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A B S T R A C T   

Chemotherapeutic drugs, such as doxorubicin (Dox), are commonly used to treat a variety of malignancies. 
However, Dox-induced cardiotoxicity limits the drug’s clinical applications. Hence, this study intended to 
investigate whether diosmin could prevent or limit Dox-induced cardiotoxicity in an animal setting. Thirty-two 
rats were separated into four distinct groups of controls, those treated with Dox (20 mg/kg, intraperitoneal, i.p.), 
those treated with diosmin 100 mg plus Dox, and those treated with diosmin 200 mg plus Dox. At the end of the 
experiment, rats were anesthetized and sacrificed and their blood and hearts were collected. Cardiac toxicity 
markers were analyzed in the blood, and the heart tissue was analyzed by the biochemical assays MDA, GSH, and 
CAT, western blot analysis (NF-kB, IL-6, TLR-4, TNF-α, iNOS, and COX-2), and gene expression analysis (β-MHC, 
BNP). Formalin-fixed tissue was used for histopathological studies. We demonstrated that a Dox insult resulted in 
increased oxidative stress, inflammation, and hypertrophy as shown by increased MDA levels and reduced GSH 
content and CAT activity. Furthermore, Dox treatment induced cardiac hypertrophy and damage, as evidenced 
by the biochemical analysis, ELISA, western blot analysis, and gene expression analysis. However, co- 
administration of diosmin at both doses, 100 mg and 200 mg, mitigated these alterations. Data derived from 
the current research revealed that the cardioprotective effect of diosmin was likely due to its ability to mitigate 
oxidative stress and inflammation. However, further study is required to investigate the protective effects of 
diosmin against Dox-induced cardiotoxicity.   

1. Introduction 

Cancer is one of the leading causes of death across the world. 
Chemotherapy, surgery, immunotherapy, hormone therapy, and radia-
tion therapy are the most common cancer therapies. These therapies can 
be used alone or in combination, depending on the type and stage of 
cancer and the particular patient’s health. Chemotherapy is the most 
widely used treatment option, but the side effects of chemotherapeutic 
drugs limit their use (Naderi et al., 2023; Sung et al., 2021; Falzone et al., 
2018; DeVita and Chu, 2008; Guo et al., 2024). Doxorubicin (Dox) is a 
frequently used anticancer drug with a variety of applications for 
different types of malignancies (Sritharan and Sivalingam, 2021). 
However, the utilization of Dox for medical conditions is somewhat 
restricted because of its prevalent cardiac toxicity (Zhang et al., 2023; 
Qahtani Abdullah et al., 2024; Sandamali et al., 2021). The exact 
mechanism responsible for Dox-induced cardiac injury has not been 

fully investigated, though published studies suggest that oxidative 
stress, inflammation, and apoptosis are the possible causative factors 
(Podyacheva et al., 2021; Naderi et al., 2023). Since the heart has 
relatively low levels of antioxidant enzymes, high mitochondrial den-
sity/volume, and elevated oxygen consumption rate, the heart is 
particularly susceptible to the damage caused by oxidative stress. 
Oxidative stress, which is produced during the intracellular metabolism 
of Dox, is assumed to be the primary factor contributing to cardiotoxicity 
when this drug is used (Rocca et al., 2020; Carvalho et al., 2014; Al- 
Kuraishy et al., 2022). 

Published reports suggest that nuclear factor-kappa B (NF-κB) acti-
vation is a significant factor in inflammation caused by a stimulus. This 
is attributed to the ability of NF-κB to regulate the expression of various 
inflammatory markers, including cyclooxygenase-2 (COX-2), inducible 
nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) (Khan 
et al., 2023). 
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Prophylactic measures have been suggested to prevent cardiotox-
icity. Based on the current suggested mechanism of cardiotoxicity, a 
molecule that has the ability to scavenge free radicals would be a 
promising option for adjuvant treatment (Mohammed et al., 2020). The 
use of extracts from naturally occurring compounds and their bioactive 
components in the mitigation of the toxicity caused by drugs and 
chemicals has been widely acknowledged (Suna et al., 2023; Liao et al., 
2023; Mohtadi et al., 2023). Diosmin is a naturally occurring flavonoid 
glycoside often found in citrus fruits, vegetables, and tea (Ali et al., 
2021; AlAsmari et al., 2021). Previously published reports have 
demonstrated several beneficial properties of diosmin, such as neuro-
protective, hepatoprotective, nephroprotective, and anti-inflammatory 
properties (Okubo Eneni et al., 2020; AlAsmari et al., 2021; Ali et al., 
2021; Zhao et al., 2024). 

At present, there is no effective therapy for restoring cardiac function 
that has been damaged by Dox. Therefore, the search for a highly effi-
cient remedy continues to be an urgent concern. Hence, the current 
study aimed to investigate whether diosmin could mitigate the adverse 
effects of Dox on the rat heart, particularly targeting the antioxidative 
and anti-inflammatory pathways. 

2. Methodology 

2.1. Animals 

The research animals were acquired from the Animal Center of 
Pharmacy College at King Saud University (KSU), KSA. All animals were 
housed in a standard room with a temperature of 25 ± 1 ◦C and a 12- 
hour light/dark cycle. Also, all animals were provided with free access 
to water and a standard diet. The use of these animals was approved by 
the ethical committee (KSU-SE-19-121). 

2.2. Study design 

In the current study, we used male Wistar rats (4–6 weeks) weighing 
180 ± 20 g. Thirty-two rats were randomly separated into four distinct 
groups of eight rats each. The animals had a one-week acclimatization 
period. After that, the control group received normal saline orally for 18 
days, and on the 17th day, they received an intraperitoneal (i.p.) in-
jection of normal saline (this mimicked the treatment with Dox, which 
was dissolved in normal saline). Dox group received an i.p. injection of 
Dox (20 mg/kg body weight) on the 17th day. A third group was given 
diosmin 100 mg (LDios) plus Dox, and a fourth group was given diosmin 
200 mg (HDios) plus Dox for a duration of 18 days. On the 17th day, a 
single i.p. dosage of Dox was given to both groups at a dose of 20 mg/kg 
body weight. On day 18, all rats were anesthetized (with a combination 
of ketamine and xylazine in a 10:1 ratio) and euthanized. Blood samples 
were collected from the hearts of five rats in each group. Subsequently, 
the hearts were excised and immediately immersed in liquid nitrogen to 
prepare them for biochemical assays, gene expression, and western blot 
analysis. Additionally, for histological analysis, three rats from each 
group were perfused using phosphate-buffered saline (PBS) and then 
fixed in 4 % paraformaldehyde (PFA). Their hearts were then harvested 
and preserved in 4 % PFA. 

2.3. Determination of serum markers 

In order to extract the serum, the blood collected during euthanasia 

was centrifuged at 1000 g for 10 min in a refrigerated centrifuge. Sub-
sequently, the collected serum was used for the enzyme-linked immu-
nosorbent assay (ELISA) to analyze the creatine kinase MB (CKMB) and 
cardiac troponin I levels (cTnI) according to the instructions provided by 
suppliers. 

2.4. Total protein measurement 

In the cardiac tissue, proteins were quantified through the bicin-
choninic acid (BCA) assay, which was obtained from ThermoScientific 
(Rockford, Illinois, USA). 

2.5. Peroxidation of lipids measurement 

The peroxidation of lipids in the heart tissue was assessed using a 
previously described method of Ohkawa et al. (1979) with a slight 
modified. In brief, 0.8 % thiobarbituric acid (TBA) and 30 % trichloro-
acetic acid (TCA) containing tissue homogenates were incubated for 30 
min at 90 ◦C in a shaking water bath. After that, samples were centri-
fuged at 3000 g for 15 min, and the absorbance was measured at 540 nm 
(Ohkawa,Ohishi,and Yagi, 1979). 

2.6. Reduced glutathione measurement 

The glutathione (GSH) content in the heart tissue was assessed using 
a modified version of the protocol of Sedlak and Lindsay. In brief, after 
treating the reaction mixture with 0.4 % 5,5′-dithiobis(3-nitrobenzoic 
acid), the absorbance at 412 nm was quickly determined (Sedlak and 
Lindsay, 1968). 

2.7. Catalase activity measurement 

The Claiborne method was employed to assess the catalase (CAT) 
activity using the post-mitochondrial supernatant (PMS) extracted from 
cardiac tissue. In brief, PBS (pH 7.4), hydrogen peroxide, and PMS were 
mixed, and the absorbance was measured for 5 min every 60 s at 240 nm 
(Claiborne, 1985). 

2.8. Western blot analysis 

We performed the western blot analysis to measure protein con-
centrations according to the previously described protocol with slight 
modifications. In summary, protein extracts were obtained from cardiac 
tissue and a uniform quantity of protein (20–50 µg) was separated using 
10 %–12 % SDS-PAGE gels. Then, PVDF membranes were used and 
proteins were transferred. In the next step, 3 % non-fat dry milk was 
used as a blocker for 60 min. Subsequently, membranes were kept with 
NF-kB, IL-6, TLR-4, TNF-α, iNOS, COX-2, and GAPDH primary anti-
bodies at 4 ◦C for overnight. Overnight incubation was carried out in a 
laboratory rocker. Following washing, the membranes were incubated 
for an hour with the appropriate secondary antibodies conjugated with 
horseradish peroxidase (HRP). All the primary antibodies were diluted 
as 1:1000 and secondary antibody was diluted as 1:5000 in 3 % BSA 
solution. Enhanced chemiluminescence (ECL) reagent was used for 
visualization, and, finally, images were acquired via a Bio-Rad gel im-
aging machine (Bio-Rad, Hercules, California, USA). 

Table 1 
Details of primer sequences used in this study.  

Gene Primer Sequences (5′ → 3′) Product length (bp) Accession number 

BNP Forward: CAGAAGCTGCTGGAGCTGATAAGReverse: TGTAGGGCCTTGGTCCTTTG 78 NM_031545.1 
β-MHC Forward: AGAACCCTCCCAAGTTCGACAAGATCGReverse: TGTTTCAAAGGCTCCAGGTCTCAGG 5635 NM_017240.2 
GAPDH Forward: TCTGCTCCTCCCTGTTCTAGAGACAReverse: TTGTGAGGGAGATGCTCAGTGTTGG 1183 NM_017008.4  
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2.9. Analysis of gene expression via RT-qPCR 

TRIzol reagent was used for the isolation of the total RNA from the 
cardiac tissue as per the instructions obtained from the company. A 
NanoDrop spectrophotometer was used to ascertain the purity and 

concentration of the extracted RNA samples. The isolated RNA (1 µg) 
was then used to make cDNA utilizing a cDNA synthesis kit. The real- 
time polymerase chain reaction (RT-PCR) was used to determine the 
differences in gene expression. GAPDH was used as the normalization 
housekeeping gene. The ΔΔCt technique was utilized to determine the 

Fig. 1. Effect of diosmin and Dox on CKMB (A) and cTnI (B). NS: Nonsignificant (p > 0.05), and ***: p < 0.001 (n = 5).  

Fig. 2. Effect of diosmin and Dox on oxidative stress markers (A) represents the effects on MDA, 2B represents the effects on GSH, and 2C represents the effects on 
CAT levels. Where NS: Nonsignificant (p > 0.05), *: p < 0.05, and **: p < 0.01 (n = 5). 
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relative gene expression. The sequences of the primers used are shown in 
Table 1. 

2.10. Histological examination of cardiac tissue 

Tissue samples from each experimental group were preserved in PFA 
and then embedded in paraffin to form tissue blocks. Subsequently, the 
blocks were cut into thin slices measuring 3 µm using a microtome. 
Afterward, the paraffin was extracted from the sections, and the sections 
were stained using hematoxylin and eosin (H&E). The tissue was 
analyzed and histopathological alterations were recorded. Tissues were 
examined with an Olympus BX microscope. 

2.11. Statistical evaluation and analysis 

The data were presented as a mean plus or minus the standard de-
viation (SD) for each group. The analysis of variance (ANOVA) was used 
to evaluate group differences, followed by post-hoc analysis using the 
Tukey comparison test. The threshold for statistical significance was set 
at 0.05. 

3. Results 

3.1. Diosmin modulates Dox‑induced cardiac injury 

In order to determine the association between Dox treatment and 

cardiac damage in the current investigation, blood serum samples were 
collected and levels of cardiotoxicity markers, such as CK-MB and cTnI, 
were quantified. The administration of Dox caused a significant increase 
in the CK-MB and cTnI levels (Fig. 1A and B). In contrast, prophylactic 
treatment with diosmin caused the increased levels of CK-MB and cTnI 
to decrease (Fig. 1A and B). These data clearly demonstrated the pre-
ventative effect of diosmin in mitigating heart damage induced by Dox. 

3.2. Effect of diosmin on oxidative stress 

We evaluated the CAT activity, GSH content, and MDA levels in heart 
tissues to see whether diosmin supplementation would reduce Dox- 
induced oxidative stress. As expected, Dox injection substantially 
decreased the CAT activity, reduced the GSH content, and increased the 
MDA levels (Fig. 2A–C). The administration of diosmin, however, 
restored these altered parameters to normal (Fig. 2A–C). These findings 
further validated the protective effect of diosmin against Dox-induced 
cardiac damage. 

3.3. Diosmin modulates Dox‑induced inflammation 

Previous studies have confirmed the anti-inflammatory properties of 
diosmin in different tissues (AlAsmari et al., 2021; Ali et al., 2021). 
Therefore, and in order to confirm the anti-inflammatory effects of 
diosmin against Dox insult, we evaluated the expression of proteins 
involved in controlling the inflammation pathway, including NF-kB, IL- 

Fig. 3. Effect of diosmin and Dox on cardiac inflammatory protein expression analysis by western blot technique. (A, B, C & D) show immunoblot images and the 
graphical representation of NF-κB, TLR-4, and IL-6, respectively. Where NS: Nonsignificant (p > 0.05), *: p < 0.05, **: p < 0.01 and ***: p < 0.001 (n = 3). 
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6, TLR-4, TNF-α, iNOS, and COX-2. The results revealed that the alter-
ations in protein expression induced by Dox were restored in rats that 
were co-treated with diosmin (Figs. 3A–D and 4A–D). These findings 
indicated that diosmin has anti-inflammatory properties. 

3.4. Diosmin modulates Dox‑induced cardiac hypertrophy 

We explored the impact of Dox on cardiac muscle by measuring the 
body weight (BW), heart weight (HW), and ratio of heart weight to body 
weight (HW:BW), which is considered as an indicator of cardiac hy-
pertrophy. Our data revealed significant changes in the BW, HW, and 
HW:BW ratio in the Dox group compared with the control group 
(Fig. 5A–C). Notably, animals co-treated with HDios showed minimal 
changes compared with the control group (Fig. 5A–C). Furthermore, to 
validate our hypothesis, we measured the hypertrophic gene markers 
that are reported to increase in response to cardiac damage, such as beta 
myosin heavy chain (β-MHC) and brain natriuretic peptide (BNP). 
Interestingly, we found a significant increase in the expression of these 
genes in the Dox-treated group (Fig. 5D and E). However, co- 
administration of diosmin mitigated these gene alterations. Overall, 
these findings indicated that diosmin treatment protected the heart from 
Dox-induced hypertrophy. 

3.5. Diosmin mitigates Dox‑induced alterations in histology 

Histopathological analysis of cardiac tissue revealed a normal 
myocardium and architecture in the control group (Fig. 6A). In contrast, 
the group treated with Dox had interstitial edema and chronic inflam-
mation with focal distortion of the myocardial fibers (Fig. 6B). The 
group treated with Dox and LDios had residual interstitial edema, but 
only minimal chronic inflammatory cell infiltration (Fig. 6C). The group 

treated with Dox and HDios exhibited no residual inflammation, ne-
crosis, or edema (Fig. 6D). 

4. Discussion 

Chemotherapeutic agents, such as Dox, are often used to treat a va-
riety of cancers, including those of the stomach, ovary, breast, and 
thyroid and pediatric cancers. However, long-term Dox treatment may 
have detrimental effects on healthy tissues, such as the kidney, liver, and 
heart, and this severely limits its use in clinical settings (Carvalho et al., 
2009; Wenningmann et al., 2019; Damodar et al., 2014; Ayla et al., 
2011). According to the results of the present study, a single injection of 
Dox led to the onset of cardiac hypertrophy, that was demosntrated by 
histological examinations, HW:BW ratio, and the induction of hyper-
trophic gene markers (i.e., β-MHC and BNP). Furthermore, we found 
that rats that were treated with Dox exhibited cardiac injury, which led 
to a significant increase in the release of cardiac enzymes, including CK- 
MB and cTnI, into the bloodstream due to damaged cardiomyocytes; this 
is considered to be an important indicator of cardiac damage. Our 
findings were in line with those of previously published studies (Guo 
et al., 2020). Consequently, our study showed the attenuation of serum 
levels of CK-MB and cTnI by diosmin pretreatment in a dose-dependent 
manner (Senthamizhselvan et al., 2014; Sabarimuthu et al., 2017). 

The existing literature has suggested the involvement of reactive 
oxygen species (ROS) and lipid peroxidation in cardiotoxicity caused by 
Dox (Xu et al., 2001; Simůnek et al., 2009; Rawat et al., 2021). In the 
current study, we analyzed lipid peroxidation markers through MDA 
analysis. Several previously published reports have highlighted elevated 
MDA levels in rats treated with Dox (Zhao et al., 2018; Erdogmus Ozgen 
et al., 2022). We also observed a significantly higher MDA content in the 
group treated with Dox compared with the control group; however, the 

Fig. 4. Effect of diosmin and Dox on cardiac inflammatory protein expression analysis by western blot technique. (A, B, C & D) show immunoblot images and the 
graphical representation of Cox-2, iNOS, and TNF-α, respectively. Where *: p < 0.05, **: p < 0.01 and ***: p < 0.001 (n = 3). 
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group that was pretreated with diosmin had a significantly lowered 
MDA content. Glutathione (GSH) is an endogenous substance crucial for 
detoxifying reactive oxygen species (ROS) generated by internal or 
external stimuli. This process is essential for maintaining the homeo-
stasis necessary for normal cellular function. Catalase (CAT) is an 
enzyme renowned for its antioxidant activity, as it decomposes 
hydrogen peroxide (H2O2) into oxygen (O2) and water (H2O). This 
enzymatic reaction serves as a vital preventive mechanism against ROS 
production (Ali et al., 2021; Mohan et al., 2010; Rašković et al., 2011). 
Our current study showed significantly lower GSH content and lower 
CAT activity in rats exposed to Dox. Our findings were in agreement 
with those of Olorundare and colleagues (Olorundare et al., 2020). 
These changes were mitigated by diosmin pretreatment, suggesting that 
diosmin protects cardiac tissue from oxidative damage through its 
antioxidative properties. 

Published reports suggest that oxidative stress has the capability of 
triggering inflammatory responses by activating signaling pathways 
such as NF-kB (Farag et al., 2021; CDC, 2023). Moreover, inflammation 
has been reported in Dox-induced cardiotoxicity (Wang et al., 2021). 
NF-kB is a group of transcription factors that are activated to control the 
expression of a wide range of genes that play important roles in many 
aspects of immunological and inflammatory responses (Imam et al., 
2018). Several studies have reported the role of NF-kB activation in Dox- 
induced cardiotoxicity (Munir et al., 2023; El-Agamy et al., 2019). The 
current study reported an elevated level of NF-kB following a single Dox 
injection and the mitigation of this elevation by diosmin co- 
administration. Our findings were in support of published reports that 

suggested the ability of naturally occurring compounds to inhibit the 
activity of NF-kB and reduce cardiotoxicity (Qi et al., 2020; Munir et al., 
2023). Furthermore, NF-kB has been reported to be a regulator of 
inflammation-related signaling cascades, such as COX-2, TNF-α, IL-6, 
and iNOS (Alanazi et al., 2020). Published data have shown the upre-
gulation of COX-2, IL-6, iNOS, and TNF-α in Dox-treated animals (Ala-
nazi et al., 2020; Ekinci Akdemir et al., 2021). In accordance with the 
published data, the current study demonstrated that a single injection of 
Dox led to an increase in the protein expression of TLR-4, IL-6, COX-2, 
iNOS, and TNF-α. These alterations in protein expression were signifi-
cantly blunted by the prophylactic administration of diosmin. Therefore, 
our results suggested that this protection might be due to the anti- 
inflammatory properties of diosmin. 

These results were supported by the histopathological analysis of 
cardiac tissue. Previously published reports have stated that Dox treat-
ment induced alterations in the cardiac architecture (Ekinci Akdemir 
et al., 2021). In the current study, we observed the presence of parallel 
and normal myocardial fibers with detectable cross-striations in the 
control group, but in the Dox-treated group, the presence of interstitial 
edema and inflammation with focal distortion of myocardial fibers were 
seen. Prophylactic treatment with diosmin caused a decrease in inter-
stitial edema with minimal inflammatory cell infiltration. 

5. Conclusion 

Our research findings indicate that diosmin has a significantly pro-
tective effect against cardiac damage that is caused by Dox 

Fig. 5. Diosmin modulated Dox-induced cardiac hypertrophy. (A) represents the effects of drug treatments on body weight. (B) represents the effects of drug 
treatments on heart weight (C) represents the effects of drug treatments on heart weight and body weight ratio. (D) represents the effects on β-MHC. (E) represents 
the effects on BNP. Where NS: Nonsignificant (p > 0.05), *: p < 0.05, **: p < 0.01, and ***: p < 0.001 (n = 5). 
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Fig. 6. Diosmin modulated Dox-induced alteration in histology. (A) Section of myocardium obtained from the control group shows the presence of normal archi-
tecture.. (B) Dox treated group shows the presence of interstitial edema and chronic inflammation with focal distortion of myocardial fibres. (C) Dox and LDios group 
shows residual interstitial oedema with minimal chronic inflammatory cell infiltration. (D) Dox and HDios group shows No residual inflammation, necrosis, or 
oedema. 400× magnification was used to capture the images. 

Fig. 7. Schematic representation of cardiotoxicity mechanism of Dox and the protective effects of diosmin.  
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administration. This was evidenced by improved cardiac function, 
reduced oxidative stress, decreased levels of inflammatory proteins, 
decreased expression of hypertrophic genes, and histopathological 
improvement (Fig. 7). The potentially protective mechanism may be 
partially related to the suppression of oxidative stress and the inflam-
matory process. 
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