below and above all possible 
values of A and E but are not displayed to simplify notation (Ellner 
et al., 2016). In addition, from now on we simply use a single, rather 
than a double, integral sign, with the reader determining the vari-
ables over which the integral is taken by the infinitesimals on the 
far- right hand side (dA and dE).

The kernel �
((
A�, E�

) | (A, E) , t) is constructed to include the 
biological processes that determine the dynamics of the bivar-
iate distribution of A and E and their drivers. The ‘trick’ in for-
mulating a model is to specify the functions and the rules they 
encode. In our simple model, we will consider a fitness func-
tion R (A + E, �, t), that determines the strength and direction of 

N
(
A
�, E�, t + 1

)
= ∬�

((
A
�, E�

) | (A, E) , t)N (A, E, t) dAdE.

F I G U R E  1  Action of selection 
on a phenotypic trait described as a 
bivariate distribution of A and E. (a) A 
bivariate distribution with A = E = 0 
and σAA = σEE = 0.5. Each dotted 
diagonal grey line represents the same 
value of the phenotype z = A + E. The 
dotted blue lines represent y = 0 and 
x = 0 and repeated in (c). (b) A fitness 
function, where life reproductive success 
increases exponentially with the value 
of the phenotype. (c) The outcome of 
applying the fitness function in (b) to the 
distribution in (a). The mean A and E have 
both changed, but the σAA and σEE have 
not. (d) The conditional distribution of E 
prior to selection in (a) and postselection 
in (c)
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selection, followed by a parent– offspring phenotypic difference 
function D((A′, E′) | (A, E), �, t) (the transition function) that cap-
tures the genetic inheritance of breeding values and various non-
genetic inheritance processes that can influence the dynamics of 
the environmental component of the phenotype. Consequently, 
�
(
(A�, E�)| (A, E) , t)) = D

(
(A�, E�)|(A, E), �, t)R (A + E, �, t) and

noting the implications of the notation change described above.
The functions D((A′, E′) | (A, E), �, t) and R (A + E, �, t) do not com-

mute, which means their order matters. We consequently treat 
selection operating first, following by the transmission of breeding 
values and environmental components of the phenotype between 
parental and offspring values. This means that D((A′, E′) | (A, E), �, t) is 
conditional on reproduction: if you do not reproduce you will not 
contribute to the components of the phenotypic traits in offspring.

The fitness function R (A + E, �, t) informs that lifetime reproduc-
tive success is determined by the phenotypic trait value z = A + E, 
and the potentially multidimensional environment, θ, experienced at 
time t. The form of this function will combine with the phenotypic 
variance to determine the strength of selection.

The fitness function can be thought of as operating on the dis-
tribution of N (A, E, t) to produce a bivariate distribution of A and 
E postselection: Ns (A, E, t) = R (A + E, �, t)N (A, E, t). The means of 
both the breeding value and the environmental component of the 
phenotype in this bivariate distribution will differ from the means 
of these quantities in N (A, E, t) if (i) selection is directional (i.e., the 
slope of the phenotype on fitness in the fitness function R (A + E, θ, 
t) is nonzero) and (ii) the additive genetic variance and the variance 
in the environmental component of the phenotype are both greater 
than zero.

Because we assume that selection operates on the phenotypic 
trait and that the components of the phenotype add together to de-
termine its value within an individual (zi = Ai + Ei), this means that 
directional selection must displace A and E in the same direction, 
even if their rates of change differ (Figure 2a). We consider two 
hypothetical cases in Figure 2a –  in black, directional selection is 
positive, and the additive genetic variance is less than the variance 
of the environmental component of the phenotype. In contrast, in 
red, directional selection is negative, and the additive genetic vari-
ance is greater than the variance of the environmental component 
of the phenotype. Positive directional selection can only shift the 
A and E into the upper right quadrant in Figure 2a while negative 
directional selection can only shift A and E into the lower left quad-
rant. Selection alone cannot move A and E in contrasting directions. 
Note that within the shaded quadrants that selection can explore, 
the angle of the vectors is determined by the ratio of the additive 
genetic variance to the variance of the environmental component 
of the phenotype.

We next turn to the second function in the kernel 
�
((
A�, E�

) | (A, E) , t), which describes the ‘map’ between parental 

values of A and E and offspring values of A′ and E′. We write this 
function D(A′, E′ |A, E, �, t). The symbol ‘|’ means ‘given’. So, A′ and E′ 
take their values given A, E and θ at time t. This function is a probabil-
ity density function, such that all possible transitions out of location 
(A, E) sum to unity (Easterling et al., 2000).

We now need to specify this parent– offspring phenotypic dif-
ference function D(A′, E′ |A, E, �, t) to capture specific rules. The first 
biological rule we need to respect is genetic inheritance for breeding 
values. This means that the mean of the breeding values in offspring, 
A′, must be equal to the mean of mid- point breeding values of each 
offspring's parental pair, As , where the subscript s means postselec-
tion (Falconer, 1990). Next, because we want our model to be dy-
namic and to make predictions over multiple generations, we need 
to make assumptions about the dynamics of the variance of breed-
ing values (the additive genetic variance), and how that changes (or 
not) from one generation to the next (Lande, 2009; Turelli & Barton, 
1994). There are four ways in which the dynamics of the variance 
have been treated in structured models (Table 1), and the choice 
will depend upon the assumptions the researcher wishes to make. 
Arguably the most intuitive way to generate the offspring distribu-
tion from the quantitative genetic perspective is to work with an 
algorithm as follows (approach 1 in Table 1):

1. Take the conditional distribution of selected parental breed-
ing values (each parental A is represented by the number of 
offspring it produces) (Childs et al., 2016)

2. Assume random mating and an identical demography for males 
and females (easily relaxed but the maths becomes more in-
volved). These assumptions mean we only need to track the dy-
namics of a single distribution of A and E containing both males 
and females.

3. Convolve the distribution of selected parents from step 1 with 
itself to generate a distribution of mid- point values of A.

4. Convolve the distribution in 3 with a Gaussian distribution with a 
mean of 0 and a variance that captures the segregation variance 
to produce a distribution of offspring A′.

An alternative approach is to simply assume that the distribution 
of breeding values amongst offspring is always Gaussian and has a 
distribution with a mean breeding value As , and a constant variance 
that does not change with time (Lande, 1982, 2009). The two ap-
proaches differ and produce slightly different dynamics, because 
the approach based on convolutions does not necessarily produce a 
Gaussian distribution of offspring breeding values.

Next, we turn to rules for the environmental component of the 
phenotype. There may be three aspects we wish to incorporate into 
the postselection dynamics of E. First, random developmental noise 
(Figure 2b) with a mean of zero and a fixed variance; second, the ef-
fects of the abiotic or biotic value in year t on the mean of the en-
vironmental component of the phenotype (Figure 2c) –  that is, the 
processes that generate reaction norms (Chevin et al., 2010; Reed 
et al., 2011); and third, nongenetic inheritance –  that is, a correlation 
between parental and offspring environmental components of the 

(1)

N
(
A
�, E�, t + 1

)
= ∫

[
D
(
(A�, E�)|(A, E), �, t)R (A + E, �, t)

]
N (A, E, t) dAdE,
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phenotype caused by nongenetic inheritance (Figure 2d) (Salinas et al., 
2013). If we can incorporate these processes into our model, we can 
examine the effects the environmental effects often included in sta-
tistical quantitative genetic analyses on evolutionary dynamics. In this 
paper, to keep things simple, we focus on the first two processes only.

Let us start with the assumption that the environmental compo-
nent of the phenotype is determined solely by random developmen-
tal noise. The distribution of the environmental component of the 
phenotype in offspring will be independent of the distribution of the 
environmental component of the phenotype in parents, will have a 
mean of 0, and a constant variance across generations. This would 
generate the temporal dynamics of A and E shown in Figure 2b.

Next, we turn to the case where there is a trend in some compo-
nent of the biotic or abiotic environment θ (Kruuk et al., 2002). Such 
a trend could be caused by human- induced environmental, such as 

the establishment of an invasive species or global warming. In each 
generation let us assume that the value of θ gets smaller, and this re-
sults in a decrease in the mean of the environmental component of 
the phenotype because E is a function of θ –  that is, we are describ-
ing a reaction norm where the average phenotypic trait value across 
all breeding values changes as the environment changes (i.e., this is 
not a genotype- by- environment interaction, but rather the pheno-
types expressed by each genotype or breeding value are impacted 
in identical ways). In other words, we are incorporating the effect of 
a trending fixed effect that is found to influence the mean of a phe-
notypic trait value in a statistical quantitative genetic analysis. We 
continue to assume positive selection. In this case, we would gen-
erate the type of phenotypic trait dynamics displayed in Figure 2c.

Finally, we turn to the case where there are maternal effects, 
or nongenetic inheritance, such that there is a correlation between 

F I G U R E  2  Selection and evolution. (a) When selection operates on the phenotype z, selection on A and E is always in the same direction. 
The black lines represent a bivariate distribution of A and E where 𝜎AA < 𝜎EE. The black vector (arrow) shows the direction of evolution if 
selection is directional and positive. The length of the arrow is arbitrary in this hypothetical example but in real numerical examples would 
represent the strength of selection. The red lines represent a bivariate distribution of A and E where 𝜎AA > 𝜎EE. The red vector (arrow) 
shows the direction of evolution if selection is directional and negative. (b) The dynamics of the breeder's equation, where selection shifts 
the phenotype by altering both A (t) and E (t) black arrow. Rules of genetic inheritance are such that As (t) = A (t + 1) (red arrow). Rules of 
nongenetic inheritance mean that all gains made by selection on Es (t) are lost and E (t + 1) = E (t) = 0 (blue arrow). In this case, change in 
the mean phenotype equals change in the mean breeding value ΔZ (t) = ΔA (t). (c) When the environment deteriorates, and this leads to a 
temporal trend in the environmental component of the phenotype, evolutionary change (red lines) can be countered by change in E (blue 
lines) that more than reverses any gains made by selection (black lines). The phenotypic trait mean (green line) can change in a direction 
opposite to that of selection. (d) When nongenetic inheritance is adaptive, it moves the mean phenotype (green line) in the same direction 
as selection. In this example, only a fraction of the effect of selection on the environmental component of the phenotype is passed across 
generations by nongenetic (compare black and green lines)
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environmental components of the parental and offspring pheno-
types (Lynch & Walsh, 1998). The similarity between parental and 
offspring environmental components of the phenotype can gener-
ate the types of dynamics depicted in Figure 2d.

We will give examples of the form and parameterization of these 
functions below. But before we do, we describe the steps required 
to implement an EE- IPM.

2.2  |  Model implementation

We approximate Equation 1 into matrix form: N (t + 1) = D (t)R (t)N (t) 
(Easterling et al., 2000). First, we need to approximate the bivariate 
distribution N (A, E, t) by categorizing it into many small bins to gen-
erate the column vector N (t). In Table 2, below we use 10,000 bins. 
Each value in N (t) describes the number of individuals in each (A, E) 
discrete category at time t. The mid- point values of each (A, E) cat-
egory is described in columns 3 and 4 of Table 2. We consider values 

of A and E ranging from 1 to 10 with 100 categories for both. Note 
that these values could be centred on zero if desired, as depicted in 
Figures 1 and 2. Centering is useful in statistical analyses, but it does 
not influence the construction or iteration of EE- IPMs. We show the 
values of the phenotypic trait z which are determined by summing 
the values of A and E.

We specify the vector N (t = 1) as bivariate normal with two 
means (one each for A and E) and a variance– covariance matrix 

Σ =

⎡⎢⎢⎣
�AA �EA

�AE �EE

⎤⎥⎥⎦
 that can be estimated from statistical analyses used in 

quantitative genetics (Falconer, 1960; Lynch & Walsh, 1998). The fit-
ness function R (A + E, θ, t) can be identified by the statistical analysis 
of phenotypic trait and reproductive success data. For example, if it 
is linear, it would take the form

where the βxs are statistically estimated parameters, and θi is a variable 
used to characterize one aspect of the environment θ. The function 
does not need to be linear (e.g., Figure 1b is exponential) but can be of 
any parametric or nonparametric form the researcher chooses. Fitness 
predictions from R (A + E, �, t) for each of the categories used to con-
struct N (t) (column 5 of Table 2) are then used to construct a diagonal 
matrix R (t) describing the fitness of each z = A + E. The matrix R (t) is 
square and with the same length and width dimensions as the length of 
N (t) (e.g., 10,000 in our example).1 Note, also, that the value of R (t) for 
a value of A = 2 and E = 3 would be the same as the value of R (t) for 
A = 2.5 and E = 2.5 as both give the same phenotypic trait value of 
z = A + E = 5.

R (A + E, �, t) = �0 + �zz +… + �
�i
�i ,

 1It is computationally faster to work with R (t) as a column vector and using element- wise 
multiplication but we don't dwell on this here.

TA B L E  1  Four approaches have been used in evolutionarily structured models to determine the dynamics of the additive genetic 
variance. Approach 1 and 2 give indistinguishable results in cases where they have been compared, and these are similar to those obtained 
in approach 3 (Coulson et al., 2017)

Approach Comment Reference

1. Convolve distributions of parental breeding 
values to generate a distribution of mid- point 
breeding values. Convolve this distribution 
with a Gaussian distribution with a mean of 
zero to add segregation variance.

Additive genetic variance in each generation 
can be non- Gaussian

Childs et al. (2016) and Coulson et al. (2011)

2. Construct a linear and Gaussian probability 
density function (typical of a standard IPM) 
that passes through the point 

(
As ,As

)
, has 

a slope of 0.5, and generates a constant 
variance.

Additive genetic variance in each generation 
can be non- Gaussian

Coulson et al. (2017)

3. Generate a Gaussian distribution of breeding 
values in offspring with a constant variance 
and a mean equal to the mean of the breeding 
value distribution postselection (As).

Additive genetic variance in each generation 
is Gaussian

Lande (1982) and Simmonds et al. (2020)

4. Allow selection to erode the additive genetic 
variance.

Additive genetic variance in each generation 
can be non- Gaussian

Coulson et al. (2017)

TA B L E  2  Describing a bivariate distribution of and as a column 
vector

Element number N (t)
Value 
of A

Value 
of E

Value of 
z = A + E

1

2

3

…

100

101

102

…

10, 000

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0.015

0.024

…

0.021

0.037

0.012

…

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

1

1

…

1

1.1

1.1

…

10

1

1.1

1.2

…

10

1

1.1

…

10

2

2.1

2.2

…

11

2.1

1.2

…

100
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The kernel D(A′, E′ |A, E, �, t) can also be approximated as a ma-
trix D (t) with the same dimensions as R (t). This matrix describes the 
probability of transition from all parental phenotypic trait component 
values (A, E) to all offspring phenotypic trait components values (A′, 
E′). In our example, the top left element of the matrix would describe 
the transition probability from (A = 1, E = 1) to (A′ = 1, E′ = 1); the cell 
in the top row and second column describes the transition probability 
(A = 1, E = 1.1) to (A′ = 1, E′ = 1); the first cell in the second row de-
scribes the transition probability (A = 1, E = 1) to (A′ = 1, E′ = 1.1) etc.

It is not always computationally necessary to construct the matrix 
D (t) and it can be significantly computationally faster to construct 
the vector N (t + 1) directly from Ns (t) = R (t) N (t). We illustrate this 
here, because for readers who are unfamiliar with Lefkovitch matri-
ces their construction can be opaque, and we do not have space to 
elaborate here.

The following algorithm could be used to construct the vector N 
(t + 1), removing the need to populate the matrix D (t):

 1. Calculate the sum n (t + 1) =
∑

Ns (t) where n (t + 1) is the 
population size at birth of the next generation.

 2. Calculate the mean of As =
∑

ANs (t) ∕
∑

Ns (t) where A is a 
column vector of the values of A in the third column of Table 1.

 3. Choose your assumption about the effect of selection on the ad-
ditive genetic variance. We will assume that it remains Gaussian 
with a constant variance σAA.

 4. Given (3), generate a Gaussian probability distribution with a 
mean of As and a variance σAA discretized into the number of 
unique bins used to categorize the distribution of A. Call this 
Nshort

A
(t + 1).

 5. Replicate each value within Nshort

A
(t + 1) by the number of 

unique bins used to categorize E (4th column, Table 1) to gener-
ate Nlong

A
(t + 1). This will generate the ‘blocks’ of breeding values 

with the same value depicted in Table 2 (third column?).
 6. Standardize the vector produced in (5) to sum to unity.
 7. Within each block of values of A in Nlong

A
(t + 1) (Table 2), we now 

need to distribute densities of each of the values of E. Generate 
a discrete Gaussian probability density distribution with a mean 
E (that may be determined by the value of θ or parental values of 
E, and a variance equal to σEE). Call this vector Nshort

E
(t + 1).

 8. Replicate the vector NE (t + 1) by the number of unique bins used 
to categorize E to generate Nlong

E
(t + 1).

 9. Standardize Nlong

E
(t + 1) to sum to unity.

 10. Multiply the two vectors produced in (5) and (8) and standardize 
to sum to n (t + 1). This produces N (t + 1).

The code to implement these algorithms is provided on Zenodo.

2.3  |  Choice of parameters

In this section, we describe the two models we use in this paper. The 
parameters we choose are simply for illustration, and the general 

results we report are not specific to the parameterization although 
the specific rates are. We do not identify parameter values from 
statistical analyses. Simmonds et al. (2019), Simmonds et al. (2020) 
show how parameters from the analysis of data can be used to pa-
rameterize EE- IPMs.

We use 500 bins for both A and for E and upper and lower inte-
gration limits for each of 0 and 40. We define the initial bivariate 
distribution of N (A, E, t = 1) as Gaussian with A = E = 18 and 

Σ =

⎡⎢⎢⎣
2 0

0 2

⎤⎥⎥⎦
. In both models, we specify a constant fitness function R 

(A + E, t) = −2.5 + 0.1z that is constant with time and not impacted 
by environmental variation. Although this function would generate 
negative values of fitness for z < 25, we have chosen parameter val-
ues to ensure that this does not happen. Alternatively, we could 
choose a nonlinear function that remains within bounds.

In model 1, we assume that E = 18 and σEE = 2. This is equiva-
lent to saying that the environmental component of the phenotype 
is determined solely by developmental noise and remains constant 
in the phenotypic trait distribution of offspring from one generation 
to the next. The choice of a constant value of E is irrelevant for the 
dynamics. Model 1 is a dynamic version of the univariate breeder's 
equation.

In model 2, we assume a reaction norm where the phenotypic 
trait value produced by all breeding values is a function of a tempo-
rally deteriorating environment. We define the mean environmental 
component as E = 18 − 0.5t with σEE = 2 in each new generation. 
This would capture the statistical effect of a human- induced trend-
ing environment that influences the mean phenotypic trait value in a 
statistical analysis of phenotypic similarity between relatives.

3  |  RESULTS

When the mean environment deteriorates with time –  perhaps due 
to human- induced environmental change –  and this trend influ-
ences the value of E (model 2), evolution (defined as change in A
) occurs at a faster rate than when E remains constant with time 
(model 1; Figure 3a). In our example, evolution is consequently 
faster in a human- induced deteriorating environment than in a con-
stant one. The reason for this is that the mean phenotype z = A + E 
changes more slowly when E trends downwards than when it does 
not (Figure 3b). In both our models, the additive genetic variance, 
the variance in the environmental component of the phenotype, 
and the phenotypic variance remain constant with time (Figure 3c). 
However, the population growth rate (which equals mean lifetime 
reproductive success) evolves much more slowly when the environ-
ment deteriorates over time compared to when it does not. It is the 
contrasting dynamics of the population growth rate that generates 
the difference in rates of evolution between the two models, with 
the difference in the population dynamics driven by the temporal 
dynamics of E. All other aspects of the two models are identical.
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4  |  DISCUSSION

Our aim here is to make evolutionarily explicit IPMs accessible to 
readers who do not have a background in structured population 
modelling and to explore how a deteriorating environment that 
mimics the effect of human- induced biotic or abiotic change influ-
ences evolutionary dynamics. We have done this by (i) providing 
background that has not been explicitly described in previous papers 
using EE- IPMs and (ii) introducing very simple models, one of which 
includes the effects of a deteriorating on the environmental compo-
nent of the phenotype. Nonetheless, even these simplified models 
provide interesting insight.

In both our models, we have a constant, linear, fitness function. 
The only difference between our two models is that one contains a 
deteriorating environment designed to mimic human- induced envi-
ronmental change that impacts the mean of the environmental com-
ponent of the phenotype, while the other does not. Such effects of 
the mean environment on the mean value of phenotypic traits are 
well- documented in statistical analyses used by statistical quantita-
tive geneticists (Kruuk, 2004; Kruuk et al., 2002; Wilson et al., 2006) 
but are rarely incorporated into predictive models (Morrissey et al., 
2010).

Why do these results arise? Model 1, where there is no envi-
ronmental deterioration, generates dynamics like those depicted 
in Figure 2b: all phenotypic change can be attributed to selection 
and Δz = ΔA. In contrast, in model 2, where there is a deteriorating 

environment, we observed dynamics like those depicted in Figure 2c. 
In this case, Δz ≠ ΔA due to the trend in E. However, in addition, the 
trend in E generates divergence in the dynamics of selection between 
the two models, and this leads to a difference in the rate of evolution.

A selection differential on a phenotypic trait can be written as 
cov(z,w)

w
 where w, in our model, is absolute lifetime reproductive suc-

cess and w is mean lifetime reproductive success. For an annual life 
history, w is the population growth rate (Fisher, 1930). In both our 
models cov (z, w) remains constant with time –  it is determined by 
the slope of our linear fitness function. However, w changes with 
time at different rates between our two models. The reason for this 
is we have a constant fitness function: mean fitness consequently 
increases with the mean of the phenotype. When there is a trend 
in E with time, there is consequently a trend in the mean pheno-
type with time, and hence, mean fitness will change at a different 
rate compared to when there is no trend in E. When the direction of 
selection is positive, a negative trend in E will accelerate evolution, 
while a positive trend will slow it via its effect on mean fitness. For 
example, when nongenetic inheritance is adaptive it will accelerate 
the rate of change in mean fitness, and consequently decrease the 
selection differential, thus slowing the rate of evolution. In contrast, 
when nongenetic inheritance is maladaptive, it will decrease the rate 
of change in mean fitness and consequently accelerate the rate of 
evolution (Figure 4, and see also Coulson et al., 2017).

The dynamics of selection are rarely decomposed into the dynam-
ics of the covariance between phenotypic traits and absolute fitness 

F I G U R E  3  Dynamics of a model 
where the environment remains constant 
(black lines) and deteriorates with time 
(green lines) impacted the mean of 
the environmental component of the 
phenotype. (a) Evolution occurs fastest in 
the deteriorating environment than in the 
constant environment, (b) the mean value 
of the phenotypic trait changes fastest 
in the constant environment, (c) the 
phenotypic variance and additive genetic 
variance (and consequently the variance 
in the environmental component of the 
phenotype) remain constant with time 
(the green lines obscure black lines in this 
plot) and (d) the dynamics of mean fitness
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and the dynamics of mean fitness. However, doing this does allow 
some useful insight. For example, because evolution simultaneously 
alters the mean value of phenotypic traits and mean fitness (Fisher, 
1930), it should not be assumed that selection is constant with time 
when making evolutionary predictions with a constant fitness func-
tion. Our results show that the dynamics of E –  typically ignored in 
traditional quantitative genetic approaches, but potentially important 
when investigating human- induced evolution –  can change the de-
nominator of the selection differential, by modifying the rate of change 
of mean fitness. Selection differentials can vary with time due solely 
to evolution of the population growth rate (Pelletier & Coulson, 2012).

Our models are deliberately very simplistic. In real settings, fit-
ness functions are likely to include environmental variation and den-
sity dependence (Ellner et al., 2016; Simmonds et al., 2019, 2020). 
We also include only one phenotypic trait, but selection operates 
simultaneously on multiple traits (Lande & Arnold, 1983). Finally, 
mean fitness (the population growth rate) will fluctuate with time 

within a generation in iteroparous species (Coulson et al., 2005). 
EE- IPMs have been constructed for multivariate phenotypic traits, 
for iteroparous species, and in both variable and deteriorating envi-
ronments (Childs et al., 2016; Coulson et al., 2017; Simmonds et al., 
2020). A wide range of more realistic settings on evolutionary dy-
namics can consequently be examined. In addition, IPMs can be used 
to simultaneously study not only evolutionary, phenotypic trait and 
population dynamics, but also the dynamics of life histories and in-
teracting species (Bassar et al., 2017; Childs et al., 2004; Coulson 
et al., 2011; Ellner et al., 2016; Rees et al., 2014). These models 
are consequently quite flexible and can also be used to study eco- 
evolutionary feedbacks and may be particularly relevant for human- 
induced deterioration in the environment. Moreover, they are easily 
parameterized from data routinely used to conduct statistical quan-
titative genetic analyses and explicit genotype- by- environment in-
teractions (where the environmental component of the phenotype 
is impacted in different ways by environmental change within differ-
ent genotypes) can be easily incorporated.

Despite the positives of IPMs, they are not a panacea. To date, no 
one has constructed EE- IPMs for environment- specific phenotypic 
traits. Traits that are only expressed at specific ages have been in-
corporated into models (Coulson et al., 2017), and similar logic could 
be used for environment- specific traits (Wilson et al., 2006). Second, 
quantitative geneticists often treat fitness as a phenotypic trait and 
are interested in the additive genetics of fitness. The evolution of 
fitness that is not coupled directly via fitness function to a specific 
trait has not yet been incorporated into an IPM and doing so will not 
be entirely straightforward, but is theoretically feasible. But perhaps 
the biggest limitation of IPMs is they do become computationally 
cumbersome as the size of the multivariate distribution being mod-
elled increases (Ellner et al., 2016). Once the number of dimensions 
exceeds 6– 10, high- performance computing may be required to iter-
ate models unless some way of avoiding multiplying large matrices 
together can be found (as we demonstrate in our models).

There are, of course, many other structured populations mod-
els that have been developed to examine evolutionary dynam-
ics (Barfield et al., 2011; Charlesworth, 1994; Chevin et al., 2010; 
Lande, 1982) and nonstructured models assuming normality of the 
additive genetic variance (e.g., approach 4 in Table 1). Some consider 
reaction norm approaches to examine the effects of environmental 
change on dynamics (Lande, 2009). These valuable approaches have 
rarely been parameterized for real systems from statistical quantita-
tive genetic analyses, and they do not link to explicit environmental 
drivers such as climatic variation as EE- IPMs have been (Simmonds 
et al., 2020). Instead, models have assumed that different breeding 
values express different phenotypes in contrasting environments, 
without the driver of the contrast necessarily being included in mod-
els (Lande, 2009). The major difference between our approach and 
these other theoretical models, is that we explicitly model the dy-
namics of the environmental component of the phenotype and how 
it is impacted by environmental variation. However, in doing this, our 
approach is more intuitive, as it is straightforward to decompose the 
effects of environmental change on population, phenotypic trait and 

F I G U R E  4  A hypothetic example of evolution in bivariate 
space helping summarize our results. The diagonal lines represent 
constant phenotypic trait value clines, with the darker colour 
representing larger trait values (and when fitness is directional 
and positive) higher fitness. Because the additive genetic 
variance equals the variance in the environmental component of 
the phenotype, the vector describing the direction of selection 
is at 45 degrees (red line). In both our models, selection is in 
this direction but the strength varies over time. The types of 
evolutionary dynamics model 1 produces are depicted by the 
purple arrow. In our second model, evolution is partly cryptic. 
When change in the dynamics of the mean breeding value is 
completely offset by nonadaptive change in the environmental 
component of the phenotype evolution is fast (not depicted), and 
the phenotypic trait does not change (remains on the same diagonal 
line) but its components change in opposing directions. The green 
line would represent a case where there is no additive genetic 
variance and all phenotypic change is attributable to the dynamics 
of the environmental component
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evolutionary dynamics, and on the feedbacks between these pro-
cesses while still being consistent with the evolutionary assumptions 
incorporated into other modelling frameworks (e.g., Barfield et al., 
2011; Charlesworth, 1994; Chevin et al., 2010; Lande, 1982).

It is our belief that structured models and statistical quantitative 
genetics are both powerful tools to study evolution. There are ways 
these approaches can be combined, and once they are they offer po-
tential to shed light on evolutionary dynamics. Investigating both the 
statistical quantitative genetic and structured modelling literature is 
time consuming given that both are large, specialized and use dif-
ferent vocabularies. Nonetheless, collaboration rather than distrust 
between researchers in each discipline could pay dividends.
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