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Abstract

Heterosis, the greater vigor of hybrids compared to their parents, has been exploited in maize breeding for more than 100
years to produce ever better performing elite hybrids of increased yield. Despite extensive research, the underlying
mechanisms shaping the extent of heterosis are not well understood, rendering the process of selecting an optimal set of
parental lines tedious. This study is based on a dataset consisting of 112 metabolite levels in young roots of four parental
maize inbred lines and their corresponding twelve hybrids, along with the roots’ biomass as a heterotic trait. Because the
parental biomass is a poor predictor for hybrid biomass, we established a model framework to deduce the biomass of the
hybrid from metabolite profiles of its parental lines. In the proposed framework, the hybrid metabolite levels are expressed
relative to the parental levels by incorporating the standard concept of additivity/dominance, which we name the
Combined Relative Level (CRL). Our modeling strategy includes a feature selection step on the parental levels which are
demonstrated to be predictive of CRL across many hybrid metabolites. We demonstrate that these selected parental
metabolites are further predictive of hybrid biomass. Our approach directly employs the diallel structure in a multivariate
fashion, whereby we attempt to not only predict macroscopic phenotype (biomass), but also molecular phenotype
(metabolite profiles). Therefore, our study provides the first steps for further investigations of the genetic determinants to
metabolism and, ultimately, growth. Finally, our success on the small-scale experiments implies a valid strategy for large-
scale experiments, where parental metabolite profiles may be used together with profiles of selected hybrids as a training
set to predict biomass of all possible hybrids.
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Introduction

Maize is one of the most important crop plants and its total

annual production of 883 Mt, as of 2011, exceeds the production

of other major crops, like rice or wheat, by 20% (http://faostat.

fao.org). In addition to its agronomic importance, maize has been

a model organism for biological research for nearly a century. The

integration of scientific knowledge into the breeding practice

resulted in a nearly linearly increasing average yield in maize

production from about 1.9 to 5.2 t/ha over the last 40 years.

Besides improvements in cultural practices, like irrigation and

fertilization, a constant development of superior cultivars and the

exploitation of the heterosis phenomenon contributed to this

success, with estimated genetic contribution to yield increase due

to hybrid breeding of 50–60% [1].

Heterosis describes the phenomenon that hybrids exhibit

superior performance relative to parental phenotypes [2]. In an

outbreeding crop, like maize, absolute heterosis of more than

100% can be observed relative to the better of the inbred parents

for some traits [3], but the extent of heterosis generally depends

highly on the parental genetic backgrounds and the environmental

conditions [4,5]. Breeding programs try to identify the most

promising hybrids among various parental combinations. As this

becomes labor intensive for higher numbers of parental lines,

prediction of hybrid performance (HP) based on parental traits has

long been under scientific investigation [6]. Traditionally,

phenotypic measures like General and Specific Combining Ability

(GCA and SCA) were obtained for this purpose. These measures

estimate HP based on the performance of Test Crosses (TC) of the

parents with other lines and was originally conducted by modeling

univariate traits with linear models given parental labels (see [7,8]

for modern examples), but can be expanded to model vectors of

traits as demonstrated in [9].

Parental labels alone are often not sufficiently predictive of HP.

Utilizing technological advances, various genetic markers have

been extensively tested as new or refined additional predictors for

HP using various mathematical approaches, including: linear

regression (LR), best linear unbiased predictors (BLUP), support

vector regression (SVR), and Bayes approaches [10–14]. The

achieved predictive power for a given trait (e.g., grain yield) varies
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greatly (for a nice review, see [15]). Riedelsheimer [19] is a recent

example whereby the hybrid biomass and bioenergy related traits

are combined into a single GCA value for the corresponding

parents, and the GCA value is then predicted using ‘omics’ data

measured on the parents.

In an extensive in situ experiment [16] to quantitatively

investigate major influencing factors on prediction accuracy,

inter-population structure and type of validation group were

shown to be the main contributors to the observed variance with

obtained prediction accuracies varying from 0.65 to 0.95 and

measured as correlation r between predicted and observed trait

value. In short, it is less difficult to achieve a good prediction

performance for (i) hybrids produced from divergent parental

populations, i.e., where parental lines are genetically more

unrelated, compared to convergent parental populations, and (ii)

hybrids for which TCs (half-siblings) from one or both parents are

evaluated within the training set compared to hybrids where no

such lines were included. Marker density, in contrast, had only a

minor effect on prediction accuracy, setting a limit to the

usefulness of additional genetic markers in a model.

Important agronomic traits are typically highly polygenic, and

are under the control of a large number of quantitative trait loci

(QTL) with small effects–a hard nut to crack with QTL-based

marker-assisted selection methods. Additionally, the identity, the

genetic function and interaction of specific genes associated with

heterosis of different traits is mostly unknown. More detailed

information may be obtained by inspection of other molecular

traits, like transcript or metabolite levels, which integrate genetic

and environmental influences [17,18]. The first complementary

testing of large-scale genomic and metabolite data to predict

important agronomical traits in hybrid maize test-crosses con-

cluded that the prediction accuracies of heterotic traits in adult

maize plants using metabolite profiles of the young leaves were

only slightly lower than with Small Nucleotide Polymorphisms

(SNPs), although metabolites represent approximately 300 times

smaller number of variables compared to SNPs [19].

Heterosis is typically investigated in adult hybrid plants,

however, this phenomenon already manifests during the very

early stages of seedling development [20]. The development of the

primary root as first organ allows the comprehensive analysis of

maize seedlings prior to the shoot emergence a few days after

germination since a number of heterotic traits were described on

the macroscopic (morphological and histological) [20] as well as on

molecular (transcriptome and proteome) [21,22] levels during

early postembryonic development. Although, the primary root

system contributes little to the season-long maintenance of the

corn plant, it helps sustain seedling development by virtue of water

uptake, and is important for early vigor of the maize seedlings

[23]. In order to enable tight control over environmental

parameters for plant growth and metabolite data collection,

primary root was used as model system in this study.

Previously, we reported metabolite and biomass data of primary

roots obtained by full diallel mating design of four European maize

lines (two dent and two flint lines). The results led us infer that

hybrids show optimized metabolic flux configurations with respect

to biomass optimization [24]. It is reasonable to assume that the

metabolic levels leading to optimized metabolic flux configurations

are constrained by the genetic possibilities inherent in the

particular parental combination (along with the ’standard’

biochemical constraints) and, therefore, that parental metabolite

levels may allow the prediction of complex heterotic traits, e.g.,

hybrid primary root biomass. This question was already investi-

gated with some success in a large Arabidopsis data set [25,26]

where it was shown that feature selection, i.e., a filtering process

retaining only a minimal set of markers containing the relevant

information, was a critical step to improve HP prediction and,

further, that variable importance in the projection (VIP) can be

used for this purpose [26].

There are many frameworks for prediction of macroscopic

phenotype directly from the parents. To our knowledge, predic-

tion of molecular phenotype such as hybrid metabolic profiles has

not been previously attempted, although this could enhance

prediction of macroscopic phenotype. In this work, we aim to

investigate the prediction value of parental metabolite profiles for

hybrid metabolite levels and biomass production during the very

early stage of maize seedling development. Here, we present

methods to (1) transform hybrid metabolite levels relative to

parental levels by using standard concepts of additivity and

dominance, thereby implicitly retaining the diallel structure, (2)

predict hybrid metabolite phenotype given parental metabolite

profiles and (3) use the results of (2) as a feature selection method to

predict hybrid biomass directly from parental profiles. We find a

subset of parental metabolites which are not only predictive of

hybrid molecular phenotype but also of biomass.

Methods

Plant Material and Growth Conditions
The maize inbred lines UH002, UH005, UH250 and UH301

as well as their 12 hybrid combinations were generated in the

nursery of the University of Hohenheim in the summer season of

2003. Seeds were surface sterilized, thoroughly rinsed in twice

distilled water, transferred on moistened filter paper

(1936290 mm Grade 603 N, Munktell&Filtrak, Bärenstein,

Germany) which was rolled up with 10 seeds of a genotype per

filter paper and germinated in a phytochamber (Versatile

Environmental Test Chamber, MLR-350, Sanyo, Japan) at

26uC, with a 16 h light and 8 h dark cycle [20]. For further

analyses, the 3.5-day-old roots were excised with a razor blade, the

roots growing on the same filter paper were pooled, weighted,

snap frozen in liquid nitrogen and stored at 270uC. This

procedure was repeated six times per genotype leading to six

biological replicates. Altogether six times ten kernels of 12 hybrid

and 4 inbred genotypes were in randomized order independently

germinated and harvested. For each sample the average biomass

(fresh weight of 10 pooled primary roots) was calculated, these

values represent the primary root biomass in the very early stage of

maize seedling development. Frozen samples were randomly

grinded in 2.0 ml round bottom micro-vials (Eppendorf, Ger-

many) with prewashed 0.25 inch steel balls in a mixer mill (Retsch,

Haan, Germany). Per sample 100 mg of frozen homogenized

pooled root material was subjected to subsequent sample

extraction.

Root material was preferred over analyzing kernels to account

for heterosis effects during seed formation (accumulation of storage

compounds) as well as seedling establishment (storage compound

utilization and environmental influences).

Metabolomics Analyses and Data Normalization
A targeted analysis [27] evaluating the levels of 112 distinct

metabolites was conducted for six biological replicates of each

individual genotype following the procedure outlined in [28] and

modified as described in [29] with respect to the extraction

mixture (MeOH:MTBE:H2O instead of MeOH:CHCl3:H2O).

The 112 metabolites are a subset of the extractable polar fraction

of metabolites which are accessible by gas-chromatography-mass

spectrometry (GC-MS) and where selected after manual inspection

of several chromatograms. Sixty nine metabolites were identified

Hybrid Performance Prediction Framework
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by comparison with the Golm Metabolome Database [30] as a

reference based on Retention Index and spectra similarity. For 19

of the remaining 43 unidentified metabolites we could assign a

putative chemical class (aa: amino acid, acid: organic acid, cho:

sugar, chop: sugar phosphate) according to selective masses from

the spectra. All samples were measured in completely randomized

order in three consecutive batches (measurement days).

Metabolite intensities were log10-transformed to better resemble

a normal distribution. A two-way analysis of variance (ANOVA)

was applied using genotype and sample batch as factors.

Systematic differences due to the latter factor were thus removed.

Values with studentized residues larger than four were eliminated.

In a further normalization step, we corrected for differences in

metabolite levels due to variation in initial sample amount. Here,

we calculated a correction factor for each sample as the ratio of its

median peak height (i.e. metabolite level) and the median peak

height for all replicates of the similar genotype. By dividing each

sample with its correction factor, we scaled biological replicates to

a similar median peak size.

Notation
Let G be the set of parental genotypes with G~ UH002,f

UH005, UH250, UH301g, and g denote a member of G, i.e.,

g[G. A hybrid genotype is denoted by h[H , where H~

g1, g2ð Þ g1, g2ð Þ[G|G, and g1=g2f g: In total, there are 12

different hybrid and 4 different parental genotypes.

Let Aj j denote the cardinality of a given set A.

Let r denote the number of available replicates for each

measurement. The np|m matrix Xp gathers the profiles of

m~112 metabolites from Gj j~4 parents and r~6 replicates,

thus, np~ Gj jr~24. The matrix Xp will be referred to as the data

matrix of parental metabolic profiles. Analogously, the nh|m data

matrix Xh gathers the hybrid metabolic profiles, where nh~

Hj jr~72. Columns of Xp and Xh, corresponding to metabolites,

are mean-centered and scaled to unit variance.

Let X i, 0ð Þ denote the ith row of a matrix X , and X 0, jð Þ its jth

column.

We next construct an nh|2m matrix Xpp, where each row

represents a hybrid as a concatenation of two parental profiles

Xpp h, 0ð Þ~ Xp g1, 0ð Þ,Xp g2, 0ð Þ
� �

, also mean-centered and scaled

to unit variance.

Notation regarding replicates is suppressed and it is always

implied that a group of replicates is meant when a genotype is

discussed, unless otherwise stated.

Problem Setting
Every h[H can be represented on 4 levels:

N A: the labels g1 and g2 of its parents

N B: the combined metabolic profiles of both of its parents

N C: its own metabolic profiles

N D: its biomass.

In practical terms (e.g., a breeding program), it is desirable to

predict macroscopic quantities such as D given an easily

obtainable quantity describing its parents. Efforts have been made

for decades to predict D given A by using linear models,

culminating in the Bayesian formulation found in [7].

A black-box approach would be to predict D given B, however,

level C is skipped which potentially has predictive information.

Levels B and C could also stand for other types of molecular data,

such as transcript or protein levels. Additionally, there would be

the need to select features of B to gain biological insight or develop

a small number of predictive biomarkers for use.

Here, we aim to predict C given B. In general, it is hard to

predict one profile given another, hence we apply the following

simplification: if Xh is the matrix of profiles corresponding to C,

and XPP corresponds to B, we predict Xh 0, jð Þ given XPP for each

j. The trade-off of this simplification is that the individual

metabolites in the hybrid profiles are treated as if they are

independent of each other, which is clearly not true for each

metabolite.

The output of the parallel prediction problems (Xh 0, jð Þ given

XPP) is aggregated and some parental metabolites (labelled as

either maternal or paternal) show an overall higher predictive

power of Xhthan others. Therefore, we use this as a biologically-

motivated feature-selection method and find that these parental

metabolites are also predictive of biomass, i.e., allow to predict D

given B.

Problem Formulation
A new nh|m matrix T is first constructed, quantitatively

capturing the concept of additivity and dominance, by comparing

the levels of each metabolite in h to those in the respective parents.

As a result, hybrid metabolite levels are expressed relative to the

corresponding parental levels and not to a common reference

(zero). This captures the genetic constraints imposed by the

parents, and is achieved by using moderated t-statistic [31], as

detailed below.

For every metabolite j, j[ 1, . . . ,mf g and every hybrid h[H, we

consider the following two null hypotheses for i = 1 (maternal) and

i = 2 (paternal):

H0 1ð Þ : E(Xh h, jð Þ)~E Xp p1, jð Þ
� �

, and H0 2ð Þ : E(Xh h, jð Þ)

~E Xp p2, jð Þ
� �

Because for each h, there is a multiple testing situation,

moderated t-statistics are calculated over 1, . . . ,m for each h.

Using this approach, each metabolite j within each hybrid h is

given a label T h,jð Þ[ +2,+1,0f g specified by:

� Xh h, jð ÞwXp p1, jð Þ AND Xh h, jð ÞwXp p2, jð Þ[T h, jð Þ~2,

� Xh h, jð ÞwXp p1, jð Þ ORXh h, jð ÞwXp p2, jð Þ[T h, jð Þ~1,

� Xh h, jð Þ~Xp p1, jð Þ AND Xh h, jð Þ~Xp p2, jð Þ
� �

OR

Xh h, jð ÞvXp p1, jð Þ AND Xh h, jð ÞwXp p2, jð Þ
� �

OR

Xh h, jð ÞwXp p1, jð Þ AND Xh h, jð ÞvXp p2, jð Þ
� �

[T h, jð Þ~0,

� Xh h,jð ÞvXp p1,jð Þ OR Xh h,jð ÞvXp p2,jð Þ[T h,jð Þ~{1,

� Xh h, jð ÞvXp p1, jð Þ AND Xh h, jð ÞvXp p2, jð Þ[T h, jð Þ~{2

where, for succinctness, the notation for expectation E() is

neglected for all X and 62 corresponds to positive/negative

overdominance, 61 corresponds to positive/negative dominance

and 0 corresponds to additivity, respectively. Therefore, in the

alternative formulation, the problem is that of classifying the

parental matrix Xpp according to:

Hybrid Performance Prediction Framework
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T 0, jð Þ, i:e: T̂T 0, jð Þ~Cj Xpp

� �
,

where Cj is a classifier to estimate T 0, jð Þ given the parental

matrix Xpp as input.

Let Nl jð Þ~ T h, jð Þ : T h, jð Þ~lf gj j,l[L,L~ {2,{1,0,1,2f g
denote the number of genotypes with the corresponding class

label in metabolite j. Hybrid metabolites are then filtered so that

only those with reasonably balanced classes are predicted by

assigning each hybrid metabolite j a weight wj~0 where:

Al[L, such that Nl jð Þ§9 OR

Al1,l2[L, such that Nl1 jð Þ~Nl2 jð Þ~1 and wj~1, otherwise.

For two of the remaining metabolites where Al1[L, such that

Nl1 jð Þ~1, we removed only the rows of the corresponding

genotype.

In a classification problem, given a data set of points, belonging

to one of at least two classes, it is required to determine a function

of the features, specifying the points, to infer the class labels.

Depending on the properties and constraints the function should

satisfy, there are several approaches available, and a thorough

overview can be found in [32]. Here, the class labels are given by

the CLR, and the features are the parental metabolites. To infer

the class labels, we employ five classification methods: support

vector machines (SVM) VAPNIK, linear discriminant analysis

(LDA) [32], random forests (RF) [33], RF preceded by a partial-

least-squares dimension reduction step (PLS-RF) [34] and LDA

preceded by a partial-least-squares dimension reduction step (PLS-

LDA) [34]. Selecting a classification method M (M: SVM, LDA,

PLS-LDA, PLS-RF, RF) for a problem based on lowest class error

rate of an individual method can give an ’optimistic bias’ [35].

Therefore, we used the following strategy to obtain those

metabolites which are well classified regardless of the classification

method employed (available from the Bioconductor package CMA

[36]):

For each j with wj~1:

1. Construct a new Xpp, after permuting the rows Xp g1, 0ð Þ and

Xp g2, 0ð Þ, corresponding to each h.

2. Split Xpp into 3 groups of samples for 3-fold cross validation

(sampling balanced across classes)

3. Construct the classifier Cj 3 times using each group once as the

test set, and apply different classification methods to estimate

either the observed labels T 0, jð Þ or a permuted version ~TT 0, jð Þ
thereof.

4. Report the median misclassification rate Err j,M,Pð Þ for

method M and P~0,1 for T 0, jð Þ and ~TT 0, jð Þ respectively.

5. Repeat steps one to four 25 times.

6. For each method, report the median misclassification rate

Err j,M,Pð Þ over the 25 replicates. Select the two methods

Mmin j,Pð Þ with min median Errð Þð Þ in both P~0,1.

7. Define Dj~Q1 Err j,Mmin j,P~1ð Þ,1ð Þð Þ{
Q3 Err j,Mmin j,P~0ð Þ,0ð Þð Þ, where Q1 and Q3 denote the first

and third quartiles, respectively, of 25 median errors

Err j,M,Pð Þ. First and 3rd quartiles are used to be stricter

than comparing medians.

If Djw0, then T 0, jð Þ is considered to be predictable using Xpp.

For these metabolites, it is now desired to select the features of Xpp

which are most predictive of T 0, jð Þ. To do so, ranked feature

weights of SVM is used (regardless of performance compared to

other methods, as this remains unknown), i.e., for each Cj , there is

a 2m-vector of parental metabolite feature weight ranks R j, j0ð Þ,

where j0[1, . . . ,2m and indexes the parental metabolites. Ranks

are used to avoid the problem of feature weights being on different

scales for each j, and to avoid the problem of threshold selection.

To summarize the combined performance of all hybrid

metabolite classifiers, the parental metabolites j0 are ranked based

on the median of R 0, j0ð Þ, i.e., their importance in predicting each

j. Parental metabolites with a low median R 0, j0ð Þð Þ are often

important in predicting T 0, jð Þ and conversely metabolites with a

high median, are not very often important in predicting T 0, jð Þ.

Validation of Selected Parental Metabolites Using Hybrid
Fresh Weight

To test if the informative parental metabolites, which are low

ranked in hybrid metabolite prediction, are also predictive of

biomass (FW ), we form a final ranking for parental metabolites

R0 j0ð Þ~rank median R 0, j0ð Þð Þð Þ.
We form a biomass predictor PSVR using support vector

regression on 60% of the samples as a training set and measuring

performance calculating the Pearson correlation between the

predicted (dFWFW ) and actual biomass values.

dFWFW~PSVR Xpp 0, s R0ð Þð Þ
� �

To determine the subset of columns (metabolites) of Xpp selected

we define sƒr R0ð Þ as being 5 randomly selected metabolites out of

those with R0 j0ð Þƒr, and r~5,10,20,50,224, and s§r R0ð Þ with

R0 j0ð Þ§r and r~51,174. This is compared to sƒr R0ð Þ for

r~5 and 224 with the FW values block permuted, i.e. biological

replicates for each h remain together. For each s R0ð Þ, PSVR is

constructed 500 times, each time with rows randomly assigned in

Xp g1, jð Þ and Xp g2, jð Þ, as well as FW replicates also being

randomly assigned.

A schematic representation of our analysis pipeline can be found

in Figure S6.

Results

Description of the Experimental Setup and Conceptual
Framework

We used four European parents, two of each from the flint

(UH002 and UH005) and the dent (UH250 and UH301) pool,

and all their reciprocal hybrids. The full experimental design is

displayed in Figure S1 B and was also previously described [24].

Based on our earlier observation that biomass was correlated to

the deviation from a set of optimal metabolic levels, we concluded

that in order to complete a targeted breeding approach, it is

crucial to establish the link between parental and hybrid profiles.

While it is easy to select promising parental lines (Gp) and measure

their metabolic profiles (Mp), we set out to devise a method to infer

from Mp the hybrid profile (Mh), or a derived version (Mh) thereof,

retaining sufficient information to predict hybrid biomass (FWh)

ultimately based on parental traits alone (Figure S1 A, Materials

and Methods).

As metabolism is sensitive to changing environmental conditions

[37], our experiment was designed to keep environmental

influences at minimum. Therefore, we performed our study on

the germinating root system in maize, where heterosis was

previously shown to occur in a highly controlled setup [20]. Six

biological replicate samples, each containing 10 pooled roots, were

analyzed by gas-chromatography time-of-flight mass-spectrometry

(GC-TOF-MS) to obtain the metabolic profiles comprising the

levels of 112 metabolites [24].

Hybrid Performance Prediction Framework
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We initially tested if biomass can be predicted based solely on

knowledge of the parental genotype and biomass, utilizing a

Bayesian framework [7] to estimate the posterior densities of the

inherent effects. However, hybrid outcome is essentially arbitrary

in the absence of further information, and there is no power for

further generalization (e.g., parent X improves hybrid biomass

independent of the other parental genotype). Therefore, to gain a

deeper insight, we next investigated the connections between

parental and hybrid metabolite profiles and average roots biomass.

Re-encoding the Hybrid Metabolite Profiles According to
Individual Heterosis Mode of Action

Hybrid metabolic levels depend on parental levels, albeit in an

unknown way. To investigate the connection, we do not work with

absolute hybrid metabolic levels but rather we transformed them

to relative values with respect to the corresponding parents.

However, here each hybrid metabolite is compared to two

separate quantities, namely the corresponding maternal and

paternal metabolite levels, and a decision must be made on how

to combine the parental levels. Representing the parental levels by

the mean may not suffice, because the separation between the

parental levels is lost and this is essential information about the

diallel structure. Instead, we define the Combined Relative Level

(CRL) by applying the concept of additivity/dominance/over-

dominance to each metabolite. If the hybrid level is significantly

greater/smaller than both respective parental levels, then CRL is

+/22. If it is significantly greater/small than just one parent, CRL

is +/21. When it is indistinguishable from both parents or greater

than one and smaller than the other, CRL is 0 (cf. Methods).

While information about the diallel is retained through the

consideration of the separation of each parental combination in

the calculation of the CRL, it is evident that the magnitude of the

hybrid shift is lost.

Our aim was to examine whether certain regions of parental

metabolite space favor certain shift directions, as a consequence of

common genetic and biochemical constraints. However, while we

did the classification individually per metabolite, hybrid metabolite

levels are likely to be the outcome of complex combinatorial

patterns of multiple parental metabolites levels [38]. The

corresponding parental metabolite levels of metabolite x may

even be less influential for the hybrid outcome of x than the

parental levels of metabolites y and z, which potentially allows the

prediction of hybrid outcome based on a reduced set of parental

metabolite levels.

Predicting the Hybrid Class Label Profile
We asked for every hybrid metabolite which of the parental

metabolites is predictive of the hybrid class labels based on their

levels. The parental input matrix Xpp is constructed as a

concatenation of maternal (m) and paternal (p) profiles (cf.

Methods) and, therefore, contains every metabolite twice (e.g.

alaninem and alaninep).

Figure 1. Hybrid class label matrix. The hybrid class label matrix is
established using moderated t-statistics (cf. Methods). It shows the
observed metabolite heterosis mode of action in all hybrids.
Metabolites with unbalanced class labels (e.g. predominantly showing
similar class, upper 53 rows) were excluded before conducting
classification methods. Various classification methods were used on
parental metabolite data to investigate which parental metabolites
allow to predict the observed classes within hybrids.
doi:10.1371/journal.pone.0085435.g001

Hybrid Performance Prediction Framework
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Before classification, hybrid metabolites which show the same

class label at least nine times (out of 12 combinations) were

removed. This is necessary to avoid an overly unbalanced set of

class labels, narrowing down the profiles to 69 metabolites

(Figure 1). The threshold of nine was chosen based on a visual

inspection of class label balance distribution. We then tested

several classification methods (support vector machines (SVM),

linear discriminant analysis (LDA), random forests (RF) and

combinations of partial least squares (PLS) with the previous: PLS-

LDA and PLS-RF, cf. Methods for details) which are ideally

evaluated against an independent test data set to avoid choosing

the ‘best’ method. Because such a test data set is currently not

available, we compared our results to classification with permuted

class labels using 3-fold cross-validation on both permuted and

original datasets, each time with 25 replicates. For the 54

metabolites where the minimum original median error from one

of the classification methods was lower than the minimum

permuted median error we considered parental profiles to have

predictive power for the hybrid class label. The median miss-

classification frequency for the SVM method, which often has a

low CV error, is shown in Figure S2.

Identifying the most Influential Parental Metabolites
The next question to address was which parent metabolites are

influential in the prediction of hybrid class labels which requires a

feature selection procedure. As SVM performs well overall, we

decided to use the embedded feature selection method, i.e.,

recursive feature selection. However, the feature weights appeared

to be on different scales for each hybrid metabolite, and,

furthermore, there was the additional problem of choosing an

appropriate feature weight threshold. To circumvent these

challenges, the feature weight rankings were used, where a low

rank corresponds to high feature weight or variable importance.

The median ranks over all 54 hybrid metabolite class label

predictions were scaled between 0 and 1, allowing the identifica-

tion of parental metabolites with global importance, rather than

individually choosing and interpreting a set of features for each

metabolite. The rank distribution within each feature (parental

metabolite) over all predicted hybrid metabolites is shown in

Figure 2, where metabolites are sorted by their median rank.

It can be seen that features with low median rank are also highly

skewed to the left, meaning they are low ranked more often than

high ranked. At the other end, there are features which are never

of low rank. This implies that there is a set of parental metabolites

which may be implicated in the outcome of the discretized hybrid

metabolite profiles (CLR), i.e. they are informative not only for the

hybrid heterosis mode of action for the respective metabolite itself

but for several up to many metabolites.

To assess how robust our feature ranking would be if not all

genotypes are included in the modeling step we performed a leave-

one-out (LOO) approach excluding all replicates of a specific

hybrid. This is important for a later application in breeding where

we would like to make predictions on hybrid traits based on their

parental properties without measuring the hybrid itself. While it is

obvious that a LOO strategy is less strict compared to an

independent test set, we found the feature ranking to be very stable

(Figure S3).

Predicting Hybrid Root’s Biomass from Parental
Metabolite Profiles

We have been able to predict the CRL class labels of each

hybrid metabolite individually given the parental profiles, and

some parental metabolites are overall more influential than others.

Furthermore, this ranking does not appear to be dominated by any

genotype in particular, given that the feature ranking is stable

using a LOO approach.

It would be of practical use to predict the biomass of primary

roots in the progeny given parental profiles, and thus we now

investigate whether the feature ranking can also be used for feature

selection. We predict the biomass given the parental profiles using

support vector regression (SVR), and as a baseline, we use all

metabolites, with prediction quality measured by correlation

between actual and predicted biomass values (Figure 3, Box L).

Comparing the prediction quality to that of permuted biomass

values, the parental profiles are indeed predictive of average fresh

weight (Figure 3, Box M).

We would like to know whether all features are necessary for

prediction, or whether a small number of features may achieve

comparable predictive power. We find that using only the top 5

ranked features in the SVR gives comparable results to using all

Figure 2. Ranking of the parental features. Parental metabolite levels (224 features in total) are used to predict the observed class labels of 54
hybrid metabolites. In each prediction model all features can be ranked according to their weights. The ranks are scaled between 0 and 1 by dividing
by the total feature number. The scaled median rank distribution of a feature, i.e. the individual boxes in the plot, then gives an estimate regarding
the importance of the absolute parental level of the respective metabolite on the heterosis pattern of all hybrid metabolites.
doi:10.1371/journal.pone.0085435.g002
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features (Figure 3, Box A). We would like to know how many of

the top ranked features are equally good predictors. To this end,

we randomly select 5 out of the top 10, 20 and 50. The top 5, 10

and 20 features have comparable prediction quality (Figure 3, Box

B and C), and there is a decrease in prediction quality by using the

top 50 (Figure 3, Box D). Note that the number of features used in

the SVR remains fixed at 5, as a higher number of features was

found to improve prediction quality for the top 10 and top 20.

Furthermore, prediction quality progressively decreases as more

bottom ranked metabolites are included in the SVR (Figure 3,

Boxes E, F and G).

The results of the top 5 and random 5 can be compared to

predictions of permuted biomass (Figure 3, Boxes H and I), and

the top 5 features are also predictive of biomass, while it is not true

in general that randomly selected features are predictive. Note that

even predictions on permuted biomass gives results which are

better than random (median correlation is greater than 0). As

expected, prediction is truly random when the correlation

structure of the parental profiles is destroyed by permuting the

cells of the parental profile matrix (Figure 3, Boxes J and K). Thus,

the feature ranking found by predicting hybrid CRL class labels is

of direct relevance to the prediction of average fresh weight.

Discussion

In every plant, the genetic information is processed in a

multitude of downstream processes (transcription, translation,

post-translational modification, and metabolism) and in response

to fluctuating environmental conditions, ultimately giving rise to a

phenotype. For any given genome, the complete downstream

process is highly complex and largely unknown, rendering the

phenotype prediction based on genotype alone difficult. The

combination of two parental genomes in a hybrid further leads to

different levels of heterosis and adds yet another layer of

complexity to the prediction problem. On the other hand,

metabolic levels already integrate some of these processing steps

(genetic predisposition and environmental conditions), are inex-

pensive to measure and have been shown to be closely connected

to macroscopic traits such as biomass [39].

Here, we describe the analysis of the metabolic patterns of

germinating roots of corn hybrids and their corresponding

parental lines to ultimately predict HP. Little is known about the

connection of parental and hybrid metabolite levels and all

possible heterosis mode of action have been observed in the

population under study [24]. We devised the concept of CRL

which compares the hybrid level to each parent separately,

thereby incorporating the diallel structure of the data. The

discretization induced by the CRL also avoids potential non-

linearity in hybrid metabolic levels.

We then classified the parental profiles with respect to the CRL

labels for each metabolite, assuming that the outcome of each

hybrid metabolite is influenced by the entire profile and not just its

corresponding parental metabolite levels. We then aggregate the

results of the separate classification problems to discover the

parental metabolites which are most often influential in the hybrid

outcome. To complete the chain of our model framework, we

demonstrate that these same parental metabolites are more

predictive of biomass than metabolites selected at random.

While each metabolite for each hybrid is compared to the

corresponding parental metabolite levels in a univariate manner, it

is not assumed that parental metabolites are determining hybrid

levels independently of each other, but rather that the entire

profile of both parents may be predictive. A simplified example is

given in Figure S4. Presume that the level of metabolite X is low in

genotypes A, B and C and high in D and E. If relationship

between the average parental level and hybrid level is examined, it

can be seen that even though both hybrids AxB and BxC have low

average parental levels, the hybrid outcome is high and low,

respectively. However, this disparity is in fact being driven by

metabolite Y, whose average parental levels are, too, low and high,

respectively. Furthermore, the interaction between parental

metabolites may also be a function of level. For instance, when

the average parental levels of DxE are high in X, this becomes the

dominant influence, and causes the hybrid level to be moderate.

This is despite the levels of Y being very close together in A, B, C

and D.

To obtain a black-box predictor, we could have simply

regressed parental profiles against roots biomass and for added

interpretability we could have used a purely statistical scheme for

feature selection. However, this is a difficult task and ideally would

require some form of validation. Additionally, prediction of

biomass requires further optimization to choose the ’best’ features,

and it is not clear what criteria should be optimized. We

circumvent this by choosing features that are highly relevant to

metabolite shifts that have a solid biological interpretation, and

validate them by demonstrating that they are additionally

predictive of biomass.

We cannot claim that the predictive metabolites from this study

are optimal predictors of biomass in experimental setups differing

from ours. Additionally, the existence of multiple metabolic

optima may confound a more straightforward prediction problem.

Although it is not obvious how parental metabolic profiles

influence HP and given that the genetic combining rules and the

genetic-metabolic connections are unknown and likely to be

complex, here, we demonstrate within one set of genotypes that

Figure 3. Prediction evaluation. The correlation between observed
and predicted HP in models incorporating 5 metabolites. The
metabolites have been selected based on a previous ranking (cf.
Figure 2). It can be seen that good prediction accuracies are only
obtained for high ranked metabolites and not for low ranked
metabolites, which perform comparable to permuted data sets.
Metabolite input matrices Xpp were established as described in
Methods.
doi:10.1371/journal.pone.0085435.g003
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the metabolic layer can be used as a proxy for the genetic layer,

and by extension, that the parental profiles are predictive of

biomass. Therefore, we have given a framework which can be

easily applied to larger sets of genotypes.

The top ranked metabolites are postulated to have the greatest

predictive power of fresh weight. However, it is not certain how

robust the ranking is, or whether the most influential metabolites

are interchangeable. From Figure 3 we can conclude that between

10 and 20 top metabolites are interchangeable, as beyond this

point, inclusion of further metabolites decreases prediction

accuracy. On the other end, regarding the bottom 50 metabolites,

we see that these are rarely influential in predicting hybrid

metabolite profiles and also have no predictive power for biomass.

This suggests that either these metabolites do not act as a proxy for

the genetic layer, or that it is encoded in a more complex manner

than our model can capture. Amongst the top 5 metabolites are

prolinem, ketoglutaric acidm, histidinem and trehalosem. In these

cases always the maternal level (indicated by m) is more important

in the prediction of hybrid outcome. This seems to be a general

trend, as we find amongst the top 20 features only 5 paternal

metabolite levels (Figure S5), and may be caused by both gene

dosage effect in metabolite composition of kernel’s triploid

endosperm, the primary energy reserve as well as source for

nourishment for a young corn seedling [40,41] and the maternal

inheritance of the plastidal genome in angiosperms. In accordance

with our initial expectations regarding the usefulness of a feature

selection, the hybrid class labels for histidine cannot be signifi-

cantly predicted from parental levels, while the maternal level of

histidine is highly predictive of the hybrids class labels of many

other metabolites.

The present data set certainly is too small to allow more than

speculative conclusions about these features. However, we have

devised a conceptual framework of how genetic information may

be processed when two genotypes are crossed, and attempted to

apply machine learning methods to mimic such a process. The

results of the described feature selection method might be better

accessible to biological interpretation compared to black-box

approaches. The results give a foundation for future investigation.

Supporting Information

Figure S1 (A) Idealized prediction workflow. The aim of

this study was to establish a mathematical framework, which

allows to predict an integrative hybrid trait (Fresh Weight) from

molecular parameters, namely levels of metabolites, obtained in

the respective homozygous parents. (B) Experimental setup
and color scheme. Root samples of four European maize lines

and their twelve reciprocal hybrids were analyzed throughout this

study.

(PDF)

Figure S2 Class labels miss-classification frequency.
The median miss-classification frequency for class labels (indicat-

ing heterosis mode of action) of 69 metabolites showing balanced

label sets obtained by SVM and compared against the minimum

value obtained for permuted data sets (minperm). Metabolites are

ordered according to the SVM misclassification rate for non-

permuted data.

(PDF)

Figure S3 Leave-one-out validation of feature ranking.
Feature ranking in a LOO approach compared to the original

rank position of the parental metabolites. In general, ranking order

is preserved, which potentially allows to apply the model to novel

genotypes not included in the model building process.

(PDF)

Figure S4 Independence of metabolite levels. Metabolite

levels cannot be regarded as independent from each other. In this

example the hybrid level of metabolite X is dependent on the level

of metabolite Y and can therefore not be predicted from the

average parental value of X.

(PDF)

Figure S5 Importance of maternal and paternal effects.
Parental metabolic features can be ranked according to their

importance in hybrid class label prediction. Low ranks indicate

metabolites which often important in prediction models. Maternal

parental features are overrepresented among the top 20 metab-

olites from such a ranking. The Figure displays the number of

maternal and paternal features up to a certain rank position. The

further apart both lines are the stronger the effect is. At rank 20 for

example we find 15 maternal and only 5 paternal metabolic

features.

(PDF)

Figure S6 Final model workflow. Model workflow to

perform a feature selection based on mid-parent heterosis,

ultimately allowing to predict HP from parental metabolic profiles.

(PDF)
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