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Schizophrenia is a very complex syndrome that involves widespread brain

multi-dysconnectivity. Neural circuits within specific brain regions and their links to

corresponding regions are abnormal in the illness. Theoretical models of dysconnectivity

and the investigation of connectomics and brain network organization have been

examined in schizophrenia since the early nineteenth century. In more recent years,

advancements have been achieved with the development of neuroimaging tools that

have provided further clues to the structural and functional organization of the brain

and global neural networks in the illness. Neural circuitry that extends across prefrontal,

temporal and parietal areas of the cortex as well as limbic and other subcortical brain

regions is disrupted in schizophrenia. As a result, many patients have a poor response

to antipsychotic treatment and treatment failure is common. Treatment resistance that

is specific to positive, negative, and cognitive domains of the illness may be related to

distinct circuit phenotypes unique to treatment-refractory disease. Currently, there are

no customized neural circuit-specific and targeted therapies that address this neural

dysconnectivity. Investigation of targeted therapeutics that addresses particular areas

of substantial regional dysconnectivity is an intriguing approach to precision medicine

in schizophrenia. This review examines current findings of system and circuit-level brain

dysconnectivity in treatment-resistant schizophrenia based on neuroimaging studies.

Within a connectome context, on-off circuit connectivity synonymous with excitatory

and inhibitory neuronal pathways is discussed. Mechanistic cellular, neurochemical

and molecular studies are included with specific emphasis given to cell pathology and

synaptic communication in glutamatergic and GABAergic systems. In this review we

attempt to deconstruct how augmenting treatments may be applied within a circuit

context to improve circuit integration and treatment response. Clinical studies that

have used a variety of glutamate receptor and GABA interneuron modulators, nitric

oxide-based therapies and a variety of other strategies as augmenting treatments with
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antipsychotic drugs are included. This review supports the idea that the methodical

mapping of system-level networks to both on (excitatory) and off (inhibitory) cellular

circuits specific to treatment-resistant disease may be a logical and productive approach

in directing future research toward the advancement of targeted pharmacotherapeutics

in schizophrenia.

Keywords: schizophrenia, treatment-resistant, connectomics, dysconnectivity, gamma band oscillations, NMDA

receptors, GABA interneurons

INTRODUCTION

Treatment-resistant schizophrenia (TRS) remains one of the
greatest therapeutic challenges in psychiatry. Schizophrenia
is a complex neurodevelopmental syndrome; with disease
processes occurring in utero that may disrupt the formation
of critical neural circuits and result in widespread brain
dysconnectivity. Hints of altered neural circuitry, for example
delays in gross and fine motor skill development, often
evolve during childhood and may precede the first subtle
signs of psychosis during late adolescence in those who will
develop the illness (1–4). Adolescents with disrupted neural
circuit development and circuit dysconnectivity related to
the progression of the disease often begin to exhibit sub-
threshold psychotic symptoms during developmental periods
associated with increasing gray matter (GM) volume and
refinement of cortical circuits including synaptic pruning,
reinforcement, and neuronal synchronization (5–8). The gradual
alterations in brain connectivity and subsequent symptoms
can persist for years before psychosis emerges and diagnosis
and antipsychotic medications are initiated. In most cases,
individuals with schizophrenia progress with an illness that
is characterized by periods of exacerbation and remission
of psychosis. Recovery is dependent on compliance with
and response to optimized antipsychotic medication, the
development of a strong therapeutic alliance to treatment
team members, and intensive social and vocational support
(9). Even with the best antipsychotic treatments that are
available today and access to full functional supports, a sub-
population of patients with schizophrenia will never attain
an optimal response to treatment and remain very ill. These
are the patients who have treatment-refractory illness or in
the case of non-response to clozapine, ultra-resistant disease
(10, 11).

Identifying treatments that will benefit patients with
TRS remains a significant challenge. Our understanding of
personalized treatment response and resistance to medication
is limited by an inability to accurately pinpoint the individual
genetic, cellular and neural circuit drivers of psychoses.
Investigations of neuronal ensembles and cortical networks
at the micro-scale level are not possible using the clinical
diagnostic and macro-scale imaging tools that are currently
available. Moreover, inconsistent clinical definitions of positive,
negative or cognitive symptom-specific differences in TRS lead
to ambiguous treatment guideline recommendations and a
wide variation in clinical approaches to treat TRS in practice.

Different phenotypes of psychoses may respond to different
targeted treatments that are cellular or neural circuit-specific, but
at present we do not have the ability to identify the appropriate
targeted therapies for different TRS phenotypes.

The Treatment Response and Resistance in Psychosis
(TRRIP) working group recently addressed these challenges
(12). Members are researchers and clinicians who have expertise
in TRS and attended specific TRRIP working group meetings
at international schizophrenia and neuropsychopharmacology
research conferences to establish criteria to standardize the
definition of treatment resistance in schizophrenia. In addition
to capturing a core definition of treatment resistance that can
be included and shared across all clinical treatment guidelines
worldwide, recommendations were also made on the importance
of identification of all clinical sub-specifiers or symptom
phenotypes common to TRS (12). The standardization of clinical
criteria of TRS has been an important advancement and will
benefit future TRS research and clinical translation.

Treatment resistance has been most characterized in
schizophrenia by how responsive the positive symptom domain
is to antipsychotic medications. It is estimated that 70–80% of
patients with schizophrenia have a phenotype of psychosis that
is responsive to dopamine-blocking treatment (13). However, in
over 100 years of treatment history and despite the improvements
made to the functional selectivity and potency of antipsychotic
medications, 60% of patients continue to fail to achieve symptom
improvement after several weeks on drug therapy (14).

Many treatment-refractory patients present with a psychosis
that is positive symptom domain responsive, but have
symptoms that are non-responsive within the negative or
cognitive symptom subdomains and associated circuits. It
is now recommended that patients with symptom profiles
that do not respond to antipsychotic medication and are
considered treatment resistant be identified as: TRS-positive
symptom domain-, TRS-negative symptom domain-, and
TRS-cognitive symptom domain-specific. For those patients
with combined treatment resistance in more than one domain
(multidimensional resistance), identifying all of those specific
symptom domains will provide further clarification (12).

Traditionally, for those patients who are unable to obtain
adequate positive symptom control or sustain a response with at
least 2 dopamine receptor-2 (D2)-blocking agents at therapeutic
doses for at least 6 weeks, clozapine is the recommended drug
of choice. An estimated 30–60% of these patients will respond
to clozapine and have what can be described as a clozapine-
responsive psychosis (10, 15, 16). Patients who do not have
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an optimal response to clozapine and continue to experience
prominent positive symptoms have clozapine-resistant psychosis
or an ultra-resistant psychotic disease (11). Currently, there
are no therapies that address this most severe form of neural-
dysconnectivity in schizophrenia.

In this review, we examine TRS from a circuit-based
perspective. We start by highlighting the historical development
of connectome science in schizophrenia, identifying those early
pioneers in psychiatry who originally recognized the disease
as an illness of widespread disconnectivity and their valuable
contribution to the evolution of network science today. We
then examine neuroimaging studies that support both systemic
and circuit-level brain dysconnectivity specific to treatment
resistance and attempt to explain underlying circuit biology
and brain topology that may be unique to this most severe
form of the illness. Within a connectome context, attempts
to map on-off circuit connectivity synonymous with excitatory
and inhibitory neuronal pathways are discussed. Functional
correlates of dysconnectivity in schizophrenia are also considered
with a focus on cortical network oscillations, giving particular
emphasis to the role of gamma band oscillations (GBOs) and
their ability to integrate information across large populations
of neurons in the illness. Mechanistic models describing
underlying neural circuitry and the complex relationship
involved in the synchronized firing between excitatory pyramidal
cells and inhibitory gamma-aminobutyric acid (GABA)-ergic
interneurons are also reviewed to help visualize and understand
the inter-relationship between neuronal ensembles within the
brain and the complex mechanisms behind their dysfunctional
communication in schizophrenia. Finally, we deconstruct how
augmenting pharmacological treatments, such as glutamate N-
methyl-D-aspartate (NMDA) receptor and GABA interneuron
modulators as well as nitric oxide (NO)-based treatments may
be applied within a circuit context to improve circuit integration
and treatment response in TRS. Updates on neurosurgical and
neuromodulation targets under investigation in TRS are also
included and provide an overview of beneficial circuit-based
targets that may improve treatment resistant symptoms in those
patients that remain refractory to pharmacological approaches.

This review supports the idea that the mapping of cellular and
system-level networks to both on (excitatory) and off (inhibitory)
circuit phenotypes specific to treatment-resistant disease may
be a productive strategy in expanding future research toward
customized neural circuit-specific pharmacotherapeutics and
directed neuromodulation treatments in schizophrenia. Targeted
therapeutics that can improve particular areas of regional
functional dysconnectivity that are found to be substantially
affected in TRS is an intriguing approach to precision medicine
in schizophrenia.

HISTORY OF CONNECTOMICS IN
SCHIZOPHRENIA-THE EARLY
CONNECTIONISTS

Theoretical models of disconnectivity and the investigation
of connectomics and brain network organization have been

examined in schizophrenia since the early nineteenth century.
Historically, there have been a number of influential figures
who have made major contributions to the development of
modern day network-based science known as connectomics.
One of the very first connectionist pioneers in psychiatry was
Wilhelm Griesinger (1817–1868), a German neurologist and
psychiatrist who initially proposed that mental illnesses are
brain disorders with pathological and neuroanatomical origins
similar to neurological disorders (17). From his teachings, his
student Theodor Hermann Meynert (1833–1892), a German-
Austrian neuropathologist, anatomist and psychiatrist, made
further contributions to this biological model of mental illness
(18). His work was based primarily on neuroanatomical
and histological studies where he worked to characterize
various afferent and efferent white matter (WM) fiber tracts
of the cerebral cortex. Meynert believed that association
fibers connecting regional areas of the brain are the most
disrupted in psychiatric diseases, which has been consistently
demonstrated by several structural and functional magnetic
resonance imaging (MRI) studies of schizophrenia in recent
times (18–21).

Meynert’s student Carl Wernicke (1848–1905) further
developed the disconnectivity theory of schizophrenia. Although
he was best known for his theories regarding the neural circuits
involved in higher cognitive functions and the neuropathology
of aphasia, he also studied the neuroanatomical and functional
aspects of schizophrenia. In his textbook Grundriss der
Psychiatrie (Outlines of Psychiatry 1900) which was written
based on detailed reviews of his clinical cases, he outlined
his hypothesis that there is a deficiency in association fiber
connectivity in schizophrenia that contributes to an over-
activation of cortical sensory regions that can then lead to the
development of psychosis (22).

One of the most well-known clinicians in the history of
psychiatry and recognized as the founder of modern psychiatry
was Emil Kraepelin (1856–1926), a German psychiatrist
who conceptualized schizophrenia as a disorder with both
neurodevelopmental and biological origins. Kraepelin was the
first to develop a classification system of psychiatric disorders
and divided endogenous psychoses into two distinct forms based
on disease course and outcome. He described the psychosis
involved in schizophrenia as a dementia praecox, a term that
combined the cognitive symptoms (dementia) of the illness
with an early development of the disorder (praecox) vs. the
episodic nature of manic depressive (affective) psychosis
(23).

It was the Swiss psychiatrist Eugen Bleuler (1857–1939)
who then coined the term schizophrenia (from the Greek
verb schizein meaning split and phren meaning soul, spirit
or mind) to highlight the fragmented thinking or thought
disorder that is common to the functional disconnectivity of the
illness. Bleuler replaced the term dementia praecox to clearly
distinguish schizophrenia from a degenerative illness with a poor
outcome. He recognized that progressive cognitive deterioration
(characteristic of dementia) was not common in schizophrenia
and the onset of symptoms does not always occur early in life
(24). For a detailed overview see Collin et al. (19).
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MODERN-DAY CONNECTIONISTS

With the advancement of neuroimaging techniques, such
as positron emission tomography (PET) and MRI that are
able to detail both anatomical and functional connectivity,
the disconnection hypothesis of schizophrenia has been
refined further. The modern-day disconnectivity hypothesis
of schizophrenia initially emphasized the link between the
signs and symptoms of schizophrenia and the dysfunctional
integration between different cortical areas of the brain, directly
related to the underlying abnormalities in neurons and synaptic
functioning (25). Abnormal modulation of NMDA receptor
function and impaired control of synaptic plasticity is thought
to be the underlying key to dysfunction and directly contributes
to an extended pattern of “dysconnection” of the structural and
functional integration of the brain (26–30). Today, network
scientists integrate the mathematical analysis of graph theory
as a framework for studying and tracing these macro-scale
brain networks through non-invasive neuroimaging and MRI
methods (31–33). Through these methods they are able to create
a “connectome,” the neuronal map of the brain’s anatomical and
functional connectivity architecture, and elucidate the complex
organization of the neuronal elements that underlies brain
function (31–34).

THE SCIENCE OF CONNECTOMICS

The scientific study of connectomics involves mapping out
the detailed connectivity of brain regions to characterize the
architectural networks of the human brain. Connectomics
is therefore a powerful tool to visualize the structural and
functional dysconnections associated with schizophrenia. The
human connectome provides a detailed map of brain-wide
circuit connectivity and allows inference into how brain function
may be affected by disruption of the structural organizational
network (31, 34). At the micro-scale, the physical wiring
of single neurons and their synaptic connections to other
neurons through dendritic and axonal connections comprise
local network circuits. At the meso-scale (local populations
of 80–100 neurons that span all cortical layers), connectivity
is at the level of functionally specialized subnetworks within
single cortical columns that are selectively connected within and
between neighboring cortical columns and constitute a major
functional element for cortical information processing. At the
macro-scale, inter-regional connectivity of cerebral lobes viaWM
interhemispheric tracts is responsible for the integration and
relay of information between various parts of the brain (34).

Connectomics heavily utilizes graph theory, a specialized
discipline of mathematics concerned with the study of graphs or
models that represent relations between objects. Large collections
of algorithms are used to calculate topological characteristics of
both structural and functional brain imaging connectivity data
that can be represented in the form of a graph. The graph consists
of nodes that represent single neurons or brain regions that are
defined by connection endpoints of two line segments that are
then linked by edges that illustrate their direct connection to
each other via axonal projections, WM pathways or functional

coupling between inter-regional brain areas (31). The closeness of
neuronal and brain region nodes represents a higher probability
of being connected, as long axonal projections are functionally
expensive in terms of wiring costs. The tendency of nodes
to cluster and form shorter communication paths allows for
more efficient integration between spatially disconnected node
pairs. The degree or number of edges each node possesses and
how close they are to each other (centrality) represents the
interconnectivity of a node to other nodes within the entire brain
network. Nodes that have a high degree of edges and possess
high centrality are known as hubs (35–37). In turn, brain hubs
that are “rich” in connectivity and more densely interconnected
to each other in comparison to what their high degree alone
would predict form a central “rich club organization” essential for
the integration of global information and brain communication
(37) as illustrated in Figure 1. Disruption to central “rich
club” hubs of the human connectome has been associated with
several brain disorders (38). Notably, hub lesions that are highly
concentrated within cortical hubs of the frontal and temporal
lobes are found to be specifically affected in schizophrenia
(38).

THE CONNECTOMICS OF
SCHIZOPHRENIA

Neuroimaging studies show impaired structural and functional
connectivity in individuals diagnosed with schizophrenia (39–
41). The dysconnection between different brain regions of
GM and the WM circuits that connect them are consistent
with reduced functional connectivity revealed in both resting
state and task-based functional (fMRI) studies (32, 41). Recent
advances in the use of MRI and in particular diffusion-
weighted imaging (DTI) have brought insight into the extent
of structural WM dysconnectivity and alterations in the macro-
scale neuronal wiring in schizophrenia. Most studies have
investigated fractional anisotropy (FA), a neuroimaging marker
that indexes the constraint of the direction of water diffusion in
WM and can be a measure of an abnormality in the integrity
of myelin microstructure or axonal integrity or differences
in the orientation of how axonal fibers are organized. White
matter in the frontal and temporal lobes have been the most
frequently reported with reduced FA integrity in DTI studies of
those with schizophrenia (39–41). Meta-analyses of voxel-based
DTI studies in schizophrenia have found significant decreases
in two main brain regions, the left frontal deep WM and
left temporal deep WM (42), with overlapping GM and WM
structural abnormalities (43). A more recent meta-analysis that
included 29 independent international studies found global WM
microstructural disruptions throughout the entire brain (44).

Consistent with these findings, an additional imaging study
found significant decreases in WM FA to not only involve the
fronto-temporal regions, but also to be widespread throughout
each lobe of the brain, including the cerebellum. Major fiber
bundles that connect the cortical lobes including the corpus
callosum, cingulum and thalamic radiations exhibited the most
severe pathology. More than 50% of the cortico-cortical and
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FIGURE 1 | Topological graph features of the connectome. (A) The graph consists of “nodes” that represent single neurons or brain regions and are linked by “edges”

illustrating their connection to each other via axonal projections. (B) The “degree” or number of edges and how close they are to each other “centrality” represents the

interconnectivity of nodes. (C) Nodes having a high degree of edges and high centrality are knowns as “hubs.” Brain hubs “rich” in connectivity to each other and

found centrally form the “rich club organization.” The rich club hubs found in cortical and frontal lobe regions of the brain are affected in schizophrenia.

cortico-subcortical WM fibers that provide the connections
between those hub regions that contribute to the “rich club” in the
brain were affected (45) and network hubs located in association
cortex particularly affected (20, 21). These significant structural
disturbances may be responsible for the widespread disruption
of cortical information processing and integration of information
across multiple regions of the brain in schizophrenia.

Functional MRI studies have also suggested abnormalities in
the connectivity of brain networks in schizophrenia and relate
to the structural disturbances that interconnect them. While
reduced functional connectivity is a replicated finding among
many studies (32, 41, 46, 47), there have also been reports
of increase in functional connectivity in the illness (48, 49).
The discrepancy may simply be related to non-uniform changes
in brain connectivity, such as hyper-synchrony of neuronal
ensembles vs. dysregulated networks, fMRI preprocessing errors,
or abnormalities in neuronal wiring and oscillatory firing and
compensatory hyper-connectivity of important hubs within the
association cortex as a consequence of the illness (50).

THE CONNECTOMICS OF TREATMENT
RESISTANCE

Widespread dysfunction throughout the entire neural network
that involves both cortical and subcortical regions is pronounced
in TRS and may have an underlying circuit biology that is

unique to this most severe form of the illness. Anatomical regions
and neural circuits that have been examined comparing those
individuals with treatment resistant vs. treatment responsive
disease have uncovered more severe pathological findings in all
cortical tissues that have been measured. A number of imaging
studies using a variety of structural and fMRI methods have
examined TRS to elucidate the difference between the phenotypic
subtypes of responsive and non-responsive illness. For detailed
reviews see Mouchlianitis et al. (51) and Nakajima et al. (52).

The loss of neuronal elements that underlie the symptoms of
both TRS and ultra-resistant schizophrenia (clozapine-resistant
psychosis) may be more substantial than what is found in
those patient phenotypes who have responded to antipsychotic
treatment (51, 52). Volumetric, DTI and fMRI studies that
have examined intra-regional brain morphology (53–56) inter-
regional WM circuit integrity (43, 57–59), and functional
connectivity (60–63) specific to TRS have consistently identified
a disruption to frontal and temporal lobe regions and the major
fiber bundles that connect them.

Studies that have specifically compared patients with
treatment responsive schizophrenia vs. TRS have reported
greater global volumetric reductions of GM in treatment
resistant and ultra-resistant patients. There have been consistent
reports of reduced GM volumes predominantly within the
dorsolateral prefrontal cortex (DLPFC) (53–56), as well as
posterior cortical regions, such as the temporal cortex (53–56),
parietal cortex (53, 56) and also within the occipital cortex
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(53, 55, 56) in TRS. Abnormalities in all regions of the corpus
callosum as well as commissural and association long axonal
fiber pathways connecting prefrontal, temporal, parietal and
occipital regions have also been found, with reduced axonal
integrity and more severe structural damage in both chronic
illness and treatment-resistant populations (43, 57–59, 64). This
evidence seems to suggest that on the spectrum of cellular and
circuit disruption characteristic of schizophrenia in general, TRS
may involve a more severe type of multi-dysconnectivity of brain
networks that spans across almost every region of the brain.

The reduction in cortical GM and WM volumes and
distinct WM tract disturbances in TRS may be a consequence
of disrupted macro-scale neural architecture and network
dysconnectivity that originate within distinct micro-scale
neuronal ensembles. Morphometric studies that have been
investigated in schizophrenia suggest that cortical volume
loss is not related to the reduction of the number of neurons
in the cortex, but to architectural neuronal disorganization,
reduction in neuronal size, and diminished neuropil (axons,
dendrites, and synaptic terminals) (65, 66). The etiology
behind the loss of dendritic spines and dendritic length
of cortical pyramidal neurons is not entirely clear but
may originate from hypofunctioning NMDA glutamate
receptors on pyramidal cells and interneurons (67–
69). From a circuit perspective, hypofunction of NMDA
receptors on GABAergic inhibitory interneurons disinhibits
associated pyramidal neurons in the circuit and causes
a potentially pathological glutamatergic excitatory effect
(70, 71).

Hyperglutamatergia may be a distinct feature of TRS and be
differentiated from treatment-responsive disease since greater
abnormalities in glutamate function have been found in those
patients with TRS while maintaining a relatively normal
and intact dopamine function. Neuroimaging measures using
fluorine-18-L-dihydroxyphenylalanine (18F-DOPA) as a PET
radiotracer found a higher level of striatal dopamine synthesis
capacity in patients with schizophrenia who responded to
treatment vs. those patients with TRS who had equivalent striatal
dopamine levels found in healthy controls (72). The same group
later utilized proton magnetic resonance spectroscopy (1H-MRS)
imaging in TRS to examine glutamate changes that may be
specific to antipsychotic treatment-resistance (73). This was the
first group to report high glutamate and glutamine levels in the
anterior cingulate cortex (ACC) in TRS as compared to those
with schizophrenia in remission, and another group has since
replicated this finding (74).

Increased concentrations of glutamate found in the
ACC that are specific to TRS are consistent with both the
glutamate hyperfunction and the NMDA receptor hypofunction
hypotheses of schizophrenia. Normally, glutamate is responsible
for regulating inhibitory tone in the brain by binding to
NMDA receptors on GABAergic interneurons. The structural
mechanism that may cause NMDA receptor hypofunction
in TRS can lead to disinhibition of pyramidal neurons and
excitatory pathways by the understimulation of inhibitory
GABA interneurons (75). The downstream effect can then cause
an increase in glutamate release from presynaptic pyramidal

neurons and binding to α-amino-3-hydroxy-5-methylisoxazole-
4-propionic acid (AMPA) and kainate receptors and may be
a compensatory effect of the NMDA blockade (75–78). The
hyperglutamatergic state can initiate calcium influx and cellular
toxicity which, over time, can be detrimental to neuronal
networks (79). In treatment-resistant disease, excitatory inputs
from pyramidal neurons within the ACC circuit could also be
disinhibited, leading to increased glutamate efflux and generating
symptoms that fail to respond to D2-blocking medications.
Glutamate-mediated excitotoxicity may be responsible for the
widespread brain abnormalities and severity of symptoms that
are found in TRS.

Disturbances in the functional activity of neural circuits have
consistently been reported in TRS. Functional MRI studies that
have examined changes in neurophysiological measures also may
indicate disordered firing and pathological oscillatory activity
that may be more pronounced in TRS (63). Persistent auditory
hallucinations are a core feature of psychosis. Poor control of
this symptom within the positive symptom domain that persists
despite adequate trials of antipsychotic medications is often
the clearest and most common indicator of severe treatment
resistance. Patients with specific TRS-positive symptom domain
phenotypes and experiencing auditory verbal hallucinations
(AVH) have been investigated in fMRI studies (60–63).

Functional MRI using magnetically labeled blood water
protons as an endogenous tracer (arterial spin labeling) to
measure tissue perfusion found increased cerebral blood flow
in the left superior temporal gyrus, right supramarginal gyrus,
and temporal polar cortex in patients with treatment-resistant
AVH (63). Functional resting-state MRI studies that investigated
connectivity alterations in the default network in patients with
chronic non-responsive AVH and treated patients without AVH
found that treatment-resistant patients had increased functional
connectivity between the dorsomedial prefrontal cortex and
other frontotemporal regions, but reduced connectivity between
the ventromedial prefrontal cortex and areas of the cingulate
cortex (60). Reduced functional connectivity between the left
temporo-parietal junction (TPJ) and right Broca’s area and ACC
and temporo-cingulate pathways have also been implicated in
patients with persistent AVH (61, 62). All functional alterations
found were greater in those patients with persistent treatment-
resistant symptoms, indicating there may be fundamental
differences within these brain network properties that are also
specific to TRS.

Network-based statistics can be applied to fMRI data to
investigate brain networks and to better delineate the differences
in the connectome unique to TRS. Although there have been a
number of network-based studies in schizophrenia (31, 32, 45–
47), Ganella et al. were the first to measure the connectivity and
global and local efficiency of whole-brain functional networks
from resting state fMRI data in individuals with TRS compared
to healthy controls (80). Whole-brain connectivity analysis in
this study showed reductions in functional connectivity between
all of the brain lobes, with the majority of reduced connections
between fronto-temporal, fronto-occipital, temporo-occipital
and temporo-temporal subregions. The majority of reduced
functional connections in TRS were found in the temporal lobe
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(between Heschl’s gyrus and the frontal lobe), the occipital
lobe (between the cuneus and the frontal lobe), and the frontal
lobe (between the paracentral lobule and the occipital lobe).
Treatment-resistant individuals showed reduced functional
connectivity in the temporal lobes as regions most implicated.
Decreased connectivity between frontal and temporal brain hubs
regions is a particularly vulnerable circuit consistently reported
in several studies in schizophrenia and is also characteristic of the
circuit pathophysiology of TRS (80).

In terms of network-based analysis, global network efficiency
was significantly reduced in the TRS group compared to controls
with significant increases in local efficiency. Reduced global
network efficiency indicates that the reduction of functional
connectivity and integration between different brain hubs in TRS
as a result of the disease process may create surrogate or back-up
connections locally (increase in local efficiency) as a homeostatic
mechanism and an attempt to compensate for the reduction in
longer-range connectivity and restore integration (46, 80).

THE SYNCHRONIZATION OF CORTICAL
CIRCUITS

One possible functional correlate of the aberrant connectivity
observed in TRS is disturbances in cortical network oscillations.
Oscillations in network activity include the theta (∼4–8Hz),
alpha (∼8–13Hz), and gamma (∼30–80Hz) bands. These
oscillations are measurable by electroencephalography (EEG)
and magnetoencephalography (MEG) and are thought to be
reflective of cortical information processing and integration
(79, 81) Importantly, they reflect the synchronous activity of
large populations of neurons that integrate information across
multiple brain regions. With regard to schizophrenia, specific
interest has been paid to the gamma band oscillation (GBO)
(82–85). The GBO plays an important role in a variety of
cognitive tasks including sensory processing, working memory,
attention, and cognitive control–all of which are disturbed in
the illness (86–91). More generally, it is thought to be critical
to the process of feature binding, in which sensory information
of a variety of modalities is integrated coherently into a unified
representation (92). Fittingly, it has been suggested that the
underlying dysfunction in schizophrenia is the inability to
integrate the activity of distributed neuronal networks. These
disturbances in the GBO could underlie the dysfunctional
communication observed between disparate brain regions in the
illness.

The GBO has been shown to be disrupted in schizophrenia
patients during the performance of a wide variety of tasks,
including simpler perceptual tasks and more complex and
cognitively demanding tasks (93–96). In patients diagnosed with
schizophrenia, EEG studies have shown that the GBO is impaired
in working memory tasks at frontal and posterior sites, as well
as in the frontal cortex during cognitive control tasks (97–100).
Performance of these tasks is typically associated with increase
in GBO activity in healthy subjects. However, in subjects with
schizophrenia this demand-related modulation of the GBO is
absent or diminished. The deficit in task-related modulation

FIGURE 2 | Parvalbumin interneurons contribute to the inhibitory dysfunction

in schizophrenia. Parvalbumin interneurons are fast-spiking inhibitory

interneurons characterized by the calcium binding protein parvalbumin. These

interneurons are innervated by excitatory glutamatergic cells and in turn their

projections target the cell soma of excitatory pyramidal cells. This

excitatory-inhibitory interplay is thought to give rise to the GBO, which is

reflective of parvalbumin interneurons role in synchronizing large populations of

excitatory cells. The GBO is disturbed in schizophrenia, and dysfunction within

parvalbumin interneurons is thought to be central to these abnormalities.

of the GBO is also present in first-episode patients, suggesting
that this is driven by the underlying disease process rather than
illness chronicity or long-term use of antipsychotic medications
(99). Several of these studies have also shown that deficits in
cognitive control in patients with schizophrenia are correlated
with their deficits in GBO activity (91, 98). Convergent evidence
from fMRI studies has also shown a lack of task-demand related
modulation of activity in the PFC in schizophrenia patients
(101). These findings suggest that for cognitive tasks, particularly
those that may depend on integration of information, the GBO
is a reflection of disturbed functional connectivity between
communicating brain regions.

Multiple models have been generated to describe the
underlying neural circuitry that gives rise to the GBO. Two
prominent ones include the Interneuron Network Gamma (ING)
model and the Pyramidal Interneuron Network Gamma (PING)
model (102). In the ING, pyramidal cells are synchronized by
the activity of interneurons, but pyramidal cells themselves are
not directly involved in the generation of the GBO. In PING,
oscillations are generated via the recurrent synaptic connectivity
between the excitatory activity of pyramidal cells and feedback
inhibition of interneurons. While this process is still not fully
understood, experimental observations favor the PING model of
GBO generation. In this case, synaptic inhibition via GABAergic
interneurons defines the timing and firing rate of pyramidal
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neurons, creating precise windows within which large groups
of excitatory cells can fire synchronously (103–105). In turn,
excitatory cells also provide input onto GABAergic interneurons,
creating a loop for entrainment of cortical networks across brain
regions. Support for the PING model comes from findings that
interneuron activity follows pyramidal cell activity by a short
delay, consistent with pyramidal cell excitatory drive as the
main stimulus for interneuron excitation in the model (106,
107). Within excitatory cells, α1-containing GABAA receptors
post-synaptic to a subset of inhibitory interneuron processes
produce currents with decay periods fitting for the production
of gamma oscillations (84). Lastly, it has been shown that with
genetic knockout of AMPA glutamate receptors within specific
populations of inhibitory interneurons, synaptic excitation of
these inhibitory interneurons is diminished and the power of the
gamma oscillation severely reduced (108). These findings support
the theory that the GBO arises from a complicated interplay
between excitatory pyramidal cells and inhibitory interneurons.

Consistent with the PING model, there is ample evidence
to suggest that both excitatory glutamatergic and inhibitory
GABAergic activity are disturbed in schizophrenia (84, 85).
Deficits in excitatory glutamatergic signaling have been identified
as a possible core feature behind the pathophysiology of
schizophrenia that gave rise to the NMDA receptor hypofunction
hypothesis (71). This hypothesis arose from the observation that
NMDA receptor antagonists (e.g., ketamine, PCP) can reproduce
some of the symptoms of schizophrenia. Subsequent studies
have identified widespread dysfunction of NMDA receptors in
schizophrenia. Interestingly, given that the GBO is thought to
be generated by the activity of inhibitory interneurons, much
of the observed dysfunction in NMDA receptors has been
specific to inhibitory interneurons themselves. For example,
post-mortem analysis of the PFC of schizophrenia patients
has shown a 50% reduction in the expression of the NR2A
subunit within inhibitory interneurons that express parvalbumin,
a calcium binding protein (109). Moreover, chronic NMDA
receptor antagonist administration in rodent models reduces the
expression of the parvalbumin protein and GAD67 (the primary
GABA-synthesizing enzyme glutamic acid decarboxylase) in
parvalbumin-positive(+) inhibitory interneurons (110, 111).
Acute administration of NMDA receptor antagonists has also
been shown to decrease the activity of interneurons with a
corresponding increase in the activity of pyramidal cells (70).
Thus, NMDA receptor antagonism may reduce the function
of inhibitory interneurons which subsequently disinhibits the
activity of pyramidal cells. Within the context of schizophrenia,
NMDA receptor hypofunction may result in the diminished
excitation of inhibitory interneurons within cortical networks.

Inhibitory interneurons are particularly sensitive to NMDA
receptor antagonists (70, 112, 113). In combination with
findings of altered expression of NMDA receptors within these
interneurons, it is well-supported that inhibitory interneurons,
particularly those expressing the calcium-binding protein
parvalbumin, are a locus for dysfunction in schizophrenia
(shown in Figure 2) (84, 114, 115). A number of studies have
shown that parvalbumin+ cells are critical to the generation
and maintenance of the GBO (106, 113, 116, 117). These

interneurons have extremely fast-spiking properties and their
rapid synaptic activation is consistent with the frequency
required for entrainment of the GBO (118). Parvalbumin+ cells
also show the strongest coupling to the gamma oscillation cycle
relative to other interneuron types (e.g., calbindin, calrentin)
(119, 120). Parvalbumin+ interneurons are typically fast-spiking
and provide perisomatic inhibition onto excitatory pyramidal
cells. Parvalbumin+ interneurons can present morphologically
as either basket (project to the soma and proximal dendrites
of neurons) or chandelier cells (project to the initial axon
segment of neurons) as illustrated in Figure 3. While both
parvalbumin+ basket and chandelier cells are active during GBO,
parvalbumin+ basket cell activity is more strongly coupled with
the GBO (121). Studies have also shown that GBO power is
markedly reduced by opioid receptor activation, which dampens
the activity of synaptic inputs from parvalbumin basket cells
onto pyramidal neurons but does not affect chandelier neurons
(122). These findings emphasize the critical importance of
parvalbumin+ basket cells specifically to the generation of the
GBO and their dysfunction in schizophrenia. In support of
this, it has been shown that reductions in the firing rate of
parvalbumin+ interneurons via optogenetics can reduce the
power of GBO (114). Conversely, non-rhythmic stimulation
provided to parvalbumin+ interneurons can increase the power
of the GBO.

Parvalbumin+ cells have been extensively studied in
schizophrenia and evidence of their dysfunction extends
well beyond their contribution to the GBO (85, 115, 123).
Parvalbumin+ cells have a reduction in mRNA and protein
levels of parvalbumin itself despite unaltered neuronal density in
patients with schizophrenia observed post-mortem (124–126).
Parvalbumin+ cells also have reduced protein and mRNA
levels of GAD67 and up to 50% of parvalbumin+ cells are
wholly devoid of GAD67 (124). This loss of GAD67 represents
a significant decrease in the strength of inhibitory inputs on the
pyramidal cells they target (115). Moreover, this deficit has been
observed in parvalbumin+ cells across multiple cortical regions
including the DLPFC and ACC (127–129). Two hypotheses
have been generated to account for the convergent evidence
of dysfunction localized to parvalbumin+ basket cells (84).
One hypothesis emphasizes the inhibitory contribution to this
network interplay and the other excitatory activity. First, lower
GAD67 levels in parvalbumin+ basket cells could result in
a disinhibition of pyramidal cells. Alternatively, the loss of
GAD67 in parvalbumin+ basket cells could be a development
disruption due to lack of excitatory input onto these cells to
drive their activity. Consistent findings of dendritic spine loss
on pyramidal cells in areas like the DLPFC and dysfunction
within glutamatergic channels (e.g., NMDA, AMPA) could
contribute to this loss of excitatory input onto parvalbumin+
basket cells in schizophrenia (68). These findings support the
central importance of parvalbumin+ inhibitory interneurons
in schizophrenia pathophysiology but whether this is a primary
pathology or homeostatic mechanism in response to diminished
pyramidal cell input is still unclear.

Despite an improved understanding of the underlying
pathophysiology of schizophrenia, particularly with regard to
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FIGURE 3 | Schematic diagram of perisomatic inhibition of cortical pyramidal cells by parvalbumin+ basket cells and chandelier interneurons. Adapted from Lewis

et al. (115).

cellular mechanisms contributing to the GBO, a multitude of
questions remain. Of utmost importance to the current review is
the validity of these findings, many of which have been garnered
from animal models of schizophrenia, to TRS. Current cellular
and animal models have significant limitations in modeling the
illness and few, if any, attempts have been made to replicate
the treatment-resistant presentation of the disorder. Secondly,
further investigation is required to understand the complex
interplay between excitatory glutamatergic cells and inhibitory
interneurons in the dysfunctional circuitry of schizophrenia.
Specifically, a better understanding of the cellular properties
that give rise to the GBO are necessary to better understand
approaches for treatment. And lastly, novel treatments and
therapeutics need to be designed to target the pathophysiological
functioning of GBO circuitry. These approaches may include
pharmacological stimulation of the neural circuitry or might be
targeted through novel non-pharmacological approaches, such as
rTMS which can directly stimulate the GBO.

SYMPTOM DOMAIN CIRCUITS

Patients who have a phenotype of psychosis that is responsive to
dopamine-blocking medication may have dysregulated striatal
hyperdopaminergia related to circuit abnormalities within
the fronto-striatal complex of the mesolimbic dopaminergic
pathway. Glutamatergic projections from the PFC to the
ventral tegmental area (VTA) normally regulate dopamine
release in the nucleus accumbens. Within this circuit
phenotype, hypofunctioning NMDA glutamate receptors
on cortical parvalbumin+ GABAergic interneurons will

cause an excessive release of glutamate within the VTA.
Hyperglutamatergia then leads to overstimulation (on
circuit phenotype) of dopaminergic neurons within the
mesolimbic dopamine pathway and excessive release of
dopamine within limbic structures, such as the nucleus
accumbens, amygdala and hippocampus (130, 131).
Hyperdopaminergia within the fronto-striatal circuit underlies
the beneficial positive symptom domain response that
treatment-responsive patients achieve with D2-blocking
medications.

Negative and cognitive symptom domain circuitry involves
cortical brainstem glutamate projections that communicate
within the mesocortical dopamine circuit. Glutamatergic
projections from the cortex onto hypofunctioning NMDA
glutamate receptors located on cortical parvalbumin+
interneurons leads to the excessive release of glutamate in the
VTA. The excessive stimulation of pyramidal VTA neurons then
leads to the inhibition (off circuit phenotype) of mesocortical
dopamine neurons and insufficient dopamine release in the
PFC and subsequent negative and cognitive symptoms in
schizophrenia (130, 131).

In those patients who fail to respond to antipsychotic
medication, it has been demonstrated that although D2 receptor
occupancy is identical to treatment-responsive patients, the
lack of efficacy from D2-blocking medication may indicate
that hyperdopaminergia may not be related to the symptoms
associated with non-response to medications (132). Higher
levels of striatal dopamine synthesis capacity have been found
in patients with schizophrenia who responded to treatment
vs. those patients with TRS who have much lower striatal
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dopamine levels comparable to healthy controls (72). Also,
fronto-striatal dysconnectivity is more pervasive and widely
distributed anatomically in TRS as compared to treatment-
responsive individuals whichmay also explain the limited efficacy
of dopamine-blocking medication targeting D2 receptors within
the fronto-striatal circuit in TRS (133).

The neurobiology unique to treatment resistance may involve
more glutamatergic related abnormalities than disruptions
involving dopamine. Clozapine has a unique and complex
pharmacological profile (having a higher affinity to D4 receptors
than to D2 receptors) and a higher binding affinity to many other
non-dopaminergic receptors. Clozapine is able to normalize
glutamate neurotransmission by increasing NMDA receptor
activity in the cortex by a number of different mechanisms. It has
been demonstrated that antagonism of D4 receptors can regulate
glutamatergic transmission by upregulating AMPA receptors and
providing homeostatic stabilization of the excitation of PFC
pyramidal neurons by indirect enhancement of NMDA activity
(134). Clozapine has also been shown to reduce the reuptake
of glutamate in the cortex by decreasing the expression of
glutamate transporters located on both glial and neuronal cells
in cortical and subcortical areas (135). Clozapine has the ability
to antagonize glycine transporter-1 (GlyT1) sites for reuptake
of glycine by glial cells (136), and can increase glial D-serine
release and enhance the release of glutamate via activation of
NMDA receptors (137) which may help to regulate some of the
downstream glutamate abnormalities that have been found in
TRS (73, 74).

It is difficult to map the underlying circuit pathology in ultra-
resistant schizophrenia due to the heterogeneity of the illness and
limited studies that have explicitly examined this population. Due
to multidimensional symptom domains resistant to clozapine,
ultra-resistant schizophrenia can be described as the most
severe phenotype of the illness that is mediated by multiple
mechanisms far beyond dysregulated striatal hyperdopaminergia
and glutamate NMDA receptor hypofunction.

CIRCUIT-BASED PHARMACOLOGICAL
TREATMENTS

Currently, there are no customized neural circuit-specific and
targeted therapies that can address the neural-dysconnectivity
in schizophrenia. Despite the lack of precision and ubiquitous
targets of pharmacological methods, the use of adjunctive
agents to antipsychotic medications may be conceptualized
within a circuit context to help improve neuronal network
integration and treatment response in TRS. In many cases,
augmentation strategies are needed to improve the residual
psychopathology symptom domains that have been non-
responsive to antipsychotic drugs (including clozapine). Usually
in those patients who have not responded to clozapine, a
variety of other antipsychotic medications, antidepressants,
anticonvulsants, benzodiazepines or a variety of glutamate
augmenting agents have been attempted. Clinical studies
have used a variety of agents that can enhance glutamate
NMDA receptors (on connectomic) function in an attempt

to improve downstream GABAergic (off connectomic)
inhibitory effects. GABA interneuron modulators have
also been recently investigated as an attempt to inhibit
pyramidal cell firing, as well as NO-based therapies to
improve intracellular NMDA receptor signaling and other
direct circuit-targeted neurosurgical and neuromodulation
strategies for their therapeutic benefit in treatment resistant
disease.

GLUTAMATERGIC AGENTS

Many drugs that target and co-activate glutamatergic pathways
have been of interest as a non-dopaminergic approach to
improve antipsychotic treatment in schizophrenia. Strategies to
improve glutamate NMDA receptor hypoactivity on GABAergic
interneurons have targeted extracellular binding sites on the
receptor. The glycine modulatory site has been investigated
as a target to improve NMDA receptor hypofunction in
schizophrenia and several agonists or partial agonists of this
binding site on the NMDA receptor have been studied in clinical
trials (138).

The amino acid glycine is a co-agonist of the NMDA receptor
and it is required along with glutamate to activate the NMDA
ion channel (139, 140). The binding site for glycine (located on
the NR1 subunit) of the NMDA receptor was first discovered
by Johnson and Ascher (1987) by preclinical electrophysiology
studies using the outside-out patch clamp method. The NMDA
receptor response was then observed to be potentiated by glycine.
The distinct binding site (glycine B receptor) was separate from
the strychnine-sensitive glycine inhibitory receptor as NMDA
receptor potentiation by glycine was not blocked by strychnine
(139). In clinical studies, reduced plasma concentrations of
glycine have been found in patients with schizophrenia and have
been correlated with a greater number of negative symptoms
(141, 142), supporting the use of glycine as a strategy to improve
NMDA receptor functioning in those patients identified as
having treatment resistance specific to the negative symptom
domain (138).

Glycine was first used as an augmenting treatment in
schizophrenia close to 30 years ago in a few small open-
label clinical trials used at doses between 5 and 25 g per
day (138, 143–145). In subsequent controlled trials, 60 g of
glycine augmented with first-generation or second-generation
antipsychotic medication was reported to improve not only
the negative symptoms (146–150), but also cognitive symptoms
(147, 148, 150) and the depressive symptoms of the illness
(148). Glycine is not able to cross the blood-brain barrier easily
as it has no specific amino acid transporter, so higher doses
must be used that impacts patients’ tolerability to glycine. The
benefits reported of using glycine as an augmenting treatment to
antipsychotic medications to improve the cognitive and negative
symptoms domains of the illness has since been disputed. In a
subsequent review, glycine was found to have moderate effect
in reducing negative symptoms and it was uncertain whether
it had any benefit at improving cognitive symptoms (151). The
multicentre Cognitive and Negative Symptoms in Schizophrenia
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Trial (CONSIST), found no significant differences between
glycine and placebo at improving the negative or cognitive
symptom domains of the illness (152). Overall, glycine may
be beneficial for those patients that have treatment resistance
specific to the negative and cognitive symptom domains; (153)
however it has not been a beneficial augmenting strategy in
patients with TRS on clozapine (154).

An alternative approach to increasing endogenous brain
glycine concentrations has been to block its reuptake and thus
improve glutamatergic tone. The amino acid sarcosine, a GlyT1
inhibitor, has also been demonstrated to improve the negative,
cognitive and depressive symptom domains of schizophrenia
(155, 156). Unfortunately, significant side-effects have since
been reported including ataxia, hypoactivity and respiratory
depression with the use of sarcosine, perhaps in relation to
mechanisms involved in the overstimulation of the strychnine-
sensitive glycine inhibitory glycine receptor (157, 158). When
used as an augmenting strategy in patients with TRS, sarcosine
was also not effective (159). This may be related to clozapine’s
glutamatergic effects and known GlyT1 antagonist properties
(136, 138). Bitopertin, a non-sarcosine-based selective GlyT1
inhibiting drug, has also been investigated as an adjunct to
antipsychotics (at doses of 10 and 30mg per day) to mainly target
the negative symptom domain of the illness (160). In subsequent
phase III trials (SearchLyte trial programme), bitopertin was
unsuccessful at improving the primary outcome measure of
Positive and Negative Syndrome Scale (PANSS) (161) negative
symptom scores over placebo which led the manufacturer
Hoffmann-La Roche to discontinue the programme prematurely
(138).

D-serine, an allosteric modulator at the glycine co-agonist
binding site, has also been investigated as an augmenting
strategy primarily for improving the deficit symptoms of
schizophrenia. D-serine may be more effective than glycine
as it has a greater affinity for the glycine/serine binding
site and also has an increased ability to cross the blood-
brain barrier (162–164). Serum concentrations of D-serine
have also been found to be reduced in schizophrenia (165).
D-serine selectively binds to synaptic NMDA receptors and
may strengthen circuit connectivity and have more of a
neuroprotective effect as compared to glycine, which binds to
both synaptic and extrasynaptic NMDA receptors (138, 166). The
therapeutic effects of D-serine to improve refractory negative
symptoms in schizophrenia have been demonstrated when added
to antipsychotic therapy in patients with acute (156), chronic
(167), and treatment-resistant illness (168). D-serine is well-
tolerated and has been reported to be safe and effective used at
dosages up to 120 mg/kg per day (169). D-cycloserine, a drug
that was initially used to treat tuberculosis and an anolog of D-
serine, is also active at the glycine site and has been reported
to benefit the negative symptom domain of schizophrenia (170–
172). Unfortunately, in patients with TRS, glycine, D-serine,
and D-cycloserine have all been reported to be less effective at
improving the negative and cognitive symptom domains in those
patients receiving clozapine therapy (138, 152, 154, 172, 173).

Drugs that can downregulate presynaptic disinhibited
glutamate release on secondary downstream glutamate neurons

have also been explored in patients with TRS and may also work
to modulate circuit connectivity. Lamotrigine, an anticonvulsant
drug that suppresses presynaptic glutamate release by the
blockade of voltage-sensitive sodium channels has been shown
to improve clinical response when used as an adjunct to
clozapine treatment in ultra-resistant schizophrenia (138, 174–
178). The beneficial effects may be associated with clozapine’s
low affinity to the D2-receptor and involvement with the
glutamate system (in comparison to other antipsychotic drugs)
which may be further enhanced by lamotrigine (138, 175).
More recent clinical trials have studied the efficacy between
the metabotropic glutamate 2/3 (mGlu2/3) receptor agonist
pomaglumetad methionil (also known as LY2140023) and
atypical antipsychotics (138, 179, 180). In a phase II study,
it was found to be less effective than the comparator atypical
antipsychotic (180) and Eli Lilly subsequently stopped a phase III
trial investigating the compound as it failed to meet its primary
endpoint.

NITRIC OXIDE-BASED TREATMENTS

An alternative and novel approach that may improve
glutamate NMDA receptor signaling and circuit connectivity in
schizophrenia is to target the glutamate-NO-cyclic guanosine
monophosphate (cGMP) signaling cascade. Nitric oxide
is produced in the brain by a complex interaction with a
functional glutamate NMDA receptor and there have been
a number of clinical studies suggesting that signaling within
the glutamate-NO-cGMP pathway may be disrupted in the
illness (138, 181–187). As a gaseous signaling molecule, NO
is classified as a neuromodulator or second messenger due
to its ability to generate the production of cGMP. Nitric
oxide-mediated signal transduction is an important driver for
a variety of cellular processes throughout the body, including
those critical for the establishment and maintenance of
functional neuronal circuits and synaptogenesis (138, 188).
In the cerebral cortex, neurons that produce NO are among
the earliest differentiating cells that develop (138, 189).
The presence of NO-producing neurons during critical
developmental growth periods suggests that NO may be
required for the formation and subsequent migration of neurons
in the brain, and interruption of NO synthesis could lead
to impairment in neuronal connectivity as is observed in
schizophrenia.

Studies examining the effects of the NO donor drug sodium
nitroprusside (SNP) in PCP-treated rats has contributed insight
into the role of NO in psychosis (138, 190, 191). The results
then stimulated the investigation of the therapeutic effects of
SNP in schizophrenia (192, 193). Sodium nitroprusside is a
nitrovasodilator drug traditionally used for hypertensive crisis
(194). When SNP is administered, it reacts with oxyhemoglobin
molecules that are within erythrocytes to form methemoglobin
which causes the molecule to become unstable and immediately
release NO (138, 194).

The first investigational clinical trial of NO in schizophrenia
was conducted at the University Teaching Hospital in Ribeirao
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Preto, Sao Paulo, Brazil. In this clinical trial, an intravenous
infusion of SNP in patients who were already on antipsychotics
produced rapid improvement of symptoms (within 4 h of a single
infusion) as compared to those patients who received a placebo
infusion (138, 192). Symptom improvement continued for 4
weeks following the infusion (although antipsychotic medication
adjustments were permitted 7 days following the infusion). The
lasting benefits are thought to be related to cGMP’s ability
to stimulate early gene products and subsequent modulatory
effects on the NMDA receptor itself. Sodium nitroprusside has
been beneficial in both early stage schizophrenia and in a few
case reports of ultra-resistant schizophrenia and did improve
a wide spectrum of symptom domains, including the positive,
negative, and anxiety symptoms of the illness (138, 192, 193). The
results were not replicated in a subsequent trial testing SNP in a
population of long-term chronically ill patients (195), which may
suggest that SNP-based therapies may be most effective when
used within the earlier stages of the illness in those patients
experiencing acute symptoms.

In relation to these findings, Dr. Paul Morrison (King’s
College London) is currently testing the NO-based compound
glyceryl trinitrate (GTN) for its ability to improve the cognitive
symptom domain of patients experiencing acute psychosis and
who are requiring hospitalization (Clinicaltrials.gov Identifier:
NCT02906553). Glyceryl trinitrate is another nitrovasodilator
drug that has been used to treat angina and other cardiac
conditions including myocardial infarction and congestive
heart failure. The biotransformation of GTN involves both
enzymatic and nonenzymatic pathways that are linked to the
pharmacokinetic and pharmacodynamics properties of the drug
(138, 196). The metabolic conversion of GTN to NO may also
improve downstream glutamate signaling. This clinical trial aims
to assess the role of the NO system in cognition and will initiate
a sublingual GTN spray 0.4mg dose, once per day for 3 days
or matching placebo formulation spray not containing GTN
before the patients are initiated on antipsychotic medication.
Glyceryl trinitrate in sublingual spray formulation is a much
more convenient and less invasive approach to drug delivery
than intravenous infusion of SNP in patients with schizophrenia
and may be a promising approach to further improve treatment-
resistant cognitive symptoms in the illness.

GABAergic INTERNEURON MODULATORS

Pharmacological strategies that target GABAergic interneurons
that may correct dysfunctional inhibitory feedback within
corticolimbic circuits are also being investigated. Specifically,
parvalbumin+ cells are now also being explored as a novel
approach to repairing DLPFC neural circuitry and improving the
cognitive symptom domain in schizophrenia (Clinicaltrials.gov
Identifier: NCT03164876). Parvalbumin+ cells innervate
multiple pyramidal cells and contain lower mRNA for
parvalbumin and GAD67 in those with schizophrenia
(124) and reduced expression of the potassium channel
KCNS3 gene which encodes the Kv9.3 potassium channel
α subunit and is essential for control over its fast-spiking

abilities (197). Inhibitory parvalbumin+ interneurons
contribute to the cognitive deficits in schizophrenia (115)
and in unmedicated patients with the illness. Kv3.1 channels
located on parvalbumin+ cells are reduced by disease and
then normalized with the use of antipsychotic drugs (198).
Dr. Charles Large (Autifony Therapeutics) has recently
completed a phase I study of AUT00206, a Kv3.1 channel
modulator in healthy volunteers (Clinicaltrials.gov Identifer:
NCT02589262) and in collaboration with Dr. Oliver Howes
(King’s College London), his team are currently recruiting for
a continued phase I study to explore its safety, tolerability,
pharmacokinetics and treatment effects on relevant biomarkers
in patients with schizophrenia (Clinicaltrials.gov Identifier:
NCT03164876).

CIRCUIT-BASED NEUROSURGERY

Surgical modalities that can precisely target particular
regions of focal and well-localized dysconnectivity in the
brain are currently being tested as a more circuit-specific
approach to precision medicine in schizophrenia. Deep
brain stimulation (DBS) has been a well-established targeted
therapeutic approach that has been used to improve the
treatment-resistant symptoms of Parkinson’s disease, obsessive-
compulsive disorder and treatment refractory depression
(199–202).

Neurosurgical DBS strategies are also now being considered to
be used in ultra-resistant schizophrenia to target those relevant
brain hubs that may improve the interconnectivity of relevant
neuronal circuits. The implantation of electrodes into accessible
anatomical nodes can be targeted to normalize or reset abnormal
patterns of cortical network GBO activity that disrupt neural
circuits. The stimulation settings of the electrodes can be titrated
to tune the neurons to specific frequencies and recalibrate
neuronal asynchrony. There is current interest in targeting
several important network hubs using DBS in ultra-resistant
schizophrenia involved in basal ganglia-thalamocortical and
DLPFC brain circuits. Hubs identified include the hippocampus,
ventral and associated striatum, medial and DLPFC, substantia
nigra, nucleus accumbens and the mediodorsal nucleus of the
thalamus (203–205). These hubs have been chosen primarily
based on known pathological findings in schizophrenia and/or
their interconnectedness to other brain hubs that are circuit-
specific and related to the excessive and mistimed dopamine
release in the striatum. Hippocampal dysfunction that drives
downstream dopamine release in the striatum contributing to
persistent positive symptoms is one of the clinical hallmarks for
treatment-resistant disease (206).

Currently there are two phase I DBS trials investigating this
approach in ultra-resistant schizophrenia that are recruiting
patients. The first trial at Hospital Santa Creu i Sant Pau
in Barcelona (Clinicaltrials.gov Identifier: NCT02377505) is
targeting electrode placement in either the nucleus accumbens
or the subgenual ACC. The participants will be randomized to
receive stimulation to either of these neuroanatomical sites with
the stimulation remaining on until a full 6 months of stabilization
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is achieved. Those patients who are responsive will then be
crossed-over to stimulation-on or stimulation-off groups for 3
months.

The principal investigator, Dr. Iluminada Corripio has
recently reported positive findings in the first subject who
participated in this clinical trial. The patient had a long history
of ultra-resistant schizophrenia-positive symptom domain
refractory symptoms including manifestations of persecutory,
control and delusions of reference. Her referential delusions
had become so pronounced that she was unable to leave her
home. The patient had a long treatment history typical of ultra-
resistant schizophrenia including many trials with a number
of different antipsychotic medications, including the use of
clozapine (600 mg/day) with little benefit. The patient underwent
bilateral electrode implantation in the nucleus accumbens and
left-sided unilateral stimulation. Improvement was achieved
in both positive and negative symptoms measured 4 weeks
post-implantation and after 11 months of open treatment, the
patient experienced over a 60% reduction in positive symptoms
as measured by the positive symptoms subscale of the PANSS as
well as a 33% reduction in negative symptoms, 50% reduction
in the PANSS disorganization factor, 33% reduction in PANSS
excited factor and 16.7% increase in the depressed factor.
The patient continues to do well and is now able to leave her
home and has made significant improvements to her overall
functioning. For this patient with ultra-resistant schizophrenia,
this DBS treatment option was of substantial benefit to otherwise
untreatable refractory symptoms (207).

The second DBS trial in ultra-resistant schizophrenia is out
of Johns Hopkins University where the study team led by
Dr. William Anderson will be recruiting three ultra-refractory
patients and will be targeting the local inhibition of the
substantia nigra pars reticulata (SNr), a major outflow nucleus
of the basal ganglia with the intention of disinhibition and
driving the activity of the mediodorsal nucleus of the thalamus
(Clinicaltrials.gov Identifier: NCT02361554). The structure and
hypofunction of the mediodorsal nucleus of the thalamus
has been investigated in several imaging and post-mortem
studies in schizophrenia (208). All of the DBS studies in ultra-
resistant schizophrenia are only recruiting those patients who
have exhausted all other therapeutic alternatives and continue
to have severe and disabling clinical symptoms and poor
functioning.

CIRCUIT-BASED NEUROMODULATION

The use of external neuromodulation devices, a less invasive
circuit-based treatment approach than DBS has also become
an alternative treatment option for refractory schizophrenia.
Repetitive transcranial magnetic stimulation (rTMS) has been the
method most investigated. In rTMS time-varying currents are
generated in an induction coil and are held over the scalp and
applied to stimulate and improve the functioning and synchrony
of the GBO networks and GABA inhibitory mechanisms within
the brain circuits beneath it. There have been several randomized
studies conducted to show that stimulation targeted over the left

TPJ, a critical hub involved in the pathophysiology of AVH, can
reduce these symptoms (209–215).

Transcranial direct current stimulation (tDCS) is an
alternative non-invasive form of neuromodulation that has
been used to target specific circuits of the brain to improve
treatment-refractory symptom domains of schizophrenia. It is
a smaller, lightweight, portable and less expensive option than
TMS and could be easily used at home to reduce the burden of
having to receive daily treatments within a clinical setting (216).
In this approach, two sponge electrodes are positioned on the
scalp to facilitate a low-intensity electrical current (1–2mA)
that is passed between them. The transcranial current that is
generated is continuous and flows in a direct current from
an anode (current that enters the body) to induce prolonged
depolarization to a cathode (a current that exits the body) to
induce hyperpolarization under the cathode (217–220). It is
thought that the mechanisms involved in the longer-lasting
effects of tDCS are protein synthesis-dependent and in the
modification of intracellular cascades beyond the membrane
potential to influence cellular features associated with NMDA
receptor functioning (216, 217). tDCS is increasingly being
investigated by more independent schizophrenia researchers
and primarily for improvement of positive (AVH) and negative
symptom domain refractory symptoms.

Based on observations of the dysconnectivity of fronto-
temporal circuits from functional neuroimaging studies of
patients experiencing AVH (60–62), clinical studies have used
tDCS to improve the dysconnectivity of these circuits to decrease
AVH in patients with schizophrenia. In these studies, the anode
electrode is applied over the left DLPFC (abnormally hypoactive)
with the cathode electrode applied over the TPJ (abnormally
hyperactive) to modulate the circuit and alleviate the severity
of the AVH in schizophrenia (218, 221, 222). Results have been
mixed in the ability of tDCS to reduce severity and frequency
of AVH. For reviews see Li et al. (223), Ponde et al. (224), and
Agarwal et al. (225). Studies that have reported a stronger and
longer lasting response have had a higher number of treatment
sessions and/or shorter time interval between sessions within
their design (221, 226).

Open-label and randomized clinical trials that have examined
the effects of tDCS to target negative symptoms of schizophrenia
have placed the anode over the left DLPFC and the cathode
over the right DLPFC or the right supraorbital region or
placed it extra-cephalically (221, 227–229). A meta-analysis
concluded that tDCS treatment is beneficial for improving
negative symptom domain indications (211). There has been
direct support for the safety of tDCS in human clinical trials
with the most often reported side-effect of mild skin erythema,
itching, tingling and burning under the electrode placement as
well as temporary headache and dizziness which resolves after
stimulation (218, 220).

CONCLUDING REMARKS

Treatment resistance in schizophrenia continues to be a
therapeutic challenge in psychiatry. Within the spectrum
of the disease, neural circuits within specific brain regions
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and their structural and functional links to corresponding
regions seem to be further disrupted in TRS. In this review,
we have examined TRS from a circuit-based perspective.
We highlighted attempts by leading schizophrenia clinicians
and researchers to standardize the definition of treatment
resistance in schizophrenia and have identified and incorporated
recommended terminology with regards to the clinical sub-
specifiers or symptom phenotypes that are common to TRS.
We discussed the developments of network-based science
from the early pioneers who recognized psychiatric illness
and schizophrenia as a disease of neuronal and functional
disconnectivity. With the development of neuroimaging
methods, modern-day connectionists have built upon these
theories and have continued to develop and advance network
connectomic science today.

Our review of schizophrenia and TRS within a connectome
context suggests that the structural and functional alterations
may be greater in those patients with persistent treatment-
resistant symptoms, indicating that there may be fundamental
differences within brain network properties that contribute
to the inability to integrate the activity and function of
distributed neuronal networks that are specific to TRS. Cortical
network oscillations and GBO in particular have been reviewed
to understand their role in the integration of neuronal
information across large neuronal ensembles in the illness.
The complex relationship involved in the synchronized firing
between excitatory pyramidal cells and inhibitory GABAergic
interneurons were also reviewed, including findings specific
to dysfunctional inhibitory networks in schizophrenia and
parvalbumin interneuron dysfunction and what role these
cells may play in dysfunctional pyramidal cell inhibition in
schizophrenia.

We conclude the review with an overview of several
augmenting pharmacological treatments, such as glutamate

NMDA receptor and GABA interneuron modulators as well
as NO-based treatments and how they may be viewed within a
circuit context. Neurosurgical and neuromodulatory approaches
were also discussed to highlight a number of beneficial
circuit-based targets that may improve circuit integration and
treatment response in TRS and improve treatment refractory
symptoms in patients who have demonstrated poor response
to alternative treatment approaches. The precise mapping of
cellular and system-level networks to both on (excitatory) and
off (inhibitory) circuit phenotypes specific to treatment-resistant
disease remains challenging. Understanding the complexity
of the cellular properties that are involved in dysfunctional
brain networks in TRS will be critical toward future research
in neural circuit-specific pharmacotherapeutics and directed

neuromodulation treatments in schizophrenia. The ongoing
interest and innovation that has been dedicated toward

the understanding of the neural circuitry of schizophrenia
and targeted treatment of TRS will hopefully improve

personalized outcomes of those suffering from this debilitating
disease.
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