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Abstract: Molecular mechanisms of distant metastases (M1) in papillary thyroid cancer (PTC) are
poorly understood. We attempted to analyze the gene expression profile in PTC primary tumors to
seek the genes associated with M1 status and characterize their molecular function. One hundred
and twenty-three patients, including 36 M1 cases, were subjected to transcriptome oligonucleotide
microarray analyses: (set A—U133, set B—HG 1.0 ST) at transcript and gene group level (limma, gene
set enrichment analysis (GSEA)). An additional independent set of 63 PTCs, including 9 M1 cases,
was used to validate results by qPCR. The analysis on dataset A detected eleven transcripts showing
significant differences in expression between metastatic and non-metastatic PTC. These genes were
validated on microarray dataset B. The differential expression was positively confirmed for only
two genes: IGFBP3, (most significant) and ECM1. However, when analyzed on an independent
dataset by qPCR, the IGFBP3 gene showed no differences in expression. Gene group analysis showed
differences mainly among immune-related transcripts, indicating the potential influence of tumor
immune infiltration or signal within the primary tumor. The differences in gene expression profile
between metastatic and non-metastatic PTC, if they exist, are subtle and potentially detectable only in
large datasets.
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1. Introduction

Thyroid cancer incidence has increased in recent years. The estimated morbidity is 15.8 persons per
100,000 population (8.0 per 100,000 men and 23.3 per 100,000 women), which represents 3.0% of all new
cancer cases diagnosed in the United States [1]. Better availability of sonography leads to the detection
of small lesions, which are mostly clinically asymptomatic [2]. The most common type—papillary
thyroid carcinoma (PTC)—constitutes 65%−93% of all thyroid cancer cases, depending on the analyzed
population [3]. Five-year overall survival for thyroid cancer is 98.2% [1]. Despite the increased number
of new cases, the number of deaths remains stable, and it is 0.5 per 100,000 population.

Differentiated thyroid cancer (DTC) is characterized by an excellent prognosis, with 10-year
survival rates exceeding 90%. Nevertheless, 3–15% of DTC patients have distant metastases (M1) at
presentation [4,5], whereas recurrent disease is diagnosed within decades in up to 30% of patients [6].
Two-third of relapses (66%) occur within the first ten years. Among them, 79% of cases have a
locoregional disease, whereas 21% of cases manifest as distant metastases, mostly in the lungs
(53–63%) and in the bones (19–20%). Numerous risk score systems have been developed to predict
the course of the disease. These classifications are based on different clinical and histopathological
data, including age at diagnosis, tumor diameter, cancer type and subtype, invasion outside thyroid
capsule, lymph node, and distant metastases. The most common are TNM (tumor, nodes, metastasis)
system, MACIS (Metastases, Age, Completeness of resection, Invasion [local], Size) score, and ATA
(American Thyroid Association) Initial Risk Stratification System [7,8]. Surprisingly, none of these
systems consider molecular features. The prognostic significance of BRAFV600E or TERT promoter
mutations in PTC has been widely discussed recently [9–12]. The BRAFV600E mutation is the most
common molecular alteration in PTC, being present in 36%-83% of PTC cases. Its impact on the PTC
course is not so unequivocal. Numerous papers have pointed to a significant association between
the BRAFV600E mutation and other poor prognostic factors, including older age, male gender, tumor
size, extrathyroidal extension, lymph node or distant metastases, higher PTC stage, and the risk of
recurrence or PTC-related death [13–18]. However, other studies did not confirm these findings [9,19].
TERT promoter mutations, reported for the first time in thyroid carcinoma in 2013 [20], are rare
and occur in 7.5% of PTCs [21]. The coexistence of TERT promoter and BRAF mutation, frequently
observed in PTC, is considered as being related to poorer prognosis and a more aggressive PTC
course [22–25]. Noteworthily, some published data indicate that a negative impact on PTC prognosis
is a consequence of TERT mutations solely [26] than their combination with the BRAF mutation.
In contrast, other sources demonstrate that the effect of TERT mutations decreased or disappeared
when these two mutations occurred separately [22,23,27]. Following these data, the assessment of the
BRAFV600E mutation or TERT promoter mutation is currently being implemented into clinics, although
it is still not a part of daily clinical practice. However, one should remember that the confirmation of
the presence of BRAF or TERT mutation does not allow one to select patients with a high risk of distant
metastases accurately and so far, does not influence clinical management either.

In contrast to our knowledge regarding the impact of mutations, as discussed above, the data
linking gene expression profile and the risk of PTC spread are scarce and are mostly directed at the
risk of nodal rather than distant metastases [28–31]. As nodal metastases do not preclude excellent
prognosis, these attempts did not translate into clinically useful predictor. Previous studies to find at
least one predictive gene expression marker of distant metastases in PTC failed. We believe we are
justified to draw such a conclusion, as a small number or even no papers continuing these analyses
were published.

Another important issue, showing huge progress in recent years, is the analysis of molecular
pathways, bringing new light to the molecular pathogenesis of metastasis [32]. Such analyses were
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also carried out in thyroid carcinoma [33,34]. It is believed that understanding the interplay and
deregulation in molecular pathways may be crucial for the development of new therapeutic strategies
and finally lead to the improvement of long-term prognosis.

In this study, we verify a hypothesis that there exist gene expression markers in primary
thyroid tumors which cause a predisposition to the occurrence of distant metastases (synchronously or
metachronically), which could potentially serve as a valuable prognostic/predictive marker. Thus, in the
analysis, we attempt to find differentiating genes to predict M1 in PTC.

2. Results

Our study included material, longitudinally collected intraoperatively at our center. The sample
collection lasted several years, and several attempts to perform the analysis were made during the time.
Simultaneously, microarray technology was developing, so the data obtained in different timepoints
show a batch effect due to different reagent batches and—in part—different microarray batches and
generations. Initially, the planned analysis included independent discovery and validation sets
(microarrays and qPCR, respectively) (Figure 1). As the results of the initial discovery cohort analysis
showed weak discrimination and validation results were inconclusive, we extended the microarray
analysis to also cover the samples preliminarily used for qPCR (Dataset A). Later on, an additional
dataset was collected and analyzed (Dataset B). The first set of PTC tumors was analyzed in 2005
using the HGU 133A arrays. The next set was subsequently collected and analyzed in 2009, when the
previous arrays were no longer available. Thus, we used HGU133 2.0 PLUS arrays. After the second
analysis, our results were still inconclusive. So, in 2014, we analyzed the third set of samples using a
new generation of microarrays. The use of different platforms required careful analysis. Therefore,
we decided to combine all the sets.
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2.1. Discovery Sample Set A

The first stage of analysis was performed in microarray dataset A (71 PTC tumors) using Affymetrix
Human Genome U133A Arrays (HG-U133A) or Affymetrix Human Genome U-133 Plus 2.0 Arrays
(HG-U13 Plus 2.0). When differentially expressed genes were selected using Linear Models for
Microarray Data (limma), 11 transcripts showed significant differences in expression (FDR adjusted
p-value < 0.05) between PTCs with and without distant metastases (Table 1). All the genes were
upregulated in metastatic PTCs.

2.2. Validation Sample Set B

In the next step, we performed a validation of 11 selected genes using microarray validation
dataset B (52 independent PTC samples) using Affymetrix Human Gene 1.0 ST Arrays. The differential
expression was positively confirmed for two genes: insulin-like growth factor binding protein 3
(IGFBP3) and extracellular matrix protein 1 (ECM1) (Bonferroni corrected p-value < 0.05). In the
validation microarray dataset B, IGFBP3 and ECM1 have relatively large signal log ratios (SLR). The SLR
of IGFBP3 is equal to 0.83, which corresponds to a fold change (FC) equal to 1.77, and the SLR of ECM1
is equal to 1.08, which corresponds to an FC equal to 2.11. To additionally test the significance of the
result, we compared the SLR of those two genes to the SLR of other genes in the microarray—they rank
in the highest percentile of differences (only 0.2% of 12,001 genes show an absolute SLR higher than
IGFBP3, and 0.07% of genes show an absolute SLR larger than ECM1). Using validation microarray
dataset B, we also estimated the probability that a minimum two out of 11 randomly selected genes
would be positively validated, with such a high absolute SLR (absolute SLR of minimum two genes
larger or equal to 0.83). The probability of such an event is lower than 0.0001, which may suggest the
real association of IGFBP3 and ECM1 with PTC metastases.

2.3. Real-Time Quantitative RT-PCR Analysis (qPCR)

Albeit significant in both microarray datasets, IGFBP3 was among the genes which were evaluated
by qPCR in the first stage of our analysis (Table S1). The result was found to be negative: the median
expression in M0 group was 0.0812, whereas in M1 group 0.0955 (p = 0.2933). As the remaining
genes analyzed by qPCR were not confirmed by analysis of Gene Set A and B, and after correction for
multiple comparisons, this analysis led to insignificant genes, we provide it only in Table S1.

2.4. Functional Gene Set Enrichment Analysis

We analyzed the differences in gene expression at the level of functional gene sets using gene
set enrichment analysis (GSEA) method. In discovery Sample set A, 262 gene sets were significant
(adjusted p-value < 0.05) within the most informative Biological Process classification, with 20−30 gene
sets in remaining GO trees and KEGG database, and 11-296 gene sets in MSigDB collections (Table 2).
A similar number of gene sets (260) was significant in Sample set B, and 54 of these sets were found to be
significant in both dataset A and dataset B (all showed the concordant sign of normalized enrichment
score, NES). As the gene sets are redundant, after eliminating the most redundant oncology terms,
seven Biological Process ontology terms were found to be significantly over-represented, with NES score
absolute value above 2.0 (Table 3). The top differences were seen in closely related GO terms “positive
regulation of cell killing” (GO:0031343) and “natural killer cell-mediated immunity” (GO:0002228).
Differences of the largest magnitude (the highest absolute NES) were seen in other immunity-related
gene sets, including the positive regulation of T-cell proliferation and immunoglobulin production.
They all were mirrored by a large-scale difference in the general GO term “lymphocyte-mediated
immunity” (GO:0002449), with the NES score of this subgroup being −2.15. All immunity-related
subsets showed negative NES scores, indicating a higher expression of immunity-related transcripts in
patients without distant metastases (M0).
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Table 1. Genes differentially expressed between papillary thyroid cancer (PTC) with and without distant metastases. Genes were selected on microarray dataset A
(71 PTC samples) and validated on microarray validation dataset B (52 PTC samples).

Microarray Dataset A (n = 71) Microarray Validation Dataset B (n = 52)

Gene
Symbol

Entrez Gene
ID Gene Name p-Value FDR-Adjusted

p-Value

Log2-Tranformed
Mean Expression
in Metastatic PTC

Log2-Tranformed
Mean Expression in
Non-Metastatic PTC

Fold Change
(Metastatic vs.

Non-Metastatic)
p-Value Bonferroni-Adjusted

p-Value

Fold Change
(Metastatic vs.

Non-Metastatic)

IGFBP3 3486 insulin like growth
factor binding protein 3 1.59 × 10−6 0.010 9.2 7.9 2.6 1.00 × 10−4 0.001 1.8

ECM1 1893 extracellular matrix
protein 1 2.17 × 10−5 0.029 10.5 8.3 4.5 4.30 × 10−3 0.047 2.1

SLC26A3 1811 solute carrier family 26
member 3 2.67 × 10−5 0.032 3.3 2.9 1.3 2.57 × 10−2 0.283 1.1

YAF2 10138 YY1 associated factor 2 2.60 × 10−6 0.010 5.5 5.0 1.4 3.25 × 10−2 0.358 1.2

CHST7 56548 carbohydrate
sulfotransferase 7 2.98 × 10−5 0.033 6.5 5.7 1.7 3.30 × 10−2 0.363 1.2

TMEM255A 55026 transmembrane protein
255A 9.09 × 10-6 0.016 5.2 3.7 2.8 3.98 × 10−2 0.437 1.5

MAP2K1 5604 mitogen-activated
protein kinase kinase 1 1.09 × 10−5 0.016 9.4 8.8 1.5 6.12 × 10−2 0.673 1.1

PLOD1 5351
procollagen-lysine,2-

oxoglutarate
5-dioxygenase 1

5.73 × 10−6 0.016 7.8 7.3 1.4 1.20 × 10−1 1.000 1.1

SMYD3 64754 SET and MYND
domain containing 3 7.46 × 10−6 0.016 8.5 7.8 1.6 3.94 × 10−1 1.000 1.1

STX6 10228 syntaxin 6 9.24 × 10−6 0.016 6.6 6.3 1.2 8.58 × 10−1 1.000 1.0

RNPEP 6051 arginyl aminopeptidase 8.92 × 10−7 0.010 8.9 8.5 1.3 8.73 × 10−1 1.000 1.0
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Table 2. Comparison of significant gene sets in gene set enrichment analysis (GSEA) of Sample set A
and Sample set B.

Gene Set

Number of Significant Gene Groups Association between Lists of
Significant Gene Sets;

p-Value (Exact Fisher Test)Sample Set A Sample Set B Significant in Both Sets,
Showing a Concordant NES

GO Biological Process 262 260 54 <2.2 × 10−16

GO Cellular Component 27 78 5 0.2034

GO Molecular Function 30 115 5 0.03644

KEGG Pathways 20 31 5 0.007402

MSigDB:H 11 16 5 0.2972

MSigDB:C2:CPG 296 267 103 <2.2 × 10−16

Table 3. Selected significant Gene Ontology Biological Process gene sets. Only gene sets significant in
both Sample set A and validation Set B were listed and limited to gene sets with absolute NES above
2.0 in Sample Set A, after the exclusion of redundant sets.

GO Biological Process Gene Sets ID and Description (Set Size)
Sample Set A Sample Set B

NES adj. p Value NES adj. p Value

GO:0031343 positive regulation of cell killing (57) −2.38 0.0175 −1.74 0.0297

GO:0002228 natural killer cell mediated immunity (49) −2.35 0.0175 −1.87 0.0163

GO:0046641 positive regulation of alpha-beta T cell proliferation (18) −2.32 0.0175 −1.84 0.0495

GO:0002377 immunoglobulin production (94) −2.17 0.0175 −2.07 0.0163

GO:0002449 lymphocyte mediated immunity (214) −2.15 0.0175 −1.68 0.0163

GO:0050853 B cell receptor signaling pathway (52) −2.06 0.0175 −2.18 0.0163

GO:0033238 regulation of cellular amine metabolic process (72) 2.02 0.0175 1.98 0.0163

In contrast, only a limited number of gene sets showed a concordant large magnitude change in
patients presenting with distant metastases (M1), when Sample sets A and B were compared. Only one
gene set was significant both in Sample set A and B, with an NES score above 2.0 and no redundancy:
“regulation of cellular amine metabolic process” (GO:0033238). This gene set is closely associated with
two other potentially relevant biologically gene sets significant in Sample set A (“establishment of
planar polarity”, GO:0001736, NES 1.76 and “non-canonical Wnt signaling pathway, GO:0035567, NES
1.65). However, both of these were non-significant in Sample set B analysis.

3. Discussion

In our study, we undertook a step-by-step analysis to find differences between M0 and M1
papillary thyroid carcinomas. As several platforms were used, with significant heterogeneity within
the data obtained, at this stage, we did not decide to perform formal meta-analysis (technical aspects
discussed later on). We did so also to deliberately reveal the process of the collection of data and step
approach and avoid potential bias in data analysis related to our several previous attempts.

Multigene expression signatures were characterized for different neoplasms, aiming to derive
clinically meaningful classifiers. However, this has been successfully achieved only in selected
malignancies. Breast cancer is the most prominent example: multigene signatures show a prognostic
significance. They are partially used as a predictive marker to select the patients who benefit
from adjuvant chemotherapy [35]. The prognostic aspect of breast cancer survival analysis was,
in the majority of datasets, based on the prediction of distant metastasis—since the very beginning,
this approach has been highly successful [36–38]. Based on these findings, we believed a similar
multigene expression signature, discriminating patients at high risk of distant metastases from low-risk
individuals, could be derived from thyroid cancer primary tumors. Thereby, we decided to collect
prospectively the postoperative material of patients operated at our hospital. As our institute is a
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tertiary reference center for thyroid carcinoma, the number of patients with metastatic disease is
relatively high. In the current study, we analyzed more than a hundred patients, including 35% of
patients with metastatic disease. Historically, the first group of 15 PTC patients who developed distant
metastases was compared to 56 M0 patients (dataset A). The identified differentially expressed genes
were validated on a group of 21 M1 and 31 M0 patients (dataset B), collected later. Importantly, within
the group of metastatic PTCs, there were both patients with distant metastases at initial staging and
individuals who developed late metastases in the course of the follow-up.

Our first analyses did not point to any essential differences between non-metastatic and metastatic
PTCs. Initially, we considered a too short time of follow-up in a group of non-metastatic patients a
major obstacle for successful analysis (considering missing cases with metastases developing further
in the course of the disease). Having a relatively low number of specimens, we decided to wait for a
longer follow-up time and collect further samples. Our analysis involved nine additional patients in
whom metastases were diagnosed later than one year after primary treatment (up to 60 months after).
Finally, in our opinion, the follow-up was long enough to select M0 patients correctly. However, almost
doubling the population and lengthening of the follow-up did not result in a spectacular increase in
the magnitude of observed differences.

Due to the long time necessary, on the one hand, to collect a sufficient number of metastatic PTC
patients, and, on the other hand, to correctly classify M0 cases, we were forced to apply different
generations of microarrays during the study. Data were analyzed using linear models for microarray
data (limma), a method developed and well-tailored to multiple comparisons scenarios in a genomic
setting, with the batch of microarrays included as a variable in a model. However, we observed a
kind of double failure—first, only 11 genes were deemed significant (including IGFBP3 and ECM1),
a relatively low number to underline a biologically sound difference; second, one of the genes was
earlier validated by an independent method on an independent dataset and was not significant (qPCR
on an independent validation set C of PTC samples). We decided to abandon a plan of validating
other genes by qPCR and carried out microarray profiling, which led to the confirmation of only two
mentioned transcripts. At the moment, we consider these results as negative and not confirming our
hypothesis of differences between M1 and M0 PTCs. We want to emphasize that our qPCR group (set
C) reflected a more real frequency of distant metastases in PTC (it involved nine M1 patients among
63 cases analyzed (14%) whereas, in initial discovery datasets, we accumulated a larger number of M1
patients. Thus, a lack of differences in the IGFBP3 gene by qPCR could be impacted by the sample size
but provides clear information that the magnitude of change in this single marker gene would not be
sufficient in routine clinical practice. Nevertheless, in our opinion, this gene is potentially important
and deserves further evaluation, as the role of the IGF system in thyroid cancer has been discussed for
a long time [39,40]. Regarding the ECM1 gene, it was reported not only in thyroid cancer but also in
other solid tumors. Kebebew et al. analyzed its diagnostic value in thyroid carcinoma, pointed out
also for potential association with disease extent [41].

Regarding the data presented above, our initial hypothesis did not seem to be justifiable. We were
able to find a subtle difference between non-metastatic and metastatic PTC only, and we were unable to
confirm them by independent methods. We did not find a characteristic gene expression profile, typical
for metastatic PTC, although our group analyzed by microarray the largest number of metastatic
PTCs (36 cases), as already published. The major potential reason for this is the low frequency of PTC
metastatic spread in the general population. It seems evident we should discuss essential data provided
by The Cancer Genome Atlas (TCGA) study. This study included 496 PTC samples, among them eight
metastatic cases [42]. Thus, the number of analyzed metastatic PTCs was very low (1.6%), providing
insight into a relatively indolent tumor population. We believe our data may constitute an addendum
to this analysis. We are able to carry out a meta-analysis of our three genomic datasets and TCGA
data [12]. We are intensively seeking a validation dataset for such an analysis; we are very open for a
collaborative approach (contact: malgorzata.oczko-wojciechowska@io.gliwice.pl). However, planning
a study would require at least a doubling of the number of metastatic patients to derive adequate power
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and validation ability. In the larger dataset, a more sophisticated bioinformatic approach, including
machine learning, is necessary to provide adequate multigene discrimination. Our previous experience
with thyroid cancer data [43,44] showed the feasibility of this approach when applied to differences
with normal thyroid tissue or other cancer histotypes. We endorse further approaches to characterize
poor prognosis in thyroid cancer, as it is of utmost importance in a clinical setting. Still, we warn
against commencing the study without at least hundreds of samples from metastatic patients.

A limitation that could influence our data is also the transcriptomic platform we used. Since the
early commencement of our study, oligonucleotide microarrays and the algorithm used by us did not
detect, for example, long non-coding RNA (lncRNA). In addition, next-generation RNA sequencing
(RNA-Seq) might introduce newer transcripts. Noteworthily, TCGA-based analyses paid our attention
to lncRNA, playing an essential role in PTC [45–49] and other malignancies [50]. Numerous papers
raised the role of lncRNA in the aggressiveness/invasiveness of thyroid carcinoma [45,51–55]. More data
regarding this issue are necessary. We did not apply this approach as some of the metastatic PTCs
were fully used up and were not left for any additional transcriptomic experiments; they exist only
as a U133 microarray readout. Nevertheless, one should emphasize that the number of published
studies based on RNA-seq, carried out in thyroid cancer, is small. The first one, reported in 2013,
included only 20 PTCs, among them no one with distant metastases [56]. Another one was the TCGA
study, as described above [42]. Thus, to our best knowledge, our study includes the largest number
of metastatic PTCs studied by the genomic approach. We believe we have the right to claim that the
difference in the gene expression profile of PTC primary tumors between metastatic and non-metastatic
patients, if any exists, is small and requires a systematic and multi-center approach. Although the
number of metastatic PTC samples in our study was relatively high (45) compared to the published
data, we believe that dataset size could limit the power of conclusions.

We demonstrated that the signature of high-risk metastatic PTC was not as obvious as we
initially believed. It is necessary to inform other groups involved in the research of metastatic thyroid
cancer that a putative further study seeking a difference between metastatic and non-metastatic
PTC shall involve a larger population and a broad portfolio of molecular methods rather than the
raw transcriptomic assessment. Our study was carried out in three subsequent steps. In each step,
we extended the population size, and each lengthened the patients’ follow-up. However, it did not
lead to conclusive findings. The issue of the publication of negative results is widely raised to limit
unnecessary repetitive small size experiments and to promote cooperation between researchers and
the meta-analytic approach. We are extensively searching for a partner to carry out a more extensive
analysis of PTC transcriptome to provide such conclusions in the future.

The critical issue regarding the occurrence of metastases is related to the host response. It is
well known that PTC metastasizes mainly to niches localized in lymph nodes, lungs, and bones.
The data characterizing the features of metastatic niches (receptive to colonization by circulating tumor
cells (CTC)) are growing [57]. It is still not known whether this readiness of host cells regarding
metastatic colonization is related to any molecular mechanisms. Moreover, one should notice that
studies on metastatic niches concern the most common cancers [58], and they did not result in clinically
relevant classifiers. So far, we do not have any data regarding thyroid carcinoma. Regarding the host
response, we should also consider an anti-tumor immune response with the presence of immune cells
in the specimen. Unfortunately, we do not have complete data regarding tumor immune infiltration
or the presence of autoimmune thyroiditis in our material. However, we would like to stress that
the requirement of a high percentage of PTC cells confined the number of infiltrated stroma in the
analyzed material.

The important question is whether PTCs metastasize due to any mechanism clearly distinguishable
in primary tumor gross specimen. We assumed that the invasiveness of the primary tumor regarding
the development of distant metastases influences the PTC course, while current data also indicate
other mechanisms, including the ability of cancer cells to survive, extravasation, or colonization by
CTC [59,60]. The CTCs may be a result of a very small primary tumor subclone, indistinguishable



Int. J. Mol. Sci. 2020, 21, 4629 9 of 20

in the gross transcriptomic analysis. Although microdissection studies are feasible and were also
performed by our group [61], no study has been performed using this approach in the clinical context.
A high-quality RNASeq experiment may indicate the subclonal tumor structure. We are currently
collecting tumors for such a study. In previous attempts, we succeeded in deriving novel markers
for follicular thyroid tumors, in samples analyzed previously by microarray and qPCR [62,63]. It also
cannot be excluded that metastatic spread in certain tumors is a stochastic event, or the changes are
late and discriminable only when distant metastasis tissue is accessible [64]. In any of these scenarios,
we cannot abandon the approaches to search for molecular predictors, as the clinically known PTC
features are not sufficient to predict patient outcome in full [7]. It is also important when de-escalation
of surgical treatment is contemplated or when adjuvant therapy has to be administered.

As the transcript-oriented analysis did not bring reliable results, we also approached the same
problem at a gene set level. The hypothesis supporting this analysis is that coordinated changes in
gene expression in certain functional gene groups could be detected with a lower number of false
negatives. We applied a well-established algorithm of the gene set enrichment analysis. This analysis
was carried out in Sample set A. The results were validated in Sample set B. We found at least
six highly over-expressed gene sets significant in both datasets, with the expression increased in
non-metastatic tumors. However, the vast majority of these genes were clearly associated with
immune response. Although one can speculate that some changes come inherently from PTC cells,
a more probable explanation is that they are related to lymphocyte infiltration of the primary tumor.
The presence of infiltrating lymphocytes in tumor or stroma was recognized earlier in PTC and could be
associated with a good prognosis [65]. However, according to many authors, these conclusions seemed
controversial [66,67]. In our transcriptome-wide analysis of the PTC gene expression, we have already
found a significant proportion of immune-related genes with high variability [43]. Nevertheless,
it seems evident that bulk tumor genomic analyses are not an optimal method to evaluate the role of
the immune response in the tumor microenvironment. As described above, we carried out a study of
microdissected PTC cells and stroma. Thus, in the future, we plan to validate our results also in an
independent dataset. The issue of the prognostic relevance of lymphocytic infiltration in PTC requires
further studies, particularly in the era of immunotherapy in oncology [68]. We previously found in
the analysis of ovarian cancer [69] that genomic studies shall be carried out in either histologically
homogenous populations or consider multiparametric covariate analysis covering variability in tumor
histology. Obviously, potential immune infiltration in the primary tumor is not limited to lymphocytes.
One should stress the role of tumor-associated macrophages, one of the factors potentially related to
the high expression of metalloproteases [70].

To conclude, the differences in gene expression profile between metastatic and non-metastatic PTC
primary tumors, if they exist, are subtle and require studies involving hundreds of tumors. Potential
further studies shall take into consideration confounding factors, including the immune infiltration of
primary tumors.

4. Materials and Methods

4.1. Material

The whole group comprised of 186 PTC patients, among them 141 M0 (without distant metastases)
and 45 M1 (with distant metastases) cases (Table 4). All patients underwent total thyroidectomy,
and all but two patients underwent radioiodine therapy. One hundred and twenty-three patients were
subjected to microarray analyses using different platforms: 71 patients were subjected to HG-U133A and
HG-U133 Plus 2.0 (set A), whereas 52 patients were subjected to Human Gene 1.0 ST Array (set B). Set A
involved 14 out of the 16 PTC tumors analyzed in our previous paper [43]. As analyzed previously [71],
the percentage of cancer cells in the analyzed specimens was higher than 50%. Sixty-three patients
constituted an independent validation set C, analyzed using qPCR. The details are presented in Table 4.
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Table 4. Clinical characteristic of the whole PTC group.

All PTC Patients M1 Patients M0 Patients p-Value

Data set: All 186 45 141

A 71 15 56

B 52 21 31

C 63 9 54

Median age at diagnosis (years) (range) 43 (5–86) 42 (5–81) 43 (10–86) 0.925

Median follow-up (months) (range) 140.0 (2.1–250.9) 94.8 (3.2–250.9) 146.2 (2.1–220.0) <0.001

Sex

0.012male 50 (26.9%) 19 (42.2%) 31 (22.0%)

female 136 (73.1%) 26 (57.8%) 110 (78.0%)

PTC histological subtype

0.301
classic 141 (75.8%) 35 (77.8%) 106 (75.2%)

follicular 37 (19.9%) 10 (22.2%) 27 (19.1%)

other 8 (4.3%) 0 (0.0%) 8 (5.7%)

T feature 1 (primary tumor)

<0.001

T1 104 (55.9%) 11 (24.4%) 93 (66.0%)

T2 36 (19.4%) 9 (20.0%) 27 (19.1%)

T3 20 (10.8%) 11 (24.4%) 9 (6.4%)

T4 18 (9.7%) 10 (22.2%) 8 (5.7%)

Tx 8 (4.3%) 4 (8.9%) 4 (2.8%)

Lymph node metastases

central neck compartment and upper
mediastinum (N1a) 77 (44.4%) 33 (73.3%) 44 (31.2%) <0.001

lateral neck compartment and
retropharyngeal lymph nodes (N1b) 76 (40.9%) 35 (77.8%) 41 (29.1%) <0.001

Recurrence after primary treatment 14 (7.5%) 3 (6.7%) 11 (7.8%) >0.999

PTC- related death 16 (8.6%) 15 (33.3%) 1 (0.7%) <0.001

Postoperative risk stratification 2

<0.001

very low risk 12 (6.5%) 0 (0.0%) 12 (8.5%)

low risk 63 (33.9%) 0 (0.0%) 63 (44.7%)

intermediate risk 0 (0.0%) 0 (0.0%) 0 (0.0%)

high risk 111 (59.7%) 45 (100%) 66 (46.8%)
1 The patients were staged according to the 8th UICC/AJCC TNM Edition (2016). 2 Postoperative stratification
according to the ETA consensus 2006 [72]. PTC—papillary thyroid cancer; M1—distant metastases present;
M0—distant metastases absent.

Microarray analysis involved a group of 123 PTC patients, among them 36 cases with distant
metastases. Detailed characteristics of the study group is given in Table 5.

Due to essential technical differences regarding the microarray platforms used, the analysis was
divided into two parts. Set A included data obtained by the analyzes carried out on the following
types of microarrays—HG-U133A and HG-U133 Plus 2.0—whereas validation set B involved data
obtained using Human Gene 1.0 ST microarrays.
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Table 5. Clinical characteristic of the whole microarray group.

All PTC Patients M1 Patients M0 Patients p-Value

Patients number 123 36 87

Median age at diagnosis (years) (range) 40.0 (5–86) 43.5 (5–81) 38.0 (10–86) 0.284

Median follow-up (months) (range) 127 (0.0–250.8) 93.0 (3.6–250.8) 144.0 (0.0–219.6) <0.001

Sex:

0.191male 36 (29.3%) 14 (38.9%) 22 (25.3%)

female 87 (70.7%) 22 (61.1%) 65 (74.7%)

PTC histological subtype

0.271classic 90 (73.2%) 29 (80.6) 61 (70.1%)

other 33 (26.8%) 7 (19.4%) 26 (29.9%)

T feature (primary tumor):

<0.001

T1 65 (52.8%) 10 (27.8%) 55 (63.2%)

T2 25 (20.3%) 7 (19.4%) 18 (20.7%)

T3 12 (9.8%) 9 (25.0%) 3 (3.4%)

T4 15 (12.2%) 8 (22.2%) 7 (8.0%)

Tx 6 (4.9%) 2 (5.6%) 4 (4.6%)

Lymph node metastases:

central neck compartment and upper
mediastinum (N1a) 53 (50.0%) 26 (83.9%) 27 (36.0%) <0.001

lateral neck compartment and
retropharyngeal (N1b) 55 (44.7%) 28 (77.8%) 27 (31.0%) <0.001

Recurrence after primary treatment 8 (6.5%) 2 (5.6%) 6 (6.9%) >0.999

PTC- related death 13 (10.6%) 12 (33.3%) 1 (1.1%) <0.001

The patients were staged according to the 8th UICC/AJCC TNM Edition (2016). PTC—papillary thyroid cancer;
M1—distant metastases present; M0—distant metastases absent.

The dataset A was comprised of 71 PTC patients (Table 6) at the median age of 33 years (range:
5–76 years). The median follow-up was 160 months (range: 3.6–250.8). The majority of patients were
women—55 cases (77.5%). Nearly 2/3 of patients (64.8%) were diagnosed with a classic variant of PTC.
T1 and T2 features were present in 57.7% and 14.1% of patients, respectively. Lymph node metastases
in the central neck compartment were observed in 24 cases (43.6%), whereas metastases in the lateral
neck compartment or the upper mediastinum were observed in 29 cases (40.8%). Distant metastases
developed during the course of the disease in 15 patients (21.1%) (Table 7). The diagnosis of metastases
was usually stated nearly five months following the primary PTC diagnosis, range from 0 (distant
metastases present at diagnosis) to 60 months, based on a post-therapeutic whole-body scan, X-ray
and/or CT scan, biopsy, or histopathological examination. Almost all M1 patients had lung metastases
(14 out of 15 cases), 3/15 had bone metastases (vertebra or other bones), and one patient (1/15) had
liver metastases. Ten out of fifteen metastases demonstrated radioiodine avidity. Complete remission
(excellent treatment response according to the ATA criteria) was achieved in 1/3 patients, whereas in the
remaining cases, ATA incomplete structural or indeterminate responses were confirmed. Six patients
died due to thyroid cancer.
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Table 6. Clinical characteristic of the whole group with considering microarray platform used.

Data A Data B
p-Value

HG-U133A + HG-U133 Plus 2.0 Human Gene 1.0 ST Array

Patients number 71 52

Median age at PTC diagnosis (years) (range) 33.0 (5.0–76.0) 47.5 (17.0–86.0) 0.004

Median follow-up (months) (range) 160.8 (3.6–250.8) 103.8 (0—156.0) <0.001

Sex:

0.071male 16 (22.5%) 20 (38.5%)

female 55 (77.5%) 32 (61.5%)

PTC histological subtype

0.023classic 46 (64.8%) 44 (84.6%)

other 25 (35.2%) 8 (15.4%)

T feature (primary tumor):

0.042

T1 41 (57.7%) 24 (46.2%)

T2 10 (14.1%) 15 (28.8%)

T3 5 (7.0%) 7 (13.5%)

T4 9 (12.7%) 6 (11.5%)

Tx 6 (8.5%) 0 (0.0%)

Lymph node metastases:

central neck compartment and upper
mediastinum (N1a) 24 (43.6%) 29 (56.9%) 0.243

lateral neck compartment and
retropharyngeal (N1b) 29 (40.8%) 26 (50.0%) 0.361

Recurrence after primary treatment 3 (4.2%) 5 (9.6%) 0.281

Distant metastases 15 (21.1%) 21 (40.4%) 0.034

PTC-related death 6 (8.5%) 7 (13.5%) 0.390

The patients were staged according to the 8th UICC/AJCC TNM Edition (2016). PTC—papillary thyroid cancer.

Table 7. Characteristics of M1 PTC patients analyzed by microarrays.

All Microarray
Platforms Together

Data A Data B

p-ValueHG-U133A +
HG-U133 Plus 2.0

Human Gene 1.0
ST Array

Patients number 36 15 21

Median follow-up (months) (range) 93.0 (3.6–250.8) 87.6 (3.6–250.8) 94.8(4.8–156.0) 0.923

Median time to M1 diagnosis
(months) (range) 4.8 (0.0–60.0) 4.8 (0.0–60.0) 4.8(0.0–39.6) 0.832

Localization of metastases:

Lungs 34 (94.4%) 14 (93.3%)c 20.0 (95.2%) >0.999

Bones 4 (11.1%) 2 (13.3%) 2 (9.5%) >0.999

CNS 2 (5.6%) 0 (0%) 2 (9.5%) 0.500

Liver 2 (5.6%) 1 (6.7%) 1 (4.8%) >0.999

Thymus 2 (5.6%) 0 (0%) 2 (9.5%) >0.999

RAI avidity

0.330

positive 21 (58.3%) 9 (60.0%) 12 (57.1%)

negative 8 (22.2%) 5 (33.3%) 3 (14.3%)

loss of RAI uptake at PTC progression 5 (13.8%) 1 (6.7%) 4 (19.0%)

no data 2 (5.6%) 0 (0.0%) 2 (9.5%)
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Table 7. Cont.

All Microarray
Platforms Together

Data A Data B

p-ValueHG-U133A +
HG-U133 Plus 2.0

Human Gene 1.0
ST Array

ATA treatment response*

0.152

excellent 14 (38.9%) 5 (33.3%) 9 (42.9%)

incomplete biochemical 0 (0%) 0 (0%) 0 (0%)

incomplete structural 19 (52.8%) 7 (46.7%) 12 (57.1%)

indeterminate 3 (8.3%) 3 (20.0%) 0 (0%)

PTC-related death 12 (33.3%) 6 (40.0%) 6 (28.6%) 0.499

PTC—papillary thyroid cancer; CNS—central nervous system; RAI—radioiodine; ATA – American Thyroid
Association. * ATA treatment response was evaluated accordance to “2015 ATA Management Guidelines for Adult
Patients with Thyroid Nodules and Differentiated Thyroid Cancer” [7].

The validation dataset B included 52 PTC cases (Table 6), mainly women (61.5%), with a median
age at PTC diagnosis of 47.5 years (range 17–86), with the median follow-up of 103.8 months (range
0–156.0). Classic PTC was a predominant variant. T1 and T2 features were diagnosed in 46.2%
and 28.8% of cases, respectively. Lymph node metastases in the central neck compartment were
present in 29 cases (56.9%), whereas they were present in the lateral neck compartment or the upper
mediastinum in 26 cases (50.0%). Distant metastases occurred in 40% of cases (21 patients), among them
lung metastases (20 patients), bone, central nervous system, thymus (2 persons in each localization),
and liver (1 patient). More than half of the metastases (57.1%) showed radioiodine uptake. The excellent
treatment response (according to ATA guidelines [7]) was obtained in 42.9% of cases, whereas in the
remaining cases, the incomplete structural response was the final treatment outcome. Seven patients
died, six persons due to metastatic disease, and one person because of advanced locoregional PTC.

The validation of the IGFBP3 gene was performed on an independent PTC set, including 63 cases,
among them 9 with metastatic disease (Table S2).

The use of human tissue was approved by the Bioethics Committee at Maria Sklodowska-Curie
National Research Institute of Oncology Gliwice Branch. Written informed consent to analyze the
tissue was obtained from all patients. All clinical data were anonymized and de-identified before
the analysis.

4.2. Microarray Analysis

Data from three types of oligonucleotide array were selected for this study: HG-U133A, HG-U133
Plus 2.0, and Human Gene 1.0 ST Array (Affymetrix, Santa Clara, CA, United States). RNA was isolated
from fresh frozen tumor fragments with the RNeasy Mini Kit (Qiagen, GmbH, Hilden, Germany) as
recommended by the manufacturer. Microarray analysis was performed according to the manufacturer
recommendations, different for each array type. However, the main steps of the laboratory protocol
were common. In brief, RNA was the template for double-stranded cDNA synthesis, followed by
transcription combined with cRNA biotinylation, cRNA fragmentation, and cRNA hybridization to the
arrays. After washing (Fluidic Station 450, Affymetrix) and staining with streptavidin-phycoerythrin,
conjugate arrays were scanned in the GeneChip 3000G scanner (Affymetrix).

The main difference between HG-U133 microarrays and Human Gene 1.0 arrays concerns the
number of target-oriented probes. The HG-U133 type arrays contain 11 probes per transcript, which are
located mainly around the 3′ end. Meanwhile, in the Human Gene 1.0 arrays, there are more probes
designed to be distributed across the transcribed regions of each gene. Moreover, the HG-U133
arrays contain a perfect match probe (PM) and a mismatch probe (MM), used together to measure
the abundance of mRNA transcripts. The MM probes have a 13th base that does not match the target
sequence, allowing for detection of cross-hybridization. The Human Gene 1.0 arrays, in turn, represent
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a perfect match-only array design. Mentioned differences force the use of different algorithms in
data analysis.

4.3. qPCR Analysis

RNA for qPCR analysis was isolated from fragments of fresh frozen PTC tumors using the
RNeasy Mini Kit (Qiagen), as recommended by the manufacturer. qPCR was carried out for 28 genes
(listed in Table S1) with the 7900HT Fast Real-Time PCR System (Life Technologies, Carlsbad, CA,
USA) and the use of Roche Universal Probe Library (Roche, Basel, Switzerland). Primer sequences
are given in Table S3 (supplementary materials). Each sample was examined in duplicates. For the
normalization of qPCR data, the Pfaffl method and GeNorm application were used. Three normalization
genes were selected: EIF3S10 (eukaryotic translation initiation factor 3, subunit 10 theta), HADHA
(hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha), and UBE2D2
(ubiquitin conjugating enzyme E2 D2). The differences between M0 and M1 patients were tested with
the two-tailed Mann–Whitney U test.

4.4. Statistical Analysis of Clinical Data

Categorical data were summarized with numbers and percentages. Continuous data were
summarized with medians and ranges. Comparisons of categorical variables were performed using
Fisher’s exact test. Comparisons of continuous variables were performed using the two-tailed
Mann–Whitney U test. p values < 0.05 were considered statistically significant. Statistical analyses
were performed using the R software version 3.6.2 and “tableone” package version 0.11.1. [73,74].

4.5. Microarray Data Analysis

We obtained three PTC microarray datasets: 44 HG-U133A microarrays, 27 HG-U133 Plus 2.0
microarrays, and 52 Human Gene 1.0 ST microarrays (123 samples in total).

Background correction, normalization and probe set summarization were done using the Robust
Multichip Average (RMA) algorithm with library oligo v 1.50.0 from R v3.6.2 environment, and custom
CDF files from BrainArray (ENTREZG; v24), for each of three microarray datasets separately [75–77].
Twelve thousand and one genes, common for all three types of microarray, were selected and used in
further analysis.

To create microarray dataset A, we combined HG-133A and HG-U133 Plus 2.0 microarray datasets
and removed a batch effect associated with microarray type using linear models for microarray data
(limma) from limma 3.42.2 library [78]. We selected differentially expressed genes, using limma, with a
batch factor incorporated in the linear model. p-values were adjusted for multiple testing by the
Benjamini and Hochberg false discovery rate (FDR) method [79]. Corrected p-values < 0.05 were
considered statistically significant.

The validation microarray dataset B was comprised of Human Gene 1.0 ST microarrays.
We performed differential gene analysis using limma. p-values were adjusted using Bonferroni
correction, on a subset of 11 preselected genes. Corrected p-values < 0.05 were considered statistically
significant. Using the validation microarray dataset, we also estimated the probability that from 11
randomly selected genes, a minimum of two would be positively validated, with absolute SLR larger
than or equal to 0.83. We performed 10,000 iterations. In each iteration, we randomly selected 11 genes
(out of 12,001 genes analyzed on validation microarray dataset B), obtained p-values from differential
gene analysis, and applied Bonferroni correction. Furthermore, in each iteration, we checked whether a
minimum of two genes were significant (according to criterion: Adjusted p-value < 0.05) and whether
a minimum of two of them showed an SLR above 0.83. We calculated the probability as the number of
iterations that fulfilled the criteria divided by the number of all iterations.
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4.6. Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was performed using Gene Ontology (GO) Biological Process
(BP), GO Molecular Function (MF), GO Cellular Compartment (CC), the Kyoto Encyclopedia of Genes
and Genomes (KEGG), and two collections from Molecular Signatures Database v7.1 (MSigDB) [80,81]:
collection “hallmark gene sets” (H) and sub-collection “chemical and genetic perturbations” (CGP)
being a part of the collection “curated gene sets” (C2) [82–84].

The analysis was performed in the R environment, using clusterProfiler 3.14.3 library [85].
The t-statistic obtained in limma analysis was used as a gene ranking metric. The p-values were
calculated based on 10,000 random gene set permutations. Gene sets that involved between 10 and
600 genes were analyzed. p-values were adjusted for multiple testing by the Benjamini and Hochberg
false discovery rate (FDR) method. Gene sets with corrected p-values < 0.05 were considered statistically
significant. Redundancy amongst GO terms was removed using the ClusterProfiler simplify function
with the similarity measure cut-off of 7.0, and the p-value used as the deciding variable. To test whether
there is a significant overlap between significant gene sets obtained in datasets A and B, the Fisher
exact test was used.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/13/
4629/s1.
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