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Abstract

Background: Spontaneous functional recovery occurs during the acute phase after stroke onset, but this intrinsic
recovery remains limited. Therefore, exploring the mechanism underlying spontaneous recovery and identifying
potential strategies to promote functional rehabilitation after stroke are very important. The CD200/CD200R
signaling pathway plays an important role in neurological recovery by modulating synaptic plasticity during
multiple brain disorders. However, the effect and mechanism of action of the CD200/CD200R pathway in
spontaneous functional recovery after stroke are unclear.

Methods: In this study, we used a transient middle cerebral artery occlusion (MCAO) model in rats to investigate
the function of CD200/CD200R signaling in spontaneous functional recovery after stroke. We performed a battery of
behavioral tests (Longa test, adhesive removal test, limb-use asymmetry test, and the modified grip-traction test) to
evaluate sensorimotor function after intracerebroventricular (i.c.v.) injection with CD200 fusion protein (CD200Fc) or
CD200R blocking antibody (CD200R Ab) post-stroke. Density and morphology of dendritic spines were analyzed by
Golgi staining. Microglia activation was evaluated by immunofluorescence staining. Western blot was used to
detect the levels of protein and the levels of mMRNA were measured by gPCR.

Results: Our study demonstrated that sensorimotor function, synaptic proteins, and structures were gradually
recovered and CD200R was transiently upregulated in ipsilateral cortex after stroke. Synapse-related proteins and
dendritic spines were preserved, accompanied by sensorimotor functional recovery, after stereotaxic CD200Fc
injection post-stroke. In addition, CD200Fc restrained microglia activation and pro-inflammatory factor release (such
as /-1, Tnf-a, and 1I-6) after MCAO. On the contrary, CD200R Ab aggravated sensory function recovery in adhesive
removal test and further promoted microglia activation and pro-inflammatory factor release (such as /-1) after
MCAO. The immune-modulatory effect of CD200/CD200R signaling might be exerted partly by its inhibition of the
MAPK pathway.

Conclusions: This study provides evidence that the CD200/CD200R signaling pathway contributes to spontaneous
functional recovery by enhancing synaptic plasticity via inhibition of microglia activation and inflammatory factor
release.
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Introduction

Stroke, among which ischemic stroke accounts for
nearly 87%, is a leading cause of death and disability
worldwide, causing ~ 80% of all disabilities [1]. Due
to improved surgical interventions, an increasing
number of patients survive the devastating initial
event but suffer from ongoing sensorimotor and cog-
nitive dysfunction [2, 3]. Despite immediate and long-
lasting spontaneous functional recovery, the degree of
recovery remains limited and varies among individuals
[3]. Spontaneous recovery involves a variety of cellular
and molecular processes, and many restorative therap-
ies depend on the processes observed during spontan-
eous recovery [4]. Therefore, it is important to
investigate the mechanisms underlying spontaneous
recovery and identify rehabilitative therapies to aug-
ment sensorimotor functional recovery. Such investi-
gations will also improve our understanding of the
pathological development of stroke.

The integrity of neuronal networks is the basis of sen-
sorimotor behavior; however, neuronal networks and
synapse circuits are damaged by stroke in regions that
receive reduced blood supply, which results in sensori-
motor dysfunction [5]. The surviving neural networks
are partially rewired, and intact synapses are recruited
during spontaneous recovery [6]. Thus, replacing the
destroyed circuit and promoting surviving neural net-
works to remap might be treatment strategies to im-
prove functional recovery after stroke.

Inflammation plays an important role in regulating
synaptic plasticity [7—9]. Activated microglia are charac-
terized as proinflammatory or anti-inflammatory micro-
glia; microglia activation occurs within hours after
stroke, and several pro-inflammatory factors (such as 1I-
1, Tnf-a, and II-6) can be released by microglia in re-
sponse to synapse degeneration or loss [10, 11]. Thus,
inhibiting microglia activation and pro-inflammatory
factor release may enhance synaptic plasticity and pro-
mote long-term stroke recovery. The CD200/CD200R
signaling pathway has a unique expression profile, and it
plays a profound regulatory role during neurological re-
covery under multiple brain pathological conditions.
CD200, a member of the immunoglobulin superfamily,
is widely expressed in neurons, astrocytes, and oligoden-
drocytes, whereas its receptor (CD200 receptor 1,
CD200R1) is expressed in myeloid cells and microglia
(the brain-resident myeloid cells) in rodents [12] and
also highly expressed by neurons in human according to
the Ben Barres database. The interaction between
CD200 and CD200R1 is critical for inhibiting microglial
activation and localized neuroinflammation during the
pathological development of several brain diseases, in-
cluding Parkinson’s disease, optic nerve crush, and ger-
minal matrix hemorrhage [13-15]. The CD200/CD200R
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signaling pathway also participates in synaptic plasticity.
Suppressing CD200/CD200R signaling via genetic ap-
proaches (deleting Cd200) impairs long-term potenti-
ation (LTP) [16], whereas pharmaceutical approaches
(using CD200Fc, a CD200R agonist) that activate
CD200/CD200R signaling significantly enhance synaptic
plasticity in AD and aged mice by regulating inflamma-
tion [17-19]. However, the role of the CD200/CD200R
signaling pathway during spontaneous functional recov-
ery remains unclear.

Here, we propose that the CD200/CD200R signaling
pathway contributes to spontaneous functional recovery
after stroke by restraining synapse loss through inhibit-
ing microglia activation and pro-inflammatory factor
release.

Methods

Animals

Adult male Sprague-Dawley (SD) rats (280-320g, 8-
10 weeks of age) were purchased from Shanghai
Sippr-BK laboratory animal Co. Ltd. (Shanghai, China)
and housed in the Pharmaceutical animal experimen-
tal center of China Pharmaceutical University under a
12 light—dark cycle with food and water ad libitum.
All animal procedures were approved by the Animal
Research Ethics Committee of China Pharmaceutical
University.

Animal surgery and drug administration

A transient right middle cerebral artery occlusion
(MCAO) stroke was performed as previously described
[20]. Briefly, rats were anesthetized with 2 % isoflurane,
then exposing the right common carotid artery of rats. A
3-0 poly-lysine-coated monofilament nylon suture was
inserted into the right internal carotid artery through
the external carotid artery stump to occlude the middle
cerebral artery. Two hours later, the filament was with-
drawn to restore blood flow. Warming pads were used
to maintain the body temperatures of animals at 37.0 +
0.5°C, and Doppler flowmetry (Moor Instruments,
Essex, UK) was used to monitor cerebral blood flow
(CBF) during the surgical procedure. In the ischemia
phase, cerebral blood flow < 25% of the baseline was
considered as successful ischemia.

The animals were anesthetized with 2 % isoflurane and
placed on a stereotaxic apparatus (RWD Life Science,
Shenzhen, China). After exposing the skull, a small hole
was made to allow the intracerebroventricular injection.
CD200Fc (5pL, 4 pg/pL) (Jiangsu Futai Biotechnology,
Taizhou, China) as an agonist of CD200R1, anti-
CD200R1 antibody (CD200R Ab) (AbD Serotec, Oxford,
UK) as an antagonist of CD200R1 (5 puL), or IgG (Santa
Cruz Biotechnology Inc, USA) was injected into the
right cerebral ventricle one time by a 10-pL Hamilton
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syringe 24 h after MCAOQ. The injection was controlled
at a rate of 0.5 pL/min and the syringe remained in place
for 5 min before the completion of injection. The stereo-
taxic coordinates of the right cerebral ventricle were as
follows: bregma - 0.8 mm; lateral — 1.5 mm; ventral -
4.0 mm.

Behavioral tests

Behavioral tests were performed at 4, 7, 14, 21, and 28
days after MCAO by an investigator blinded to the ex-
perimental groups.

Longa test

This test was assessed using a 5-point scale as described
previously [20]: 0, no observable deficits; 1, failure to ex-
tend the left forepaw; 2, circling to the left; 3, falling to
the left; and 4, unable to move spontaneously.

Adbhesive removal test

To measure the sensory functions and motor func-
tions, the tests were performed as described pre-
viously [21] with some modifications. The time that
rats contacted and removed the spot was recorded
and within a limit of 180s.

Limb-use asymmetry test (cylinder)

To evaluate forelimb-use asymmetry, rats were placed in
a transparent cylinder (diameter 20 cm and height 45
cm). The times of touching the wall by the forelimb of
rats were recorded. The detailed operation was described
previously [22].

The modified grip-traction test

Rats were hung to a horizontal rope (a 0.6-cm-diameter
plastic tube placed horizontally 45 cm above the table)
by its forepaws to evaluate the muscle strength [23].
Time of fall (maximum 60 s) was noted.

Tissue preparation

Rats were anesthetized with ketamine and xylazine in
0.9% saline at 4, 7, and 28 days after MCAO and per-
fused with 0.9% saline, followed by fresh cold 4% PFA
in 0.9% saline. Brain tissues were fixed in fresh 4%
PFA 4°C overnight and dehydrated gradient in 20%
and 30% sucrose at 4 °C before sectioning on a Leica-
1950 cryostat (Leica Instruments, Germany) at 10 pm
and 30 pm. Sections were stored at - 20°C for
immunohistochemistry.

Cresyl violet staining

Cerebral infarct volume was detected at 4 days, 7 days,
and 28 days after MCAO [24]. Rats were anesthetized
and perfused with physiological saline followed by 4%
paraformaldehyde (PFA) at 4 days, 7 days, and 28 days
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after MCAO. The brains were removed carefully and
fixed in PFA for 24 h, then dehydrated in 20% and 30%
sucrose for 24 h respectively in 4°C. The brain tissue
was cut serially at 30 um in coronal plan. The sections
were stained by cresyl violet.

Immunofluorescence

Brain sections were permeabilized by 0.3% Triton-100
in PBS, blocked by 10% goat serum in 90% PBS at
room temperature for 1h, and then incubated pri-
mary antibody at 4°C overnight. The primary anti-
bodies were as follows: mouse anti-CD200R (1:50,
Bio-Rad), mouse anti-CD68 (1:300, Bio-Rad), and
anti-Ibal (1:300, Wako, Japan). After rinsed three
times, sections were incubated with Alexa Flour 488
conjugated goat anti-rabbit IgG (1:500, Invitrogen)
and Alexa Flour 633 conjugated goat anti-mouse IgG
(1:1000, Invitrogen) at room temperature for 1h. The
fluorescent imaging was collected by an Olympus
fluorescence microscope and processed by Image]
software.

Golgi-Cox staining

Animals were sacrificed and brain tissues were re-
moved at 28days after MCAO. Samples were
immersed in Golgi-Cox solutions for 2weeks and
then dehydrated gradient in 20% and 30% sucrose at
4°C. Tissues were cut into 100-pm sections by Leica-
1950 cryostat (Leica Instruments, Germany) for
following staining. Sections were immersed in 75%
ammonia solution and 1% sodium thiosulfate. Images
were collected on a microscope, and 10~20 neurons
per sample were randomly observed for morpho-
logical analysis.

BV2 cell culture and oxygen—glucose deprivation (OGD)
Cells from the immortalized mouse microglia cell line
BV-2 were cultured in DMEM containing 10% fetal
bovine serum (FBS) and maintained at 37°C in 5%
CO, and 95% oxygen. BV2 were treated with IgG (15
pg/ml) or CD200Fc (15 pg/ml) 30 min before OGD.
BV2 were subjected to OGD as previously reported
[25, 26] with a slight modification. For OGD induc-
tion, BV2 culture medium was replaced with OGD
buffer that contained 4.09 g NaCl, 186.5 mg KCl, 111
g CaCl,, 5ml HEPES, and 1.125g glycine in a total
volume of 500 ml. Then, BV2 were kept in a humidi-
fied atmosphere containing 95% nitrogen and 5% CO,
for 6 h and reoxygenation for 16 h. For reoxygenation,
OGD buffer was replaced with BV2 culture medium
and cells were returned to normoxic conditions (95%
air and 5% CO2). BV2 cultured under the normoxic
condition served as the control.
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To determine whether CD200Fc could inhibit JNK and
P38 phosphorylation in BV2 cell, CD200Fc (15 pg/ml) or
IgG (15 pg/ml) in the presence of anisomycin (1 nM)
was added to the BV2 for 30 min, and BV2 cultured under
the normoxic condition served as the control.

Real-time quantitative RT-PCR (RT-qPCR)

At 4, 7, and 28 days after MCAO, brain samples were
collected from ipsilateral sensorimotor cortex. Total
RNA was isolated from frozen tissues using TRIzol Re-
agent (Vazyme, Nanjing, China) according to the manu-
facturer’s protocol. Equal amounts of total RNA were
reverse transcribed under standard condition using
HiScript 1st Strand cDNA Synthesis Kit (Vazyme, Nan-
jing, China). Quantitative PCR was performed on an
ABI7000 real-time PCR system (Applied Biosystems,
Inc., University Park, IL, USA) using SYBR Green Mas-
ter Mix (Vazyme, Nanjing, China). The cycle time values
were normalized to GAPDH of the same sample. Primer
sequences are shown in Table 1.

Western blot

At 4, 7, and 28 days after MCAO, brain samples were
collected from the ipsilateral sensorimotor cortex.
Brain tissues were homogenized with RIPA lysate
(Beyotime, Nanjing, China) supplied with protease in-
hibitor cocktail (Roche, Indianapolis, IN, USA). An
equal amount of protein was separated on SDS poly-
acrylamide gels, transferred to polyvinyl-difluoride
membranes (Millipore, Billerica, MA, USA), and
blocked with 2.5% (w/v) bovine serum albumin (BSA).
The membrane was incubated with primary antibody
(mouse anti-CD200R, 1:500, Bio-Rad, USA goat anti-
CD200, 1:2000, RD, USA; rabbit anti-p-P65, 1:1000,
CST, USA; rabbit anti-P65, 1:1000, CST, USA; rabbit
anti-p-ERK, 1:1000, CST, USA; rabbit anti-ERK, 1:
1000, CST, USA; rabbit anti-p-JNK, 1:1000, CST,
USA; rabbit anti-JNK, 1:1000, CST, USA; rabbit anti-
p-P38, 1:1000, CST, USA; rabbit anti-P38, 1:1000,
CST, USA; mouse anti-actin, 1:1000, Santa Cruz Bio-
technology Inc, USA) at 4°C overnight. After being
rinsed three times (7 min/time) with TBST, the mem-
brane was incubated corresponding secondary anti-
body at room temperature for 1h. After washed, the

Table 1 Primer sequences

Gene Forward primer (5'-3")

I-16 TCCAGGATGAGGACCCAAGC

Reverse primer (5'-3")
TCGTCATCATCCCACGAGTCA

-6 CAGGAACGAAAGTCAACTCCA ATCAGTCCCAAGAAGGCAACT
Tnf-a TTCCCAAATGGGCTCCCTCT GTGGGCTACGGGCTTGTCAC
-4 CAGGGTGCTTCGCAAATTTTAC ACCGAGAACCCCAGACTTGTT
Cd206 GGTTCCGGTTTGTGGAGCAG TCCGTTTGCATTGCCCAGTA
Gapdh ~ CAGCCTCGTCTCATAGACAAGATG  AAGGCAGCCCTGGTAACCA
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labeled proteins were detected using the Bio-Rad system
(Bio-Rad, Germany).

Statistical analysis

The GraphPad Prism Software 6 (La Jolla, CA, USA) was
used for statistical analysis, and the results were pre-
sented as a mean + SEM. Among the frequencies, Longa
test (Fig. 1a and Fig. 4a) was analyzed by non-parametric
Mann-Whitney test. Adhesive removal test, limb-use
asymmetry test (cylinder), and the modified grip-traction
test (Fig. 1b—e and Fig. 4b—e) were performed by using
two-way analysis of variance (ANOVA) with post hoc
Student-Newman-Keuls test. For experiments with more
than two groups and two factors of the parameters, re-
sults were compared using two-way analysis of variance
(ANOVA) followed by post hoc Student-Newman-Keuls
test. All tests were considered statistically significant at
P < 0.05.

Results
Sensorimotor functional spontaneous recovery after
stroke in rats
Sensorimotor functions were first assessed by perform-
ing a series of behavioral tests after MCAO surgery.
Briefly, the Longa test for neurological disorders was
performed (Fig. 1a), and sensorimotor dysfunction was
identified using adhesive removal, limb-use asymmetry,
and grip-traction tests (Fig. 1b—e). MCAO-induced
neurological disorder observed at 4, 7, and 14 days im-
proved gradually at 21 and 28 days compared with 4 days
after MCAO (P < 0.05) (Fig. 1a). In the adhesive removal
test, rats spent more time touching the spot at 4, 7, and
14 days after MCAO (time main effect, F 4 110 = 8.819, P
< 0.0001) and spent more time removing the spot at 4,
7, 14, and 21 days after MCAO compared with the sham
group (time main effect, F 4 110 = 4.222, P = 0.0032)
(Fig. 1b, c). The time taken to touch or remove the spot
decreased gradually as spontaneous recovery proceeded
compared with 4 days (¢-test, P < 0.05) (Fig. 1b, ¢). The
injured forelimb mobility of MCAO rats was visibly re-
duced at each time point after MCAO, as determined by
the limb-use asymmetry test (time main effect, F 4 127 =
0.6806, P = 0.6067) (Fig. 1d). The hanging time was sig-
nificantly reduced at 4, 7, 14, 21, and 28 days in the
MCAO group compared with the sham group, and par-
tial recovery occurred at 14, 21, and 28days after
MCAO compared with 4 days (¢-test, P < 0.05) (Fig. 1d).
When the size of the cerebral infarction was assessed
by cresyl violet staining, the size decreased over time
(F 3, 24 = 101.0, P < 0.0001) (Fig. 1f, g). Taken together,
these data suggest that neurological dysfunction occurred
immediately after MCAO, followed by slow and limited
spontaneous recovery.
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Expression of synapse-related proteins and synaptic loss
after cerebral ischemia in rats

Synaptic plasticity plays an important role in func-
tional recovery after stroke [27, 28], and synapse-
related proteins and dendritic spine density are im-
portant indices of synaptic plasticity. Thus, we mea-
sured the protein levels of postsynaptic density
protein 95 (PSD-95) and synaptophysin (SYP) in the
ipsilateral sensorimotor cortex. The protein levels of
PSD95 (F 3, ¢ = 17.51, P = 0.0007) and SYP (F 3 g
= 43.22, P < 0.0001) were decreased significantly at
4, 7, and 28 days after MCAO compared with the
sham group (Fig. 2a—c). However, compared with
the 4-day MCAO group, the expression of PSD95
was increased markedly at 28 days after MCAO (¢-
test, P < 0.05) (Fig. 2a, b). When dendritic spine
density and morphology in the ipsilateral sensori-
motor cortex were measured, dendritic spine density
was reduced dramatically (¢-test, P < 0.0001), the
percent stubby spine was increased significantly, and
the percent mushroom spine was decreased sig-
nificantly at 28 days after MCAO (group main effect,
F , 15, = 66.62, P < 0.0001) (Fig. 2d—f). These data
suggest the presence of markedly decreased synaptic
function after stroke and slow recovery following
the initial event.

The expression of CD200 and CD200R after cerebral
ischemia in rats

Based on the important role of the CD200/CD200R
signaling pathway on regulating synaptic plasticity in
many pathological conditions [16, 29, 30], we investi-
gated the expression of CD200 and CD200R in the
ipsilateral sensorimotor cortex. There were no
obvious differences in the expression of CD200
between the sham and MCAO groups (group main
effect, F 3, g = 1.468, P = 0.2947) (Fig. 3a, b). How-
ever, the expression of CD200R was increased markedly at
4 days after MCAO compared with the sham group
(group main effect, F 3 g = 11.36, P = 0.0030) (Fig. 3)c, d.
Immunofluorescent staining showed that CD200R was
expressed on Ibal-positive cells (Fig. 3e). These re-
sults suggest that the CD200/CD200R signaling path-
way may be involved in spontaneous functional
recovery after stroke onset in rats.

Functional outcomes after CD200/CD200R signaling

pathway modification post-cerebral ischemia in rats

To determine whether modulating CD200/CD200R
signaling affects spontaneous functional recovery, we
performed a battery of behavioral tests to evaluate sensori-
motor function after intracerebroventricular (i.c.v.) injec-
tion with CD200 fusion protein (CD200Fc) or CD200R
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blocking antibody (CD200R Ab) post-stroke. First,
CD200Fc significantly improved neurological recovery
in Longa tests at 4 and 7 days after MCAO, whereas
neurological recovery was restrained at 4 days after
CD200R Ab injection compared with the MCAO+IgG
group (P < 0.05) (Fig. 4a). Second, sensorimotor func-
tions were assessed using adhesive removal, limb-use
asymmetry, and modified grip-traction tests. Rats
spent more time touching the spot at 4 and 14 days
in the MCAO+CD200R Ab group (group main effect,
F 4 3120 = 3742, P < 0.0001) (Fig. 4b), whereas it took
less time to remove the spot at 7, 14, and 21 days in the
MCAO+CD200Fc group compared with the MCAO+IgG
group (group main effect, F 4 315 = 44.91, P < 0.0001)
(Fig. 4c). CD200Fc increased the frequency of injured
forelimb use at 4 and 7 days after MCAO as determined
by the limb-use asymmetry test (group main effect,
F 4 292 = 29.75, P < 0.0001) (Fig. 4d). In the modified
grip-traction test, the time spent hanging onto the rope
was increased markedly at 4, 7, 14, and 21days after
MCAO in the MCAO+CD200Fc group compared with
the MCAO+IgG group. In contrast, CD200R Ab admi-
nistration decreased the time spent hanging onto the rope
at 4 days after MCAO (group main effect, F 4 364 = 47.51,
P < 0.0001) (Fig. 4e). We also detected the effect of
CD200/CD200R signaling on the size of cerebral infarc-
tion. The result shown that CD200/CD200R signaling

pathway modification did not influence the size of
cerebral infarction at 28 days after MCAO (group main
effect, F 4 30 = 66.06, P < 0.0001) (Fig. 4f, g). These
data suggest that activation of the CD200/CD200R
signaling pathway promoted spontaneous functional
recovery after stroke in rats.

Synaptic plasticity changes in cerebral ischemia rats after
CD200/CD200R signaling pathway alteration

Neuronal connectivity and synaptic plasticity are es-
sential to achieve complex tasks such as sensorimotor
behavior. Thus, we sought to determine whether the
CD200/CD200R signaling pathway participates in
regulating synaptic plasticity after MCAO. Data from
Western blotting demonstrated that the protein level
of PSD-95 was increased significantly at 4, 7, and 28
days (group main effect, F 4 30 = 101.1, P < 0.0001),
and SYP levels were increased at 28 days (group main
effect, F 4, 30 = 23.64, P < 0.0001) after CD200Fc i.c.v
injection post-stroke (Fig. 5a—c). In contrast, the ex-
pression of SYP was reduced markedly at 4 days after
CD200R Ab injection post-stroke (group main effect,
F 4 30 = 23.64, P < 0.0001) (Fig. 5a, c). Moreover, the
stroke-induced reduction in spine density was rescued
(group main effect, F 4, 15 = 36.91, P < 0.0001), and
spine shape was altered from stubby to mushroom by
CD200Fc application at 28 days after MCAO (group
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main effect, F 4, 30 = 0.5636, P = 0.6909) (Fig. 5d—f).
These results suggest that CD200Fc may enhance syn-
aptic plasticity, thereby promoting sensorimotor func-
tional recovery.

Microglial response and inflammatory factor release after
CD200/CD200R signaling pathway modification in
cerebral ischemia rats

Synaptic plasticity is impaired by exaggerated inflam-
matory responses and microglia activation during
central nervous system (CNS) injury and neurodegen-
erative diseases [11, 31], and the CD200/CD200R sig-
naling pathway plays an important role in regulating
microglia activation and inflammatory factor release
[32-34]. To investigate whether the CD200/CD200R
signaling pathway is involved in regulating microglia
activation and inflammatory factor release after stroke
in rats, we assessed microglia activation using

immunofluorescence and inflammatory factor (such as
II-1B, 1I-6, Tuf-a, 1l-4, and Cd206) release. The num-
ber of Ibal*/CD68" cells in the ipsilateral sensori-
motor cortex was decreased markedly at 4 and 7 days
after MCAO in the MCAO+CD200Fc group compared
with the MCAO+IgG group (group main effect, F 4, 30
= 313.5, P < 0.0001) (Fig. 6a, b). In contrast, CD200R
Ab significantly increased the number of Ibal+/
CD68+ cells at 4 and 7 days after MCAO (group main
effect, F 4 30 = 313.5, P < 0.0001) (Fig. 6a, b). The
mRNA levels of Il-1B8, II-6, Tnf-a, and Cd206 were
downregulated, whereas [/-4 was upregulated, follow-
ing CD200Fc application after MCAO (I/-15 at 4 and
7 days after MCAO; [l-6 and Tnf-a at 4days after
MCAO; Cd206 at 7 days after MCAQ; I/-4 at 7 days
after MCAO) (P < 0.05) (Fig. 6¢—g). In contrast, CD200R
Ab increased the mRNA levels of I/l-1f at 4 and 7 days
after MCAO and of Cd206 at 28days (P < 0.05)
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(Fig. 6a, g). These observations suggest that activa-
tion of the CD200/CD200R signaling pathway could
ameliorate microglia activation and
factor release after stroke in rats.

inflammatory

The effect of CD200/CD200R signaling pathway
modification on NF-kB and p-MAPK expression after
cerebral ischemia in rats

Previous studies showed that activating the CD200/
CD200R signaling pathway limited microglia activa-
tion and inflammatory responses by inhibiting the
NF-xB and mitogen-activated protein kinase (MAPK)
pathways [35, 36]. To further investigate the mechan-
ism through which CD200/CD200R signaling regu-
lates synaptic plasticity after stroke, we assessed the
expression of p-p65, phospho-c-Jun N-terminal kinase
(p-JNK), phospho-extracellular signal-regulated kinase-
1/2 (p-ERK1/2), and phospho-protein 38 (p-p38)
MAPKs in the ipsilateral sensorimotor cortex. P65
phosphorylation was observed in the MCAO group at

7 and 28 days compared with the sham group (group
main effect, F 4, 30 = 26.20, P < 0.0001) (Fig. 7a, b),
but the CD200/CD200R signaling pathway did not in-
fluence p65 phosphorylation at each time point after
MCAO. The protein levels of p-JNK, p-ERK, and p-
p38 were increased after MCAO compared with the
sham group (p-JNK at 4, 7, and 28 days after MCAO,
group main effect, F 4 30 = 141.5, P < 0.0001; p-ERK
at 4 days after MCAO, group main effect, F 4 30 =
10.64, P < 0.0001; p-p38 at 4 and 7 days after MCAO,
group main effect, F 4 30 = 3643, P < 0.0001) (Fig.
7a, c—e). The protein levels of p-JNK and p-p38 were
decreased significantly by CD200Fc (p-JNK at 4, 7,
and 28days after MCAO; p-p38 at 4days after
MCAO) (Fig. 7a, ¢, e). CD200R Ab increased the ex-
pression of p-JNK at 4 days and p-p38 at 4 and 7 days
after MCAO compared with the MCAO+IgG group
(Fig. 7a, ¢, e). This suggests that activating the
CD200/CD200R signaling pathway downregulates p-MAPK
expression after stroke in rats.
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CD200Fc inhibited JNK and P38 phosphorylation after
OGD in BV2 microglia cell line

To test whether CD200Fc inhibited microglial activation
is mediated via MAPKs especially JNK and p38, we used
BV2 cells to test the effect of CD200Fc on JNK and P38
phosphorylation after OGD. As shown in Fig. 8a—c, JNK
and P38 phosphorylation induced by OGD were re-
versed by CD200Fc (p-JNK, F , ¢ = 0.009141, P =
0.9909; p-P38, F , ¢ = 1.289, P = 0.3423). Next, we fur-
ther determined the effect of CD200Fc on JNK and P38
phosphorylation in microglia via anisomycin (agonists of
these JNK and P38), and the results showed that
CD200Fc significantly decreased the protein level of p-
JNK and p-p38 induced by anisomycin (p-JNK, F 5 ¢ =
3.756, P = 0.0876; p-P38, F 5 ¢ = 5.044, P = 0.0519).
These data indicated that CD200Fc could inhibit JNK
and p38 phosphorylation in microglia.

Discussion
Recent studies indicated that the CD200/CD200R signal-
ing pathway regulates the microglia activation-induced

inflammatory response and synaptic plasticity in vitro and
in vivo [32, 35, 37], but few studies have been performed
in stroke. Here, we investigated CD200/CD200R as a
potential target for promoting spontaneous recovery.
The collected data support the viewpoint that sensori-
motor deficiency was partially recovered by promoting
synaptic plasticity. Activation of the CD200/CD200R
signaling pathway further promoted functional recovery
after stroke.

Ischemic stroke impairs the integrity of neural net-
works and intercellular signal transmission and
causes sensorimotor deficits [6]. Surviving neural
networks rewire and form new structural and func-
tional circuits during spontaneous functional recov-
ery [5]. PSD95 and SYP are crucial indicators of
synaptic plasticity, which is involved in maturation
of excitatory synapses and stabilization of synaptic
contacts [38, 39]. Dendritic spine density is an im-
portant index of structural and functional plasticity,
which is associated with rewiring of neuronal cir-
cuits; enhanced plasticity can contribute to recovery
of cortical function [5, 40]. In the present study, the
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\

expression of PSD95 and dendritic spine density The CD200/CD200R signaling pathway regulates
were increased significantly during spontaneous synaptic plasticity, and dysfunction in this pathway
functional recovery, suggesting that neural networks contributes to synaptic deficits in aging and AD [18,
were partially rewired after stroke. 29]. In the current study, consistent with a previous
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report [41], CD200R expression was transiently in-
creased in microglia after stroke. Activating the
CD200/CD200R signaling pathway with CD200Fc re-
markably increased PSD95 expression and dendritic
spine density. In addition, the sensorimotor functional
dysfunction induced by stroke was ameliorated by
CD200Fc application post-stroke. These observations
showed that activation of the CD200/CD200R signal-
ing pathway improved recovery of sensorimotor
function by facilitating the formation of new neural
networks and protecting synaptic structures from
ischemia-induced damage.

Inflammation and pro-inflammatory factors are
secondary injury mediators following cerebral ische-
mia [42], and they exacerbate loss of dendritic spines
[11]. Suppressing microglia activation (microgliosis)
rescues local inflammatory over-release and improves
outcomes after stroke [43, 44]. The CD200/CD200R
signaling pathway helps modulate microglia activation and

inflammatory factors in many injury models [33, 41]. In
this study, regulating CD200/CD200R signaling using
CD200EFc significantly inhibited microglial over-activation
and profoundly influenced the microenvironment, in-
cluding decreasing the mRNA levels of proinflammatory
(ll-1B, II-6, and Tnf-a) factors and increasing the mRNA
levels of anti-inflammatory (/I-4) regulators in the ipsilat-
eral cortex. Similar effects were also observed after
CD200Fc application in LPS-stimulated microglia cells,
during aging, and in Parkinson’s disease [18, 45]. These
data suggest that CD200/CD200R signaling might help
inhibit synapse loss after stroke by regulating the activa-
tion of microglia and modulating the balance between
pro- and anti-inflammatory factors.

NF-«xB is an important transcription factor that pro-
motes microglia activation and inflammatory factor re-
lease [46, 47]. Previous studies showed that CD200Fc
could inhibit microglia activation and the inflammatory
response by suppressing the NF-xB pathway in vitro
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[48]. However, the current results showed that CD200/ the phosphorylation of p-JNK and p-p38 after stroke.
CD200R signaling had no effect on the NF-xB pathway  This suggests that the effect of CD200/CD200R signaling
after stroke. CD200R is only expressed in microglia in on suppressing the inflammatory response may be
the CNS, whereas inflammation is a complex response  exerted by inhibiting MAPK activation.

involving many kinds of cells. Activating CD200/ One limitation of the present study is that CD200R not
CD200R signaling may be insufficient to contain the NF-  only expressed in microglia, but also expressed in periph-
KB pathway after stroke in vivo. Recent studies reported  eral myeloid cells [52] and neuron in human according to
that the CD200/CD200R pathway modulated the inflam-  the Ben Barres database. However, the infiltration of per-
matory response by controlling MAPK activation ipheral myeloid cells plays an important role in inflamma-
in vitro and in vivo [49-51]. The current results showed tory response after stroke; CD200Fc or CD200R Ab may
that CD200Fc inhibited MAPK activation by suppressing play a role in these cells. In this study, we did not
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