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Nephritis is a common manifestation of systemic lupus erythematosus, a condition

associated with inflammation and iron imbalance. Renal tubules are the work horse of

the nephron. They contain a large number of mitochondria that require iron for oxidative

phosphorylation, and a tight control of intracellular iron prevents excessive generation

of reactive oxygen species. Iron supply to the kidney is dependent on systemic iron

availability, which is regulated by the hepcidin-ferroportin axis. Most of the filtered plasma

iron is reabsorbed in proximal tubules, a process that is controlled in part by iron

regulatory proteins. This review summarizes tubulointerstitial injury in lupus nephritis

and current understanding of how renal tubular cells regulate intracellular iron levels,

highlighting the role of iron imbalance in the proximal tubules as a driver of tubulointerstitial

injury in lupus nephritis. We propose a model based on the dynamic ability of iron

to catalyze reactive oxygen species, which can lead to an accumulation of lipid

hydroperoxides in proximal tubular epithelial cells. These iron-catalyzed oxidative species

can also accentuate protein and autoantibody-induced inflammatory transcription factors

leading to matrix, cytokine/chemokine production and immune cell infiltration. This could

potentially explain the interplay between increased glomerular permeability and the

ensuing tubular injury, tubulointerstitial inflammation and progression to renal failure in LN,

and open new avenues of research to develop novel therapies targeting iron metabolism.

Keywords: iron, proximal renal tubular cells, lupus nephritis, glomerulonephritis, SLE, ferroptosis

LUPUS NEPHRITIS: A BRIEF BACKGROUND

Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown etiology that mainly
affects women of reproductive age. Lupus nephritis (LN) is the most common end-organ
manifestation of SLE, affecting up to 40% of adults and 80% of children with SLE and it is a
major cause of morbidity and mortality (1, 2). LN is thought to be initiated by the deposition
of immune complexes, composed of anti-nuclear, anti-C1q, and cross-reactive anti-glomerular
autoantibodies (3–6), in the glomeruli (7, 8). Following immune complex deposition, locally
produced inflammatory mediators recruit leukocytes to perpetuate renal injury (9–11). The T
and B lymphocytes from LN kidneys are clonally expanded, and the same T cell clones have
been detected in the peripheral blood (12–14). A significant proportion of B cells isolated from
human LN biopsies recognize vimentin, an intracellular structural protein that is cleaved and
extruded from apoptotic cells (14). Autoantibodies to annexin-1 and α-enolase have also been
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FIGURE 1 | Schema of progression of SLE to end organ renal disease (LN). After the onset of SLE in a genetically susceptible individual, there is involvement of

multiple cells types involving both innate and adaptive immune systems. The antigen presenting cells (APC) present self-antigens from various sources to T

lymphocytes, which results in generation of auto reactive T cells with low activation threshold. These CD4T lymphocytes in turn instruct B cells to produce

autoantibodies (Y) of different specificities. Not much is known about the cause and initiation of renal disease, but in-situ generated or circulating immune complex (IC)

deposits in the glomeruli are the most plausible culprits. This leads to progressive glomerular pathology and secretion of chemokines, cytokines and matrix proteins,

resulting in immune cell infiltration and tissue damage. Loss of glomerular permeability also leads to tubulointerstitial injury which is perpetuated by intrinsic tubular cell

inflammatory phenotype and infiltrating immune cells which eventually leads to renal failure.

detected in kidneys of LN patients (15). Macrophage infiltration
is also a common finding in LN kidneys and is associated with
poor outcomes (16–19). These intrarenal innate and adaptive
immune responses may synergize with systemic autoimmunity
and worsen overall outcomes (Figure 1). The combination of
glucorticosteroids and cytotoxic agents, the so-called “NIH
regimen,” has been the standard of care for treatment of
proliferative LN for decades (20), but it is associated with
significant toxicity, and results in remission in less than half
of patients (21, 22). While most of the literature indicates
that LN is initiated in the glomeruli, analysis of human LN
biopsies indicates that the extent of tubulointerstitial lesions may
better predict renal outcome (23). Below we discuss the role
of tubulointerstitial injury in the pathogenesis of LN and raise
the underexplored question on the role of “iron” in worsening
the outcomes.

Abbreviations: LN, Lupus nephritis; Fe2+, labile bioactive iron; Tf, Transferrin;

TfR1, Transferrin receptor 1; TBI, Transferrin bound iron; NTBI, non-Transferrin

bound iron; PTEC, Proximal renal tubular cell; IRP1 and IRP2, iron regulatory

protein 1 and 2; IRE, iron response elements; FtH, Heavy chain ferritin.

TUBULAR INJURY IN LUPUS NEPHRITIS

A constant feature of LN is the concomitant presence of
tubulointerstitial inflammation (24, 25). Tubulointerstitial
inflammation, fibrosis and tubular atrophy strongly correlate
with poor renal outcomes independent of the extent of
glomerular damage (26). The enhanced glomerular permeability
due to glomerular injury leads to overabsorption of proteins
by proximal tubular epithelial cells (PTEC), triggering
tubulointerstitial inflammation, scarring and renal function
deterioration (27–29). Immune complex deposits have been
detected in the tubular basement membrane in up to 70%
of patients with LN, especially those with class III or IV LN,
and the quantity of immune complex deposition correlates
with the severity of tubulointerstitial inflammation (12, 29).
Tubulointerstitial inflammation may be less amenable to current
immunosuppressive treatment compared with glomerular
proliferative changes (29). Although human PTEC express the
functional glucocorticoid receptor (GRα), cytokine-induced
NFkB-activation in these cells is not inhibited by glucocorticoids
(30). Similarly, IL-15 production (31) and ICAM-1 expression
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in the kidneys and PTEC of lupus-prone MRL/lpr mice (32)
were not attenuated by dexamethasone. Where glucocorticoid
therapy fails to act on PTEC, in-vitro mycophenolic acid
(MPA), the active metabolite of mycophenolate mofetil (MMF),
inhibited anti-dsDNA antibody binding to PTEC and reduced
the secretion of cytokines (33). However, the same study also
demonstrated that continuous availability of MPA is required
to sustain its anti-inflammatory actions. While MMF is a
standard induction therapy for active LN, it can increase
the risk of infections and cancer (34). Overall, this suggests
that tubular injury in LN may proceed independently of
glucocorticoid-induced immune suppression strategies (35) and
the right dosage and regimen of other immunosuppressants
is mandated.

Proximal tubular cells are susceptible to injury by
autoantibodies, including anti-dsDNA antibodies, which
adds a unique level of complexity in LN that is different than
other forms of glomerulopathies. When exposed to an identical
anti-dsDNA IgG concentration, a human PTEC cell line (HK-2)
secreted more IL-6 than mesangial cells (29). Exposure of human
PTEC to IgG and anti-dsDNA antibodies increased cellular
hydrogen peroxide, activating the ROS-sensitive transcription
factors NF-kB (29), ERK, MAPK, and the downstream JNK
signaling pathways. This resulted in IL-6, CXCL8, CCL2, and
soluble fibronectin secretion and downstream increase in
profibrotic TGF-β1 and collagen synthesis (33, 36). Injured
PTEC gain an inflammatory phenotype that drives the immune
response by producing inflammatory cytokines including CSF-1,
CCL2, IL-6, TNF, IL-1β, IL-18, directly in an autocrine manner as
reviewed by Liu et al. (37), or indirectly through the production
of chemokines like CCL2, CCL5, CXCL8 that recruit immune
cells and worsen outcomes (38, 39). Thus, the injured PTEC
are a source of chemokines and cytokines and are insensitive to
glucocorticoid therapy.

The PTEC‘s are also highly polar and metabolically active
cells compared to other renal cells. They reabsorb 80% of the
glomerular filtrate, including glucose, ions, and nutrients and, as
such, they contain more mitochondria than any other cells in the
kidney (40). Mitochondria, the main source of reactive oxygen
species (ROS) (41, 42) produce highly reactive and toxic hydroxyl
radicals (OH) via metal-dependent breakdown using cellular
transition metals, most notably iron (41, 43). A redox imbalance
is observed in patients with active LN and it is thought to be
involved in lipid peroxidation of the glomerular basal membrane,
which impairs the renal tubular function (44). High ROS levels
were observed in the serum of patients with complete or partial
clinical renal remission and in 92% of patients with active LN
(45); moreover, multiple animal studies on LN have shown the
benefit of reducing ROS (46–49).

Iron has a central role in the generation of ROS in
biological systems via Fenton chemistry (50). Free Fe2+ ions
react with hydrogen peroxide in Fenton chemistry, resulting in
uncontrolled production of oxygen radicals: Fe2+ + H2O2 →

Fe3+ + HO•
+ OH− then Fe3+ + H2O2 → Fe2+ + HOO +

H+, and this reaction can worsen the outcomes of kidney injury
(51). Hence iron metabolism is tightly regulated at systemic and
tissue level by different check points and are discussed below.

SYSTEMIC IRON HANDLING

Iron is one of the primary essential elements for life. An average
human male under normal physiological conditions contains
∼4 g of iron, the majority of which is distributed amongst the
red blood cells and transferrin complex (Tf-Fe3+) in the plasma
(52). Inside cells, most of the iron is complexed to ferritin, or is
present in heme prosthetic or iron-sulfur groups. A small pool
of chelatable iron, referred to as the labile iron pool (LIP), can
take part in ROS generation, the amount of which varies between
different cell types (53).

Iron is incorporated and exerts its physiological actions

mainly through the iron–sulfur (Fe-S) clusters in proteins and in
heme. Ferric iron (Fe3+) is incorporated into the Fe–S clusters

within the mitochondria and subsequently incorporated into

Fe–S proteins (54). Heme is produced in the mitochondria by
a series of anabolic processes, and involves the integration of
ferrous iron (Fe2+) into the center of the protoporphyrin IX ring
(55). As components of the electron transport chain complexes,
both Fe–S clusters and heme are involved in energy production
by oxidative phosphorylation (56). Heme is also incorporated
into hemoglobin and myoglobin that transport oxygen in red
blood cells and muscle cells (57), and store the majority of
the body’s iron. Functions of Fe-S-containing proteins include
ribosome modulation, transfer RNA thiolation, catalyzation the
tricarboxylic acid cycle, and regulation of intracellular iron
metabolism (58–61). Hence, cells maintain a sufficient supply
of iron for iron-dependent processes, while at the same time
restricting the size of labile iron pool to prevent excessive ROS
generation from Fenton-type reactions (62).

At cellular level, iron homeostasis is a synchronized
choreography of (1) uptake controlled by the transferrin receptor
1 (TfR1) and divalent metal transporter-1 (DMT-1), (2) storage
by ferritin, (3) utilization in heme synthesis by erythroid 5-
aminolevulinic acid synthase (Alas2); (4) and iron export by
ferroportin (63–66). These processes are in turn orchestrated
through the activity of iron regulatory proteins, IRP1 and IRP2,
the activity of which is exquisitely sensitive to iron levels. High
intracellular iron reduces the RNA-binding ability of IRP1 and
the stability of IRP2. During iron deprivation, the binding of
IRP1 and IRP2 to iron regulatory elements (IREs) at the 5′UTR
represses the translation of Ferroportin, L-ferritin, H-ferritin,
Alas2, resulting in decreased iron utilization and export, while
IRP1 and IRP2 binding at the 3′UTR stabilizes TfR1 and DMT1
transcripts, increasing iron uptake (64, 67, 68). This, in turn,
favors iron uptake over utilization and export.

Duodenal enterocytes are the major site of dietary iron uptake
(69, 70), whereas the reticuloendothelial macrophages recycle
iron from senescent RBC to collectively maintain adequate
supply of iron for key physiological and developmental processes
(71, 72). Systemic iron homeostasis is governed by the hepcidin-
ferroportin axis (66). Hepcidin, a liver-produced hormone,
regulates steady-state iron levels by binding to cell surface
ferroportin, leading to its internalization and degradation.
Ferroportin is the only known mammalian iron export protein
that releases cellular iron into the circulation (66, 73). Genetic
mutations that inhibit hepcidin production or its binding
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FIGURE 2 | Iron absorption and circulation. Dietary iron (Fe2+ and Fe3+) is taken up through the apical surface of the duodenal enterocytes. Within the cell, iron is

used for physiological purposes, or stored complexed to ferritin. Depending on the body’s requirements, iron is transported through the basolateral surface of the

enterocyte via ferroportin (Fpn) into circulation as the TfR-Fe3+ complex. The majority of the iron is used for erythropoiesis in the bone marrow. Senescent red blood

cells are cleared by the splenic red pulp macrophages, which recycle iron that then can be exported for physiological functions. Changes in circulating iron levels are

sensed by the liver, which produces hepcidin, a key regulator of iron homeostasis. Hepcidin-mediated FPN degradation results in iron sequestration in macrophages

and net iron absorption is decreased. The net overall effect is a decrease in circulating iron levels and decreased transferrin saturation. Hepcidin is also induced by

inflammation (IL-6, IL-22, Type I interferons) resulting in anemia of inflammation. Tf, transferrin; Tf-Fe, transferrin bound iron; Fpn, ferroportin.

to ferroportin are associated with systemic iron overload
and hemochromatosis (74, 75), while mutations in hepcidin
suppressors, such as matriptase-2, cause iron refractory iron
deficiency anemia (IRIDA) (76, 77). Hepcidin production is
reduced by the endocrine action of erythroferrone derived from
the stimulated erythroid cells (78, 79), whereas its production is
stimulated by inflammation, resulting in anemia of inflammation
(previously known as anemia of chronic disease) (80–82).
Hepcidin-induced accumulation of intracellular iron can be toxic
to the cells unless the iron is quickly and safely complexed
by intracellular ferritin (83). Heavy chain ferritin (FtH), in
particular, both oxidizes Fe2+ to Fe3+, rendering it non-reactive,
and stores iron (43). FtH also inhibits inflammation (84–87)
(Figure 2). We have shown that hepcidin can mitigate systemic
inflammation in settings of renal ischemia reperfusion injury
(88), endotoxemia, polymicrobial sepsis (89), and SLE (90).
While systemic iron metabolism is regulated mainly by the
hepcidin-ferroportin axis, at renal cell level iron metabolism
is post-transcriptionally regulated mainly by the IRP-IRE
system (68).

RENAL IRON HANDLING

Renal iron metabolism is a complex process involving iron
import, storage and export and have been recently reviewed
by Van Swelm et al. (91). Little is known about iron handling
by the glomerular cells. Podocytes (specialized glomerular

epithelial cells) can take up hemoglobin and transferrin via
the megalin-cubilin complex mediated endocytosis and store
the taken-up iron in ferritin (92–94). Iron can directly
activate the NLRP3 inflammasome in monocytes (95), and the
NLRP3 inflammasome is activated in podocytes from lupus-
prone mice and from LN patients (96). The contribution
of hemoglobin and transferrin bound iron in exacerbating
the NLRP3 inflammasome pathway in nephritic podocytes is
unknown and warrants new investigations. Cultured human
glomerular endothelial cells (HGEC) express functional TfR1
and Dmt1 (iron import) and ferroportin (iron export) proteins
(97). Stimulation of HGEC with both angiotensin II and apo-
transferrin (iron containing transferrin) increased their labile
iron content and protein oxidation products. Mesangial cells,
the extracellular matrix secreting and phagocytic glomerular
resident cells, express heme-oxygenase-1 (HO-1) (98) and FtH
(99), and their FtH content was critical in mitigating iron
toxicity and mediating the protective effect of HO-1 in response
to experimental glomerulonephritis (99). Treatment of primary
MRL/lpr mousemesangial cells with NGAL (iron carrier protein)
led to DNA fragmentation and cell death (100). In a rat
model of experimental glomerulonephritis, hemin (oxidized
heme) injection induced HO-1 and mitigated nitric oxide
mediated glomerular pathology (101). It was speculated in this
study that HO-1 catalyzed release of free iron can induce
the cytoprotective protein ferritin, though no such evidence
was provided.
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Glomerular injury is a cardinal feature of LN. Within the
glomeruli, podocytes, mesangial cells, and endothelial cells
engage in tri-directional cross talk and influence each other
as well as immune cells (102). For example, injury to the
podocytes can induce mesangial cell proliferation, and mesangial
cell injury can lead to foot process effacement and fusion. Signals
from mesangial and endothelial cells are necessary for normal
podocyte function (103). Similarly endothelin-1 from podocytes
binds the endothelin-1 receptor A expressed by the adjacent
endothelial cells and induces oxidative stress and endothelial
cell dysfunction (104). The endothelial cell derived platelet-
derived growth factor-β (PDGF-β) interacts with its receptor
on mesangial cells and is critical for mesangial cell survival
(105). Since all three resident glomerular cells have an active
iron import, storage and export machinery, whether an intrinsic
defect in or dysregulation of iron metabolism of these cells affects
this self-supporting structure and outcomes of GN represents a
knowledge gap that is relevant to multiple glomerulopathies.

The majority of our understanding of renal iron handling
is based on studies on the tubular compartment (91, 106).
The distal renal tubules express proteins associated with iron
import, such as ZIP8, ZIP14, DMT1, but lack the expression
of iron storage proteins (light and heavy chain ferritin) and
iron export protein (ferroportin) (107). This can potentially
explain iron accumulation in the distal nephron in some of
the glomerulopathies like focal segmental glomerulosclerosis,
diabetic nephropathy, LN, IgA nephropathy (107). Unlike the
distal renal tubules, the PTEC express ZIP8, ZIP14 and DMT1
for iron import, light and heavy chain ferritin (iron storage) and
ferroportin to export iron (107) and have higher abundance of
IRP1 and FtH (108). Hence the distal renal tubules are unlikely to
participate in iron recycling and this role is played by the PTEC
(107). Under physiological conditions, a fraction of transferrin-
bound iron (TBI) is filtered by the glomerulus into the renal
tubular lumen and is then almost completely reabsorbed by renal
tubular epithelial cells (109, 110). TBI is imported from the apical
surface of the PTEC via TFR1 and megalin-cubulin endocytic
complex (111, 112), whereas non-transferrin bound iron (NTBI)
is imported by ZIP8 and/or ZIP14 (107, 113), such that iron
loss in the urine is minimal. Megalin is also known to take up
hepcidin (114), but the consequence of this interaction is not
known. PTEC express FtH which can sequester and oxidize Fe2+

and ferroportin to export some of the reabsorbed iron on the
basolateral side (91, 107). Loss of FtH from PTEC sensitizes
them to both acute kidney injury (115) and fibrosis (116). Since
dietary sources of iron were scarce during our evolutionary past,
it is likely that there was a selection pressure for multicellular
organisms to minimize iron loss. This may explain why PTEC
are endowed with proteins that import iron from luminal surface,
store it safely intracellularly and export it basolateral to minimize
urinary iron loss.

The combination of filtered iron uptake and a high
mitochondrial content render the PTEC susceptible to iron-
catalyzed, ROS-mediated injury. Hence, IRP1 is highly abundant
in the PTEC (91, 117) and regulates their iron content by
synchronizing TfR1, DMT1 (uptake), FtH (for storage), and
ferroportin (for export).

IRON AND THE PATHOGENESIS OF
AUTOIMMUNE DISEASE

Little is known about the mechanistic role of iron in
autoimmune disorders such as rheumatoid arthritis (RA) and
SLE and associated pathologies. Patients with RA have higher
concentrations of free iron and other iron-binding proteins
in synovial fluid relative to those without the disease (118,
119). Iron-dextran infusion exacerbated rheumatoid synovitis
by increasing lipid peroxidation, oxidized ascorbic acid and
by decreasing red cell glutathione (120, 121), thus directly
implicating iron in the pathogenesis of RA and rheumatoid
synovitis. Dietary iron aggravates human lupus (122) and
iron infusion worsens the disease activity (123). Urine ferritin
and Tf levels are elevated in SLE patients and correlate with
disease activity (124). Neutrophil gelatinase-associated lipocalin
(NGAL), one of the most highly up-regulated proteins in acute
kidney injury, is an iron carrier protein that predict the course
of global and renal childhood-onset SLE disease activity (125).
Akin to humans, lupus-prone female MRL/lpr mice fed with
iron-supplemented or severely iron-deficient diets had higher
mortality than those with moderate iron deficiency, or control
diet (126). This early study highlighted that in SLE dysregulation
of iron metabolism is associated with end organ pathology,
whereas the commonly used autoimmune biomarker like anti-
dsDNA antibody level is not affected.

IRON IN LUPUS NEPHRITIS

In patients with chronic kidney disease, iron accumulates in the
lysosomes (site of iron processing but not storage) of damaged,
but not undamaged, PTEC (127). Renal biopsies of primary
glomerulopathies such as focal segmental glomerulosclerosis,
anti-glomerular basement membrane disease and IgA
nephropathy, as well as secondary ones such as LN, show
iron deposits in PTEC and distal tubular cells, and also stain
positive for oxidative stress-induced protein heme oxygenase-1
(107). Recently, in a study involving 120 SLE patients, transferrin
and ceruloplasmin (ferroxidase) (128) were proposed as
potential biomarkers for LN (129). This study confirmed the
previous observations by Suzuki et al. which demonstrated that
urinary transferrin and ceruloplasmin were significantly higher
with active vs. inactive LN or in SLE patients without renal
involvement (130). The same authors also found that urinary
NGAL (iron carrier protein) could represent a novel biomarker
for renal disease activity in pediatric SLE (131). Along similar
lines, urinary transferrin was found to be a positive predictor
of future renal functional decline in pediatric and adult LN
(132). In another human study, Indrakanti et al. (133) found that
during renal and non-renal SLE flares, IL-6 did not correlate with
hepcidin and hepcidin did not predict hemoglobin. However,
when LN patients were in remission, IL-6 and hepcidin were
correlated, but hepcidin and hemoglobin did not. The authors
thus concluded that hepcidin does not contribute significantly
to anemia during active lupus (133). Using low molecular
weight proteome to predict impending renal relapse, relapse
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severity, and the potential for recovery after SLE nephritis flare,
it was observed that hepcidin 20 (isoform of hepcidin that
lacks the first five amino acids of the amino-terminal portion)
increased 4 months before renal flare and returned to baseline
during renal flare, whereas hepcidin 25 decreased during renal
flare and returned to baseline 4 months after the flare (134).
However, unlike the observations in RA (120, 121) and SLE
(122, 123), where dietary iron or iron infusion worsened disease
activity, studies on role of iron in worsening LN are correlational
and not causal. Tubular iron accumulation is also a feature
in animal models of LN (135–137). In an induced model of
glomerulonephritis caused by injection of nephrotoxic serum
(138), phlebotomy mitigated tubulointerstitial disease and renal
functional deterioration though the glomerular injury was
comparable to non-phlebotomized rats (135). The reduction in
iron content caused by the phlebotomy correlated inversely to
functional deterioration and extent of tubulo-interstitial disease.

Only two animal studies have investigated the
pharmacological modulation of iron metabolism to mitigate
LN. The PTEC of proteinuric NZBWF1 mice, a well-established
spontaneous model of SLE/LN showed a lower expression
of transferrin receptor 1 (TfR1: iron importer) and increased
expression of ferritin, indicative of iron accumulation (136).
Treating these mice with deferiprone, an FDA-approved iron
chelator, delayed the onset of albuminuria even though anti-
dsDNA IgG levels were similar to the vehicle treated group (136).
Furthermore, markers of tubular injury and renal function were
significantly lower in the deferiprone-treated mice.

We recently reported that regulation of iron metabolism
using exogenous hepcidin reduced renal iron accumulation,
labile iron content, and injury parameters in MRL/lpr mice,
another spontaneous model of SLE/LN (90). As in the NZBWF1
mice, regulation of iron metabolism with hepcidin treatment
did not reduce renal immune complex deposits and serum
autoantibodies, but it mitigated intrarenal cytokine production,
immune cell infiltration and parenchymal injury, including
tubular injury, without worsening lupus associated anemia.
Importantly, hepcidin was protective even when administered to
proteinuric mice, highlighting its therapeutic potential.

Our observations are counter intuitive to the current
paradigm that suggests that inhibition of ferroportin-induced
iron export should worsen iron-mediated injury. We observed
that, intermittent administration of exogenous hepcidin more
than doubled the expression of renal FtH (90), a cytoprotective
molecule. In support of our observation, in a rodent model
of thymocyte antigen-1-induced glomerulonephritis, heme
oxygenase-1 (HO-1) blockade lowered the expression of FtH
and accelerated mesangial cell death (99). Forced expression of
wild-type FtH overcame HO-1 deficiency and made the cells
more resistant to ROS-mediated injury and this salutary effect
was not observed in FtH mutants that lost the capacity of iron
storage and ferroxidase activity. The importance of PTEC FtH
was previously established in models of acute kidney injury (115)
and unilateral ureteral obstruction (116). Moreover, FtH inhibits
MAPK signaling (86), suppresses the proliferation of T cells
and impairs the maturation of B cells in autoimmune diseases
(84, 87).

The results from these pre-clinical studies suggest that
reducing the availability of labile iron using different approaches
increases the resistance of renal parenchymal cells to SLE-
associated insults, especially since circulating autoantibodies and
glomerular immune complex deposits were not affected by
the treatment.

IRP-IRE INDEPENDENT IRON UPTAKE: A
POTENTIAL LINK TO IRON-MEDIATED
PTEC INJURY

Increased filtration of albumin causes excessive tubular
reabsorption, resulting in inflammation and fibrosis, which is
thought to be a major contributor to tubulointerstitial injury
(139). However, injury to the glomerular structure results in
increased permeability to all proteins, including apo-transferrin.
Since the PTEC reabsorb the majority of filtered iron, under
pathological conditions these cells are more susceptible to
iron-mediated oxidative injury. The PTEC express TfR1,
megalin-cubulin complex as well as Zip8 and 14 on their apical
surface. Unlike TfR1, the receptor for transferrin, which is
post-transcriptionally regulated by the IRP-IRE system and
is downregulated in cells that accumulate excess iron (140),
the expression of megalin-cubulin endocytic complex is not
regulated by cellular iron content. Similarly, ZIP8 and ZIP14 are
both involved in NTBI uptake, and ZIP14 also mediates TBI-
derived iron uptake (113), and their abundance is not regulated
by IRE-IRP system (141). Thus, following the breakdown of
glomerular filtration barrier, the TBI can be taken up by the
PTEC in disproportionate manner, dissociate from Tf in the
highly acidic environment of the lysosome (142) and accumulate
as cytoplasmic pool of labile iron.

Collectively, these observations are consistent with a model
(Figure 3) wherein the loss of glomerular perm-selectivity in
LN leads to enhanced uptake of TBI and NTBI by the PTECs
via megalin-cubulin endocytic complex, ZIP14 and ZIP8 in
a TfR1 independent manner, leading to a chronic increase
in intracellular labile iron (Fe2+). Excess intracellular iron is
expected to increase the synthesis of IRE-IRP regulated FtH (67),
which can sequester the labile iron. But continued glomerular
leakiness can overwhelm this defense mechanism. LN is also
associated with lower levels of antioxidant (45, 143, 144) and
collectively lead to oxidative damage and lipid peroxidation.
Lipid peroxidation, a striking feature of ferroptosis (regulated
cell death characterized by the iron-dependent accumulation
of lipid hydroperoxides) (145–148) is increased in both SLE
patients (149, 150) and mice (151). Excess labile iron also
catalyzes the formation of ROS (62, 152). IgG and anti-dsDNA
antibodies in lupus patients induce ROS, which upregulates
multiple inflammatory pathways in PTEC (29, 33, 36). By
catalyzing the formation of ROS (62, 152), labile iron may
accentuate PTEC inflammatory response to IgG and anti-
dsDNA antibodies. Thus, iron-induced lipid peroxidation and
exacerbation of inflammatory responses can synergistically
accelerate tubulointerstitial injury and progression to renal
failure. Alternatively, the accompanying albuminuria in LN and
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FIGURE 3 | Under physiological conditions little transferrin bound (TBI) and non-transferrin bound iron (NTBI) is filtered by the glomerular assembly and is reabsorbed

and cycled by the proximal tubular cells (PTEC). However, in LN, glomerular injury results in an increased leakage of TBI and NTBI, which can be reabsorbed by the

PTEC via TfR1, ZIP8/14, and MCEC. While TfR1 is regulated by the IRP-IRE system, ZIP8/14, and MCEC are not and can continue to absorb the leaking TBI and

NTBI to iron overload the PTEC. This can overwhelm the heavy chain ferritin (FtH) iron binding capacity, leading to release of labile iron and render the PTEC

susceptible to ROS mediated injury and lipid peroxidation. The glomerulopathy associated protein overload (e.g., albumin) and lupus autoantibodies can

independently induce ROS in the PTEC and activate ROS sensitive inflammatory pathways. The accumulated iron can catalyze ROS formation via the Fenton reaction

and exacerbate the inflammatory phenotype of the PTEC to worsen tubulointerstitial injury and accelerate the progression to renal failure. TfR1, transferrin receptor 1;

MCEC, megalin cubulin endocytic complex; FtH, heavy chain ferritin; ROS, reactive oxygen species; IRP-IRE, iron regulatory protein-iron response element.

other glomerulopathies is known to induce mitochondrial ROS-
mediated activation of the cytoplasmic NLRP3 inflammasome
pathway in PTEC (153) and stimulate proximal tubular
cells to synthesize chemokines that recruit immune cells.
While iron can exacerbate ROS production (152) and cause
mitochondrial damage (154), it can also directly activate the
NLRP3 inflammasome in monocytes, the other iron handling
cells (95). The NLRP3 inflammasome is an attractive target
to treat LN (155) and its expression in glomerulonephritis
remains largely confined to the tubules (156), a site of iron
loading in the kidney. While glomerular cells are affected by iron
(98–101), both human and animal studies demonstrate visible
iron deposits in the tubular segments. As the PTEC’s are the
major iron handing cells in the kidney, iron affects the tubular
segment more profoundly than the glomerular cells in settings
of LN. However, no study has compared iron induced injury
in glomerular and tubular cells in settings of LN and requires
more investigations.

FUTURE QUESTIONS AND IMPLICATIONS

The finding that the renal iron accumulation is associated

with increased injury and inflammation in LN poses a number
of pertinent questions. While this phenomenon is now well-

documented by multiple independent studies, the mechanisms

by which iron mediates and perpetuates tubulointerstitial

inflammation following glomerular injury is not yet defined.

Both induced and spontaneous models of LN indicate that
decreasing labile iron content using different strategies protects
against renal failure in LN, independent of the cardinal
autoimmune disease biomarkers, such as autoantibodies and
glomerular immune complex deposits. The mechanistic role and
consequence of inhibiting iron induced PTEC lipid peroxidation
or ferroptosis in LN has not yet been explored and is a new
frontier in this complex disease. Targeting ferroptosis could
open a novel research avenue and future adjunct therapy to
treat a cell that is insensitive to glucocorticoid therapy. T
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lymphocytes express ferroportin (157), take-up NTBI (158)
and iron induces epigenetic changes in SLE patients CD4+

T cells (159). Whether iron causally affects B lymphocytes is
unknown. This implies that a deeper understanding of renal
vs. systemic iron homeostasis is necessary. Iron metabolism is
an easily druggable target that could synergize with existing
immunotherapies that mainly act on the immune aspects
of SLE and LN. In this regard, VIT-2763 (oral ferroportin
inhibitor), synthetic human hepcidin and its agonists that are
currently in clinical trials (ClinicalTrials.gov: NCT04364269,
NCT03381833, and NCT03165864) could be tested as adjuvants
to immunosuppressive therapy for LN. A word of caution is
however mandated as long-term use of these interventions could

potentially worsen the anemia that is commonly associated with
drugs regulating iron metabolism.
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