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Abstract

Technical Note

IntroductIon

Artificial intelligence (AI) using artificial neural network 
computational image analysis can be applied to many aspects 
of morphology‑based laboratory analytics in hematology 
and cytopathology.[1‑3] Convolutional neural network (CNN) 
algorithms can be trained to analyze images and subsequently 
classify them based on characteristic features. Successful 
applications of image analysis in the hematology laboratory 
include identification of malaria species, leukocyte differential 
counting, and classification and detection of acute leukemia 
and lymphoproliferative disease.[4‑9]

Alpha‑thalassemia, a genetic disorder of hemoglobin, is 
one of the most common genetic conditions worldwide. In 
high prevalence areas of East Asia and the Mediterranean, 
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an estimated 5%–15% of the population are carriers and 
0.1%–0.5% have hemoglobin H (HbH) disease.[10‑12] Detection 
of HbH inclusions within red blood cells is an established and 
specific method of screening for alpha‑thalassemia carriers and 
HbH disease.[13] Inclusions are rare in carriers, with a quoted 
frequency from the literature of 1 in 1000–10,000 red cells, but 
are present in abundance or between 5% and 50% of red cells, 
in HbH disease.[13] HbH inclusion testing is widely performed 
in low resource countries, is inexpensive compared to genetic 
testing, and yet able to detect a large proportion of the clinically 
important alpha0‑deletion carriers.[14‑16]

HbH inclusion detection relies heavily on the manual search 
for inclusions under light microscopy at high magnifications. 
Pathognomonic features are dark blue rounded inclusions 
conferring a pitted golf‑ball like appearance to the red cell. The 
process is labor intensive and time‑consuming given that the 
entire blood smear may contain few inclusions and is subject to 
interoperator variability similar to other operator‑dependent tests 
such as screening for parasites, detection of rare leukemia cells, 
and quantification of fetomaternal hemorrhage.[17‑19] Application 
of AI to assist in the detection of rare events carries the potential 
of improving detection rate, efficiency, and the quality of testing.

Detection of rare cells in peripheral blood is potentially 
challenging, whereas the analysis of normal or abnormal 
blood cells present in abundance in the smear would only 
require digitizing small sections of slides or a limited number 
of cells, the same approach for rare cells could potentially lead 
to false‑negative results due to inadequate imaging. Hence 
large areas of the slide would need to be analyzed for rare 
cell detection. Consequently, the speed of image acquisition 
becomes relatively important when large areas of slides need 
to be imaged. Whole slide scanners are devices which currently 
provide some of the most rapid scans, though scanning is 
typically performed at lower magnifications such as ×20 
and ×40,[20] well below the traditional magnification used for 
HbH inclusion detection.

Our primary aim was to develop an AI algorithm to detect 
HbH inclusions in blood smear images and to evaluate its 
utility as a diagnostic aid. To achieve the primary aim, a 
stepwise approach was taken to develop various steps of 
the process. This included evaluation of AI performance on 
images obtained at lower magnifications and on different image 
scanning platforms, the effect of storage on the quality of 
HbH blood smears, quantification of the total red cells within 
an image, estimation of the true frequency of HbH‑positive 
red cells in alpha‑thalassemia trait and validation of adequate 
image sampling as prerequisites before clinical evaluation. 
The following describes the intermediary steps to achieve the 
primary aim.

MaterIals and Methods

The study was conducted prospectively between December 
2017 and September 2020 at the Department of Laboratory 
Medicine, National University Hospital, Singapore. Ethics 

approval was granted by the Domain Specific Review Board 
of the National Healthcare Group (number 2017/01170). 
Anonymized blood smears were obtained from adults whose 
samples were submitted for thalassemia screening.

Blood smear preparation and hemoglobin H inclusion 
identification
HbH inclusion stain was performed using 1% Brilliant Cresyl 
Blue (BCB) staining solution on fresh K3‑EDTA anticoagulated 
peripheral blood using a standardized protocol as previously 
described,[13] following which blood smears were made on glass 
slides. BCB is a supravital redox dye which causes precipitation 
of unstable HbH as rounded bluish inclusions and also stains 
the ribosomes of reticulocytes which appear filamentous, while 
normal mature red cells have a pale grey appearance. BCB 
differs from Romanowsky stains such as Wright‑Giemsa used 
for leukocyte identification. In the routine diagnostic method, 
smears were observed for HbH inclusions by light microscopy 
using ×100 oil immersion lens by an experienced laboratory 
technologist, and HbH inclusion positive cells were verified 
by a second technologist. Two smears were inspected for 
cases with normocytic red cell indices and up to 6 smears for 
cases with microcytic red cell indices. The routine diagnostic 
method was used to classify smears into three slide‑level 
categories as per usual practice: HbH‑positive smear (rare 
HbH inclusions), HbH disease (abundant HbH inclusions), and 
HbH‑negative smears. HbH‑negative cases used in the study 
were additionally selected for normal hemoglobin and red cell 
indices.[21] As the aim of the study was to develop a software 
that could serve as an aid for morphological diagnosis rather 
than to attain the accuracy of genetic diagnosis, the results of 
the routine diagnostic method were used as the comparator for 
software performance.

Digital image capturing
Images of HbH‑positive and HbH‑negative blood 
smears were obtained at ×100 oil immersion objective 
(NA 1.25, 0.05 µm/pixel), ×60 objective (NA 0.8, 0.09 µm/
pixel) and ×40 objective (NA 0.75, 0.13 µm/pixel) on the 
Olympus™ DP27 digital camera system attached to a BX53 
microscope. Whole slide images (WSI) of the entire blood 
smear were obtained on the Hamamatsu NanoZoomer S60™ 
whole slide scanner at ×40 objective (numerical aperture 
0.75, 0.23 µm/pixel) as shown in Figure 1A. Partial slide 
images (PSI) each with an area of 25 mm2 were obtained on 
the Precipoint M8™ slide scanner at ×40 objective (numerical 
aperture 0.75, 0.16 µm/pixel) at regions where red cells were 
just overlapping. Digital camera and image acquisition settings 
were fixed during the study period.

Artificial intelligence identification of hemoglobin H 
inclusions
The two AI software applications used in the study were 
developed by the authors of this study. The first is an image 
analysis software which performs unbiased, automated analysis 
of digital image objects using deep learning techniques. The 
underlying machine learning model is a deep convolutional 
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neural network equipped with residual connections (ResNet). 
The neural network is based on a Region‑Based Convolutional 
Network (RCNN) architecture with a ResNet‑50 feature 
extraction backbone. This particular configuration was 
chosen for this study because neural networks with RCNN 
architectures have become the state of the art for accurate 
object detection, especially for small objects such as individual 
cells.[22] In order to reduce the training time, the weights of the 
feature extraction backbone were initialized to those of a model 
pretrained on the ImageNet dataset. The model was trained to 
identify HbH+ cells and predicts bounding boxes around them 

on the basis of the features extracted by the backbone. Model 
weights were tuned throughout training to minimize two loss 
functions, the L1 loss on the bounding box coordinates and the 
cross‑entropy loss on the prediction probability of bounding 
boxes. Both loss functions were given the same weight. The 
second software, Qritive Pantheon™, is a whole slide image 
viewer that enables users to inspect and annotate digital images 
as well as view predictions made by the AI software.

In the first phase, red cell images obtained at ×100 were 
individually segmented by software and annotated by two 
experienced technologists (C. ME. C, E. YP. L) into HbH 
inclusion positive (HbH+) and HbH inclusion negative (HbH‑), 
i.e., the cell‑level classification. The single‑cell annotation 
formed the ground truth. The images were assigned into a 
training set and a test set. An independent development set 
was used to determine the model parameters with the best 
performance to select the final model. The test set was then 
used to evaluate the final model. The results of ground truth and 
software classification of cells in the test set were compared. 
Cells which were HbH+ by ground truth and software were true 
positive (TP) and cells HbH‑by ground truth and AI were true 
negative (TN) or concordant events. Cells which were HbH+ by 
ground truth but HbH‑by software were false negative (FN) and 
cells which were HbH‑by ground truth but HbH+ by software 
were false positive (FP) or discordant events. A prediction 
confidence score (PCT), a numerical output in the range of 0–1 
which serves as an indicator of the similarity between a given 
detection and objects in the training data, was generated by 
the software for each detection. Software performance values 
such as sensitivity (TP rate), specificity (TN rate), FP rate, 
false‑negative rate, accuracy, and positive predictive value were 
calculated using standard formulae:[23]

Sensitivity (TP rate) =
TP

TP+FN

Specificity (TN rate) =
TN

TN+FP

FP rate = 1 – TNR = FP
FP+TN

FN rate = 1 – TPR =
FN

FN+TP

Accuracy = TP+TN
TP+TN+FP+FN

Positive predictive value = TP
TP+FP

In the second phase, four objectives were studied.
1. Evaluation of the stability of HbH inclusions on storage: 

The stability of stained smears preserved by distyrene 
plasticizer and xylene (DPX) mounting media (CellPath, 
UK) when stored in the dark at room temperature of 
22°C–24°C over 7 days was evaluated. Two technologists 
examined the smears daily for HbH inclusions and results 
were graded as acceptable if at least 20 HbH+ cells were 

Figure 1: (A) Low‑power view of a whole slide image of an entire blood 
smear stained by Brilliant Cresyl Blue obtained using ×40 objective on 
the Hamamatsu NanoZoomer S60™. (B1) Image of a case of HbH disease 
obtained using ×40 objective on the Precipoint™ slide scanner. (B2) The 
same image as in b1, as observed using digital magnification to ×80 
showing preservation of cellular details and HbH inclusion bodies within 
numerous red cells. (B3‑6) Images of a representative HbH inclusion 
positive red cell typically seen in alpha thalassemia trait obtained 
using ×40 objective on the OlympusTM imaging system at three different 
digital magnifications, showing the intracellular inclusions in detail. HbH: 
Hemoglobin H
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detected per smear. The proportion of observed positive 
cells out of total expected positives was determined

2. Evaluation of software on images at ×40 and ×60 and two 
imaging platforms. The AI software was tested on images 
obtained at ×40 and ×60 on the Olympus™ imaging 
system to evaluate its performance at the single‑cell 
level on images captured at lower magnifications. Each 
single‑cell image boundary was annotated into HbH+ or 
HbH−. The software performance at single‑cell level was 
next tested on PSI obtained at ×40 on the Precipoint™ 
and WSI obtained at ×40 on the Hamamatsu™ slide 
scanners to evaluate its performance on images obtained 
by different imaging systems

 In addition, software performance at the per slide level 
was evaluated on WSI by comparing the result of AI‑aided 
diagnosis of the slide with results of the routine diagnostic 
method. The AI‑aided diagnosis was conducted by three 
assessors blinded to the actual result (C. ME. C, E. YP. 
L, SY. L). Each assessor independently appraised the 
AI‑identified single cells and classified the slide into 
one of the three slide‑level categories, i.e., HbH‑positive 
slide, HbH‑negative slide, and HbH disease. In case of 
disagreement between raters, a consensus review was 
adopted for the final slide classification.

3. Development of a model for total red cell estimation 
and determining the frequency of HbH+ cells in 
alpha‑thalassemia trait: In order to estimate the number 
of red cells in an image, an intensity‑based proxy metric 
was defined as follows: (1) The image was converted 
to grayscale so that cells appear lighter on a dark 
foreground. (2) The foreground was then segmented 
from the background using an Otsu‑based thresholding 
algorithm. (3) The proxy metric was then defined as 
the sum of grayscale intensities of foreground pixels 
subtracted by the median of the background pixel 
grayscale intensities. The relationship between the metric 
and the actual cell counts was established using a linear 
model trained on a set of 75 manually annotated image 
patches. These patches were generated from cutouts 
of 11 different WSI and had dimensions ranging from 
300 px × 300 px to 600 px × 600 px (at a resolution of 
5.66 px/µm). The images were separated into a training 
set consisting of 40 images and a test set consisting of 35 
images. The former was used to optimize the parameters 
of the model while the latter was used to assess its 
performance. In order to not bias, the parameter search 
toward larger images, the model was trained not on the 
absolute cell count but on the cell density per image.

 The frequency of HbH+ cells was determined by dividing 
the total number of AI‑identified TP cells by the total red 
cell count generated by the model.

4. Determining the minimum number of red cells and size 
of smear to image for adequate sampling. We proceeded 
to model the probability of slide‑level misdiagnosis 
according to the number of TP cells in the smear. On the 
basis that if two random variables are independent and 

identically distributed, the joint probability of multiple 
cells can be written as the multiplication of marginal 
probabilities.[24] The probability of a positive cell labeled 
as negative is equal to false‑negative rate and the 
probability of a negative cell labeled as positive is equal 
to FP rate (FPR). Assuming that software predictions 
at the single‑cell level are independent and identically 
distributed, the case misdiagnosis probability at a certain 
value of K, where K is the number of positive cells in the 
slide, can be calculated as:

Probability of labeling a positive slide as negative, Pslide (N | P) 
= Pcell (N | P)K = FNRK

Probability of labeling a negative slide as positive, Pslide (P | N) 
= Pcell (P | N)K = FPRK

We then applied Poisson modeling to determine the minimum 
number of red cells to analyze in order to achieve a high 
probability that at least a threshold number of positive 
cells would indeed be captured in the image. This step was 
undertaken so as to determine the minimum area of smear to be 
imaged for analysis, in order to reduce the likelihood of falsely 
labeling a slide as negative due to imaging of insufficient area 
containing no positive cells. Assuming random distribution 
of positive cells in the slide, by Poisson distribution, the 
probability of observing at least k abnormal cells in X can be 
written as:[25]
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where X denotes an area with x number of red cells, the 
frequency of occurrence of an abnormal cell is 1 in every N 
cells, and y is the expected number of abnormal cells in X and.

y = x
N

 (details in Supporting information)

The number of red cells in each WSI was then estimated 
by multiplying the red cell count/µL obtained from the 
hematology analyzer by the volume of blood per smear (5 µ L). 
The area of PSI to image and analyze was determined by 
dividing the desired minimum red cells to the image by the 
red cell density obtained using the model in section (3) above. 
These calculations were validated by evaluating the detection 
rate on WSI and PSI containing the required size.

Statistical analysis was performed on SPSS Statistics 
Version 26 (IBM Corporation, Somers, NY, USA) and 
GraphPad Prism Software Version 8 (La Jolla, CA, USA). 
Exact Clopper–Pearson binomial confidence interval (CI) for 
CI of rates, Fleiss’ kappa for inter‑rater reliability for more than 
2 raters of categorical data, Kolmogorov–Smirnov normality 
test, and Kruskal–Wallis test for comparison of continuous data 
between groups were used. Parametric data were expressed as 
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mean and standard deviation (SD), and nonparametric data 
were expressed as median and range. The correlation was 
performed using Spearman’s rank correlation coefficient for 
nonparametric data.

results

Blood smears from 110 individual cases, 78 rare HbH inclusion 
positive, 17 HbH disease, and 15 HbH inclusion negative, were 
used for the study. Table 1 summarizes the number of cases and 
images used for the entire study. In the first phase, 515 images each 
containing an average of 100 red cells were obtained using ×100 oil 
objective. 412 images formed the training set, 51 images formed 
the development set, and 52 images formed the test set. The CNN 
was trained on images in the training set and its performance 
tested on images in the test set. At a PCT >0.2, the sensitivity of 
the algorithm was 90.9%, specificity 99.0%, false‑negative rate 
9.1%, FP rate 1.0%, and overall accuracy was 97.6% [Table 2a]. 
False‑negative cells occurred mainly in HbH disease due to finer 
inclusions and the large number of positive cells.

Evaluation of stability of hemoglobin H inclusions on 
storage
Twenty‑seven samples comprising 22 alpha‑thalassemia 
trait and 5 HbH disease were assessed on storage, with day 0 

being the day of smear preparation. HbH inclusions remained 
visible after 7 days. Figure 2 shows representative images 
from day 0 to 7. After 7 days of storage, at least 20 HbH+ cells 
remained detected in all cases, giving 540 positive cells out 
of 540 expected positives (95% CI 99.3%–100%). The longer 
storage duration allowed for greater workflow flexibility as 
image acquisition could be performed up to 7 days after slide 
preparation without compromising image quality.

Evaluation of software on images at ×40 and ×60 and 
two imaging platforms
In high‑resolution images obtained at ×40 on the different 
imaging platforms, cellular details were sufficiently preserved 
and recognizable visually [Figure 1B]. The software 
performance was tested on 140 annotated ×40 images and 
200 annotated ×60 images from 14 alpha‑thalassemia trait, 
1 HbH disease, and 10 HbH‑negative cases. At a PCT of 0.1 
and above, the sensitivity was 91.64% and specificity was 
99.94% on the ×40 images, while sensitivity was 93.07% and 
specificity was 99.99% on the ×60 images.

The software performance, evaluated on 51 PSI obtained on 
the Precipoint™ slide scanner as shown in Figure 3, showed 
a sensitivity of 90.0%, specificity of 99.9995%, FNR of 10%, 
FPR of 0.0005% or 1 FP in 200,000 cells, PPV of 82.8% 

Figure 2: Representative HbH inclusion positive red cells observed over 7 days of storage. HbH inclusions remained visible under light microscopy 
when stored under DPX‑mounting media in the dark at room temperature for up to 7 days. Each smear was considered stable on storage if 20 or more 
individual HbH inclusion positive cells remained recognizable over the duration of storage. HbH: Hemoglobin H

Table 1: Summary of number of cases and number of images used in the study

Number of individual cases Number of images/
smears for WSIRare HbH inclusion positive HbH disease HbH inclusion negative Total

×100 images on Olympus™ 33 10 0 43 515
×60 images on Olympus™ 5 0 5 10 200
×40 images on Olympus™ 9 1 5 15 250
×40 images on Precipoint™ 17 3 0 20 177
×40 WSI on Hamamatsu™ 14 3 5 22 118
Total 78 17 15 110
HbH: Hemoglobin H, WSI: Whole slide images
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and overall accuracy of 99.99% for identifications with 
PCT >0.2 [Table 2b]. The corresponding receiver operating 
characteristic curve showed an area under the receiver 
operating characteristic curve (AUROC) of 0.84 (95% CI 
0.81–0.88, P < 0.0001).

When evaluated on WSI, the software performance at the cell level 
was lower. The software detected a total of 8230 identifications 
above a PCT of 0.2, of which 3679 were TP identifications, 
giving a positive predictive value of 44.7%. Sensitivity and 
specificity on WSI were not computed as the large number of 
identifications with PCT <0.2 were not individually recorded. The 
low positive predictive value was a result of far larger number 
of cells in WSI revealing further morphological categories such 
as reticulocytes and artifacts which were under‑represented in 
the Olympus images. Figure 4 shows an example of WSI after 
software analysis in which red squares indicate the locations of 
HbH+ detections made by the software.

AI‑aided diagnosis method was conducted on a pilot set of 
30 HbH‑positive and 10 HbH‑negative WSI slides. Two 
HbH‑negative smears had discordant results among the 3 
assessors, i.e., 1 of 3 assessors misclassified the smears as 
HbH positive. The interrater kappa coefficient among the 
3 assessors was 0.907, indicating good overall agreement. 
The consensus results were concordant with the results of 
the routine diagnostic method in all 40 slides, providing a 
slide‑level sensitivity of 100% (95% CI 88.4%–100%) and 
specificity of 100% (95% CI 69.2%–100%).

Development of a model for total red cell estimation 
and determining the frequency of HbH+ cells in 
alpha‑thalassemia trait
The model developed for cell count estimation was evaluated 
by comparing the cell density prediction with the ground truth 
and the model showed a good overall correlation (R = 0.811). 
The average ground truth cell density (number of cells/mm2) 
on the training data was 17761/mm2 with a mean absolute 
error of 2461 (13.86%) and on test data was 17,935/mm2 with 
a mean absolute error of 2865 (15.98%). Applying the model 
to 110 independent PSI of 25 mm2 size at regions where red 
cells were just overlapping, the density of red cells was found 
to average 17,296/mm2 (range 13,536–20,607; SD 2006; 2SD 
range 13,284–21,308/mm2).

Using the total red cell estimation derived from the model and 
the number of TP cells identified by software multiplied by a 
correction factor of 1.1 (correction factor = 1/sensitivity of the 
software), the true frequency of HbH+ cells was estimated in 
11 cases of alpha‑thalassemia trait. The frequency ranged from 
1 in 13,619 to 1 in 91,890 (0.001%– 0.007%), with a median of 
1 in 35070 (0.003%) and interquartile range of 1 in 19,057‑1 
in 57,781 (0.002%–0.005%). The frequency in smears from 
the same individual was comparable, but the frequency varied 

Table 2: Software performance at the single‑cell levela 
on images obtained at (a) ×100 oil immersion objective 
on Olympus™ image system. (b) ×40 objective on the 
Precipoint™ imaging system

Confirmed HbH+ Confirmed HbH−
(a)

AI identified HbH+ 828 40
AI identified HbH− 83 4149

(b)
AI identified HbH+ 576 120
AI identified HbH− 64 21,000,000b

aWhen positive identifications are defined by prediction confidence 
threshold >0.2, bEstimated from the cell count model referred to in 
methods, Section (3) development of a model for total red cell estimation. 
HbH: Hemoglobin H

Figure 3: Results of applying the software analysis on images of HbH blood smears obtained at ×40 objective. (a) Screenshot of the Qritive Pantheon™ 
user interface depicting the results of software analysis on an image obtained on the Precipoint™ slide scanner. AI identifications above 0.2 prediction 
confidence threshold are shown in the right‑hand column. In this image, 10 confirmed HbH‑positive identifications were detected by the software, 
with all having prediction confidence score of more than 0.98. (b) A HbH‑positive cell with prediction confidence score of 0.98 is identified by the 
software on an image obtained on the Olympus™ imaging system. (c) ROC curve generated by comparing prediction confidence scores of true‑positive 
versus true‑negative cells on images obtained on the Precipoint™ slide scanner when identifications with prediction confidence score above 0.1 were 
considered. HbH: Hemoglobin H, ROC: Receiver operating characteristic

c

b

a
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between different individuals with the alpha‑thalassemia 
trait (P < 0.0001) [Figure 5]. Hence, to maximize the detection 
rate, we used the lowest observed frequency of approximately 
1 in 100,000 for calculating the Poisson model in section 4.

Determining the minimum number of red cells and size 
of smear to image for adequate sampling
Using the software sensitivity of 91% and specificity of 99% 
at the single‑cell level, the case misdiagnosis probability at 
different values of K, which is the number of positive cells in 
the image, was computed and shown in Table 3. As shown in 
Table 3, the larger the number of positive cells in the image, 
the lower the probability of misdiagnosis at the slide level.

By Poisson modeling, when the frequency of positive cells 
is 1 in 10,000, 214,700 red cells would need to be imaged to 
give a 99.99% confidence that at least 5 positive cells will be 
present in the image. At one‑tenth, the frequency of positive 
cells, i.e., 1 in 100,000, the number of red cells to the image 
would be 10 times that for the frequency of 1 in 10,000. 

For higher levels of confidence, the number of red cells to 
the image would be progressively higher [full data table in 
Supplementary Information]. In this way, the Poisson model 
estimated that 2.4 million red cells would need to be imaged 
to provide a 99.999% confidence that at least 5 positive cells 

Table 3: Probability of misdiagnosis at different values of 
K, where K is the number of positive cells in the slide. 
Pslide (N|P) is the probability of labeling a positive slide 
as negative and Pslide (P|N) is the probability of labeling 
a negative slide as positive, with C the corresponding 
chance of misdiagnosis expressed as 1 in 1/P

K Pslide 
(N|P)=0.091K

Cslide (N|P) Pslide 
(P|N)=0.01K

Cslide 
(P|N)

1 0.091 1 in 11 0.01 1 in 100
2 0.008 1 in 125 0.0001 1 in 105

3 0.0007 1 in 1428 0.000001 1 in 106

4 0.00006 1 in 16,667 0.00000001 1 in 108

5 0.000006 1 in 166,667 0.0000000001 1 in 1010

Figure 4: Results of applying the software analysis on whole slide images of HbH blood smears obtained at ×40 objective on the Hamamatsu 
NanoZoomer S60™ slide scanner. (a) Screenshot of the Qritive Pantheon™ user interface depicting the results of software analysis. The red dots on 
the whole slide image are the software identifications of HbH‑positive cells detected above a prediction confidence threshold of 0.2. The right‑hand 
column shows the list of identifications. (b) A higher magnification view of the same slide showing details of a confirmed HbH positive identification (red 
box). In this case, the identified cell had a prediction confidence score of 0.999. (c) False‑positive identification of artifacts (black boxes) occurring 
particularly at the edges of the slide and likely representing stain precipitates. (d) False‑positive identification of reticulocytes (light green box) occurred 
sporadically throughout the slide. HbH: Hemoglobin H
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would be present in the image when the frequency of positive 
cells is 1 in 100,000.

We estimated that for a case with red cell count of 
4.5 × 106/µL, one smear would contain approximately 
22.5 × 106 red cells, more than the minimum required of 
2.4 million red cells, and would be sufficient for analysis. 
For calculation of the size of PSI required for analysis, 
assuming the lower limit of 2SD of cell density obtained in 
section 3, i.e., 13,284/mm2, we estimated that 180 mm2 would 
provide sufficient red cells for analysis. We validated these 
calculations on 78 independent image‑sets comprising 60 
WSI and 18 PSI of 180 mm2 size. For the WSI, the number 
of confirmed HbH+ cells above PCT >0.99 ranged from 25 to 
105 with a median of 63, and for the 180 mm2‑size PSI, the 
number of confirmed HbH+ cells ranged from 8 to 96 with 
a median of 53, demonstrating that all image‑sets contained 
5 or more HbH+ cells.

dIscussIon

In our study, we developed a machine‑learning algorithm 
based on CNN which could identify HbH+ red cells on blood 
smears with good overall sensitivity of 91% and specificity of 
99% on ×100 images. The software was applicable to images 
obtained at ×40 and ×60, although sensitivity was slightly lower 
than at ×100 as the PCT for identification had to be lowered 
to 0.1 in order to achieve an equivalent level of sensitivity. 
During the application of the software to two different slide 
scanner platforms, the software retained a high degree of 
specificity and sensitivity on the Precipoint platform, providing 
an AUROC of 0.84. On the other hand, software performance 

on WSI at the single‑cell level was suboptimal due to additional 
morphological classes under‑represented in the original training 
set. This will necessitate future training of the algorithm with a 
larger number of morphological classes on WSI. Interestingly, 
when WSI was assessed in terms of the overall diagnostic 
accuracy at the slide level using an AI‑aided diagnostic process, 
our pilot evaluation showed promising results as all cases 
were correctly classified at the slide level with good interrater 
reliability, suggesting high sensitivity of the software.

During the assessment of software performance, we placed 
greater value on high sensitivity for the following reasons. 
First, HbH inclusion detection is primarily a screening test for 
alpha‑thalassemia trait and HbH disease, and a screening test 
would need to have a high level of sensitivity. Second, the AI 
identification can be designed as the first step to enhance the 
detection rate of rare cells, while the second step of operator 
verification of identified cells can be used to eliminate FP 
identifications.

Our study is the first to describe the application of AI‑aided 
image analysis to the morphological detection of HbH 
inclusions. Despite the availability of other diagnostic 
modalities such as genetic testing, the morphologic review 
remains an indispensable and inexpensive technique available 
to most laboratories. Moreover, morphological rare cell 
detection remains commonplace despite its tedious nature. 
When employing image analysis for HbH inclusion testing, 
traditional procedures such as use of high magnification for 
cellular diagnosis and screening of multiple blood smears to 
detect rare cells had to be transformed to practical solutions 
by the use of high‑resolution imaging at lower magnification, 
sensitive AI algorithms, and application of mathematical 
modeling. From mathematical modeling, it can be appreciated 
that the sensitivity at the case level is potentially higher than 
the sensitivity at the cell level because each smear would 
contain many positive cells. However, before image analysis, 
there needs to be sufficient image sampling in order to have 
a high degree of confidence that positive cells are indeed 
captured in the image in the first place. Therefore, we validated 
the Poisson model derived minimum red cell acquisition on 
several image sets.

Previous methods of image analysis for rare cell detection 
such as for the detection of cancer micro‑metastases, utilized 
fluorescence or immunocytochemical staining to highlight 
pathological cells while obtaining images in a two‑step process, 
with the initial screening scan at low magnification and the 
second scan of pathological cells at high magnification.[26‑29] 
In contrast, our current study utilizes a one‑stage scanning 
process at ×40 on a whole slide scanner which simplifies 
the automation process.[30] The need for sufficient sampling 
or acquisition of a sufficient number of background cells for 
rare event detection has been a recognized pre‑requisite in 
other rare event methodologies such as flow cytometry.[31,32] 
To achieve the necessary scan area in a short time, whole slide 
scanners which enable rapid high‑resolution image acquisition 

Figure 5: Frequency of HbH inclusion positive cells in 11 cases of 
alpha‑thalassemia trait. Each dot represents the frequency in one smear 
area and horizontal lines represent the median frequency for the case. 
Different smear areas of each case contained HbH inclusion positive cells 
at comparable frequency, but the frequency varied between individuals 
with alpha‑thalassemia trait (Kruskal–Wallis test with Dunn’s multiple 
comparison, P < 0.0001). HbH: Hemoglobin H
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at lower magnification are the most practical for translating 
this technology into clinical use. Here, we demonstrate a proof 
of concept that this simplified automation method is feasible.

There were several limitations to our current study. The first 
was the variable density of red cells in the blood smear, in 
particular the thick edge where several cell layers overlap, 
potentially obscuring positive cells. This did not appear to 
pose an impediment to the software as we observed positive 
detections in these areas, but it is plausible that some cells 
remained undetected. The use of hydrophilic‑treated plastic 
plates which create monolayer blood smears may be able to 
overcome this inherent limitation of glass slides.[33] Differences 
in color saturation due to differences in microscope and 
imaging parameters caused slight differences between 
slides, with the potential for image misclassification both 
by human observer and software, hence image acquisition 
was conducted using standardized settings. Despite that, our 
results show that image acquisition on different platforms does 
impact software performance. The software algorithm should 
ideally compensate for these differences, otherwise, software 
development would need to be specific to slide scanners and 
settings. Guidelines for validation of whole slide scanners are 
available and standardization of digital imaging in hematology 
and pathology is currently in progress.[34‑39] A frequent problem 
encountered on imaged blood smears was the presence of 
small areas of suboptimal focus which had gone unnoticed 
during the vetting process, and which have the potential 
to cause misclassification.[40] One of the pertinent issues, 
therefore, pertains to the algorithm being able to identify and 
analyze slightly off‑focussed images. Additionally, inter‑rater 
precision between the two annotators was not assessed before 
ground truth generation and could potentially have introduced 
confounders to software performance. Finally, although good 
specificity was achieved at the single‑cell level, the absolute 
number of FP cells may seem significant to the observer due 
to the millions of cells being processed, and this context needs 
to be taken into consideration during the AI‑aided diagnostic 
process.

Our experience using WSI on blood smears parallels some 
of the lessons learnt from cytopathology. As noted from the 
experience from cytopathology, uneven thickness of material 
requires multiple Z‑plane scanning and Z‑stacking, increasing 
the scanning times and file size which may limit the widespread 
adoption of WSI in high‑throughput settings.[41] Suboptimal 
image quality also negatively impacts the subjective acceptance 
of WSI by the assessor, and subjective acceptance has been 
correlated with diagnostic accuracy.[42] In a systematic review 
of WSI in cytopathology, it was noted that there was good 
diagnostic concordance between WSI and light microscopy 
but these appeared lower than those reported in surgical 
pathology.[43] These technical challenges should be solved 
with future studies, as it is expected that the use of AI in WSI 
would increase in the future.[3]

conclusIon

The AI software developed presents a promising tool for 
AI‑aided image analysis for automated detection of HbH 
inclusions in blood smears. Before clinical validation of 
such software, a prerequisite minimum area of the slide 
should be imaged for analysis. Future work would need to 
be conducted on platform‑specific software training and 
multiclass classification of other cell types within WSI. 
Our study serves as groundwork for future clinical studies 
comparing the sensitivity, specificity, and relative efficiency 
of AI‑aided diagnosis against the routine method. Collectively, 
the development process described could potentially be applied 
to other types of image‑based rare cell detection to improve 
the efficiency of morphologic review.
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