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Abstract
Background: Liver cancer is the fifth most common cancer, and hepatocellular car-
cinoma (HCC) is the major liver tumor type seen in adults. HCC is usually caused by 
chronic liver disease such as hepatitis B virus or hepatitis C virus infection. One of 
the promising treatments for HCC is liver transplantation, in which a diseased liver 
is replaced with a healthy liver from another person. However, recurrence of HCC 
after surgery is a significant problem. Therefore, it is important to discover reliable 
cellular biomarkers that can predict recurrence in HCC.
Methods: We analyzed previously published HCC RNA‐Seq data that includes 21 
paired tumor and normal samples, in which nine tumors were recurrent after or-
thotopic liver transplantation and 12 were nonrecurrent tumors with their paired 
normal samples. We used both the reference genome and de novo transcriptome 
assembly based analyses to identify differentially expressed genes (DEG) and used 
RandomForest to discover biomarkers.
Results: We obtained 398 DEG using the Reference approach and 412 DEG using 
de novo assembly approach. Among these DEG, 258 genes were identified by both 
approaches. We further identified 30 biomarkers that could predict the recurrence. 
We used another independent HCC study that includes 50 patients normal and tumor 
samples. By using these 30 biomarkers, the prediction accuracy was 100% for normal 
condition and 98% for tumor condition. A group of Metallothionein was specifically 
discovered as biomarkers in both reference and de novo assembly approaches.
Conclusion: We identified a group of Metallothionein genes as biomarkers to predict 
recurrence. The metallothionein genes were all down‐regulated in tumor samples, 
suggesting that low metallothionein expression may be a promoter of tumor growth. 
In addition, using de novo assembly identified some unique biomarkers, further con-
firmed the necessity of conducting a de novo assembly in human cancer study.
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1  |   INTRODUCTION

Liver cancer is the fifth most common cancer, and the 
third leading cause of cancer‐related death worldwide. 
Hepatocellular carcinoma (HCC) is the major liver tumor 
type seen in adults (Bosch, Ribes, Díaz, & Cléries, 2004; 
Shibata & Aburatani, 2014; Thomas et  al., 2010). HCC is 
usually caused by chronic liver disease such as hepatitis B 
virus (HBV) or hepatitis C virus (HCV) infection, which 
accounts for 75%–80% of the cases (Arzumanyan, Reis, & 
Feitelson, 2013; Bosch et  al., 2004). Abuse of alcohol and 
exposure to aflatoxin are also risk factors for HCC.

The pathogenic mechanisms of hepatitis B or C associated 
HCC have been heavily investigated. Alterations in the activ-
ities and expression levels of several signaling pathways have 
been identified. For example, inactivation of tumor suppressor 
genes p53 (Christofori, Naik, & Douglas, 1995), RAS (Oishi 
et al., 2007), PI3K (Zender et al., 2008), overexpression of β‐
catenin in the Wnt signaling pathways (Edamoto et al., 2003; 
Peng et al., 2004), overexpression of epidermal growth factor 
receptor family members (Blivet‐Van Eggelpoël et al., 2012; 
Ito et al., 2001), overexpression of MET and its ligand hepato-
cyte growth factor (Daveau et al., 2003) and overexpression 
of insulin‐like growth factor (Sedlaczek, Hasilik, Neuhaus, 
Schuppan, & Herbst, 2003). In addition, methylation of can-
cer relevant genes have been also identified (Kubo et  al., 
2004; Lee et  al., 2003; Liew et  al., 1999; Matsuda, Ichida, 
Matsuzawa, Sugimura, & Asakura, 1999; Murata et al., 2004; 
C. Wong, Lee, Ching, Jin, & Ng, 2003; I. H. N. Wong et al., 
1999), including APC, p16, E‐cadherin, GSTP1, COX2, apop-
tosis‐associated speck‐like protein (ASC) and deleted in liver 
cancer 1, and allelic gains or losses on chromosomes (Kuroki 
et al., 1995; Maggioni, 2000; Wilkens et al., 2001). However, 
due to the heterogeneity of HCC, it is not yet clear what early 
biomarkers could be used for detection of HBV or HCV‐me-
diated HCC (Arzumanyan et al., 2013).

The treatment for HCC includes liver resection, liver 
transplantation, chemotherapy, and radiation. Liver trans-
plantation is one of the promising treatments, in which a 
diseased liver is replaced with a healthy liver from another 
person. However, recurrence of HCC after surgery is a sig-
nificant problem. It has been reported that the recurrence 
after liver transplantation ranges from 6% to 40% (Cheng 
et  al., 2011; Marsh et  al., 1997; Shimoda et  al., 2004). 
Although, many studies have attempted to identify biomark-
ers, in order to predict recurrence in patients with HCC, the 
early detection of recurrence still remains challenge. The 
current biomarkers for HCC are mostly serum markers, 
which show low sensitivity (Tsuchiya et  al., 2015). Three 
recent studies identified some novel markers. One was using 
DNA markers from urine, but the study was based on only 
10 individual patients and did not show wide applicability 
(Hann et al., 2017); a meta‐analysis showed a possibility of 

using circRNA as biomarkers, but they did not talk about the 
recurrence problem in HCC (M. Wang et al., 2018); marker 
for the prediction of sorafenib response has been proposed, 
but its relevance to the recurrence problem is unclear(Kim 
et al., 2018). Therefore, it is important to discover reliable 
cellular biomarkers that can predict recurrence in HCC.

Next‐generation sequencing, which identifies genomic 
alterations and somatic mutations at the nucleotide base 
level, is providing insights into the etiology of cancer and 
corresponding diagnostics (Chin et  al., 2012; Davey et  al., 
2011; Meyerson, Gabriel, & Getz, 2010; Schuster, 2008). 
Scientists have started to sequence patients’ DNA or mRNA 
to obtain their genome or transcriptome, but gene expression 
is usually measured based on the annotation of the human 
reference genome. Recently, it has been suggested that de 
novo assembly is valuable even when a reference genome is 
available (S. Wang & Gribskov, 2017). Although the human 
reference genome is available, in the case of tumors, where 
mutation and chromosomal rearrangement may have altered 
gene/transcript structure, incorporation of de novo assembly 
is even more important.

In this project, we analyzed previously published HCC 
RNA‐Seq data (Xue et  al., 2015) that includes 21 paired 
tumor and normal samples, in which nine tumors were re-
current after orthotopic liver transplantation and 12 were 
nonrecurrent tumors with their paired normal samples. In 
this study, we compared the results of reference and de novo 
transcriptome assembly based analyses, in order to identify 
biomarkers that predict recurrence of tumors in HCC.

2  |   MATERIALS AND METHODS

2.1  |  Data description
The RNA‐seq data were directly downloaded from the NCBI 
sequence read archive (SRP040998). There were nine re-
current tumor with paired adjacent normal samples, and 12 
nonrecurrent tumor with paired adjacent normal samples. In 
total, there were 9 × 2 + 12 × 2 = 42 samples. Details of 
library construction and patient information are described in 
Xue et al. (2015).

2.2  |  Quality control of raw data
Adapter sequences and low‐quality portions of reads were 
removed using Trimmomatic (version 0.32) (Bolger, Lohse, 
& Usadel, 2014). Adapters and low‐quality read regions with 
average quality below 13 (phred score) over a four base win-
dow were removed. Low‐quality sequences at the 5′ and 3′ 
end, with quality score <10 were also removed. Only reads 
with a trimmed length over 30 bases were used in further 
analysis. The number of paired‐end reads in each sample is 
shown in Table S1.
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2.3  |  Transcriptome assembly of 
cleaned data
We pooled all left cleaned reads, right cleaned reads, and 
unpaired cleaned reads from all 42 samples together for de 
novo transcriptome assembly. Cleaned reads were assembled 
using Trinity (Grabherr et al., 2011) (version 2.0.6) with the 
parameters recommended by the authors.

2.4  |  Alignment and quantification
Bowtie2 was used to align cleaned reads to both human ref-
erence genome (GRCH38) and de novo transcriptome as-
sembly. Then RSEM (version 1.2.30) program (Li & Dewey, 
2011; Li, Ruotti, Stewart, Thomson, & Dewey, 2010) was 
used to quantify gene expression level.

2.5  |  Differential expression gene analysis
The DeSeq2 package (Love, Huber, & Anders, 2014) was 
used to determine differential expression. The integrated sta-
tistical model is:

 where i is group (recurrent or nonrecurrent), j is condition (nor-
mal or tumor), k is individual (patient). In this model, we inte-
grated the sample type (tumor or normal) and recurrence type 
(yes or no), which identified genes that were both differentially 
expressed in these conditions. Only genes with observed counts 
>100 (summed over all conditions) were analyzed.

2.6  |  Blast search
We compared the de novo assembly to the human refer-
ence genome (GRCH38) using BlastN with default settings 
(Blast version 2.2.29+, National Center for Biotechnology 
Information, National Library of Medicine, National 
Institues of Health, Bethesda, MD, USA). We filtered hits 
by two criteria: identity score ≥95%; and aligned length 
≥100 bases.

2.7  |  Biomarker identification and 
confirmation
The RandomForest package (Liaw & Wiener, 2002) was 
used to identify biomarkers from recurrent and nonrecur-
rent patients’ gene expression levels. Another independent 
data set was downloaded from the NCBI sequence read ar-
chive (SRP068976) for use as confirmation data, to predict 
the patient outcome using the biomarkers identified in the 
RandomForest analysis. The confirmation data included 50 
patients paired normal and tumor RNA‐Seq data. Details of 

library construction and patient information are described in 
Liu et al. (2016).

3  |   RESULTS

3.1  |  De novo transcriptome assembly
We pooled all patient reads together to assemble the tran-
scriptome using the Trinity program (k‐mer = 25). In total, 
there were 1,036,270 predicted transcripts in the assembly 
with minimum length 224 bp and maximum length 31,736 
bases. Trinity labels predicted transcripts systematically with 
designated form such as TRi|cj_gk_il (e.g., TR101|c0_g2_i2), 
where i, j, k, and l are integers indicate the transcripts, com-
ponent, group, and isoform, respectively. We determined that 
sequences with the same component (e.g., c0, c1) but differ-
ent groups such as TR1|c0_g1 and TR1|c0_g2, usually match 
the same gene. Therefore, we used transcripts number for 
example, TR1 as the gene unit. The number of genes when 
pooled at this level in de novo transcriptome assembly was 
797,713, substantially more than the number of genes anno-
tated in the human reference genome. This is possibly due to 
two effects. (a) many of the predicted transcripts are similar 
or duplicated; (b) many of them are expressed at low levels 
which leads to incomplete transcripts.

3.2  |  Differentially expressed genes on 
recurrent/nonrecurrent tumor analysis
We analyzed nine recurrent tumors (after orthotopic liver 
transplantation) and 12 nonrecurrent tumors, each with 
a paired normal sample. We did analysis using two ap-
proaches, (a) all samples were analyzed with respect to 
the human Reference genome; (b) all samples were ana-
lyzed with respect to de novo assembly (Trinity). Thus, we 
obtained two gene expression profiles (one using the ref-
erence genome, the other using the assembly), and two dif-
ferentially expressed genes (DEG) lists (see Materials and 
Methods2 for details).

First, we used the gene expression level to do a principal 
component analysis. Gene counts were log10 transformed. All 
normal samples clustered closely, while the tumor samples 
were distributed widely in both the Reference and assembly 
cases (Figure  1a,b). However, data from one patient (both 
normal and tumor) showed very large reciprocal deviations 
from the expected clusters (Figure 1a,b), suggesting that the 
tumor and normal samples may be mislabeled. If this is the 
case, it would cause large errors in estimates of variance, sug-
gesting this sample should be omitted. Without this patient, 
the paired normal and tumor samples, were better separated 
(Figure 1c,d). In order to gain more confidence in identifying 
DEG, we excluded this patient from all analysis.

Yijk =�+�i+�j+�ijk,
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DEG were identified using the DeSeq2 package with the inte-
grated model where takes group (recurrent or nonrecurrent) and 
condition (normal or tumor) into account. The significance level 
was defined as a false discovery rate < 0.0001, and log2 fold‐
change (log2FC) larger than ±3 (i.e., eightfold change). In total, 
we obtained 398 DEG using the Reference approach (Table S2) 
and 412 DEG using de novo assembly approach (Table  S3). 

We further compared the DEG between these two methods and 
found that 258 DEG were identified by both approaches.

After identifying the DEG, we first checked DEG expres-
sion. In order to provide a more straightforward and detailed 
perspective on gene expression, up‐ and down‐regulated 
genes were displayed as a heatmap. We chose the top 100 
DEG (for a better viewing) exhibiting the largest fold change 

F I G U R E  1   Principal component analyses on normal (black dots) and tumor (red dots) samples. (a) Principal component analyses for 
Reference approach. (b) Principal component analyses for de novo assembly (Trinity) approach. (c) Principal component analyses with one patient 
excluded in Reference approach. (d) Principal component analyses with one patient excluded in de novo assembly (Trinity) approach. DEG, 
differentially expressed gene
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and used hierarchical clustering with Euclidean distance and 
complete linkage method. Gene counts were log10 trans-
formed and normalized as Z‐score. From the heatmap, there 
were clearly two clusters (Figure 2); all 20 normal samples 
were in one cluster and the 20 tumor samples in another clus-
ter. The tumor and normal samples separated very well in 
both the Reference and de novo assembly (Figure 2), which 
gives the confidence that these DEG express differentially 
between tumor and normal samples.

3.3  |  Comparison with known cancer genes
In order to validate the involvement of the identified genes in 
cancer etiology, we compared the DEG to two cancer gene 
databases: tumor suppressor genes (Zhao, Kim, Mitra, Zhao, 
& Zhao, 2016; Zhao, Sun, & Zhao, 2013) and oncogenes (Y. 
Liu, Sun, & Zhao, 2017). We combined the two databases to 
produce a list of 1616 cancer oncogenes and tumor suppres-
sor genes. We refer this combined database as known cancer 
genes and it serves as an internal positive control because 
we expect some of these known cancer genes to be identi-
fied in the analysis. We matched our DEG to this list and 
found 41 known cancer genes in Reference approach and 39 

known cancer genes in de novo assembly approach. Twenty‐
two known cancer genes were found using both methods 
(Table 1). Some of these cancer genes have previously iden-
tified in liver cancer. For example, the overexpression of in-
sulin like growth factor 2 was found to be associated with 
HCC (Sedlaczek et  al., 2003). This gives high confidence 
that the DEG represent genes involving in regulating path-
ways in HCC.

3.4  |  Biomarker identification and 
confirmation
We used RandomForest (Liaw & Wiener, 2002), a decision 
tree‐based classification method, to identify biomarkers. A 
decision tree uses a tree‐like graph, which each branch repre-
sents a “test” on an attribute (e.g., whether a gene turned on 
or not, or if the expression level >20), and each leaf node rep-
resents the outcome of the test, usually it is a class label (e.g., 
“Yes” or “No,” “tumor” or “nontumor”). RandomForest 
builds a forest of decision trees to make classifications and 
rank the importance of attributes (e.g., genes).

In our analysis, we splitted the 40 patients data into two 
data sets. One set was the training data to train the decision 

F I G U R E  2   Heatmaps of top 100 DEG with largest fold change. The hierarchical clusters were based on Z‐score. (a) Heatmap of top 100 DEG 
identified using Reference approach (b) Heatmap of 100 DEG identified using de novo assembly (Trinity). DEG, differentially expressed gene
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tree; the other used as validation data. We used 80% of orig-
inal data as training data, after training, we used the trees to 
predict the patient's condition (normal, recurrent tumor, or 
nonrecurrent tumor) in the validation data set (20% of origi-
nal data) and compared the prediction with the patient's real 
condition. If the accuracy was over 80%, we kept the trees 
and listed the top 30 important genes in the trees according 
to the importance plot (data not shown). The top 30 genes 
for reference and de novo assembly approaches are listed in 
Table 2.

Then we used these top 30 genes (Table 2) to predict the 
patient condition in the confirmation data set, which had 50 
HCC patients’ tumor and normal samples. With these 30 bio-
markers, the accuracy for predicting the normal and tumor 
condition was 100% and 98%, respectively, suggesting these 
genes might be used for potential biomarkers to predict HCC.

Interestingly, we identified a group of Metallothionein 
genes as biomarkers (down‐regulated in tumor sam-
ples), including metallothionein 1E,1F,1G,1H,1J,1M,1X 
(Table  3). Metallothioneins (MT), are a groups of cys-
teine‐rich, low molecular weight proteins that bind to 
heavy metals. Their major function is protection against 
DNA damage, oxidative stress, and apoptosis, and they 
play an important role in transcription factor regulation. 
Therefore, defects in MT expression may lead to malig-
nant transformation of cells and ultimately cancer. It has 
previously been reported that metallothionein is associ-
ated with tumors (Arriaga, Bravo, Mordoh, & Bianchini, 
2017; Cherian, Jayasurya, & Bay, 2003; Han et al., 2013; 
Zheng et al., 2017). Here, MT were all down‐regulated in 
tumor samples, suggesting that low MT expression may be 
a promoter of tumor growth.

Name Description

Reference De novo assembly

log2FC FDR log2FC FDR

MT1G Metallothionein 1G −4.1 3.96E‐18 −4.15 4.40E‐19

MT1F Metallothionein 1F −3.85 2.24E‐24 −4.84 1.47E‐22

CXCL14 C‐X‐C motif chemokine 
ligand 14

−3.61 1.00E‐11 −3.53 1.73E‐10

RAB25 Member of RAS oncogene 
family

−3.57 8.91E‐10 −4.27 2.12E‐09

BMP10 Bone morphogenetic 
protein 10

−3.31 4.66E‐09 −3.43 1.52E‐09

SOX2 SRY‐box 2 3.05 4.67E‐06 3.39 1.97E‐08

CCNE1 Cyclin E1 3.18 1.07E‐13 3.1 2.10E‐06

CCNB1 Cyclin B1 3.19 6.98E‐22 3.19 6.43E‐18

MAFA MAF bZIP transcription 
factor A

3.27 4.21E‐06 3.66 4.61E‐09

PTTG1 Pituitary tumor‐transform-
ing 1

3.27 3.83E‐18 3.74 7.13E‐10

KIF14 Kinesin family member 14 3.36 3.86E‐32 3.52 9.63E‐28

CDK1 Cyclin dependent kinase 1 3.38 2.18E‐22 3.33 1.94E‐19

MYO18B Myosin XVIIIB 3.4 9.81E‐07 3.68 3.57E‐06

CDKN3 Cyclin dependent kinase 
inhibitor 3

3.64 3.63E‐23 3.43 6.51E‐19

E2F1 E2F transcription factor 1 3.76 3.63E‐23 3.74 7.42E‐21

MYO1A Myosin IA 3.83 9.30E‐15 3.28 1.73E‐05

CDC25C Cell division cycle 25C 3.9 5.37E‐24 3.84 4.30E‐20

GPC3 Glypican 3 4.28 2.79E‐12 3.38 1.91E‐08

CSMD1 CUB and Sushi multiple 
domains 1

5.26 2.78E‐12 4.25 1.23E‐07

SIX1 SIX homeobox 1 5.27 1.52E‐12 4.59 2.09E‐18

IGF2BP1 Insulin like growth factor 2 
mRNA binding protein 1

6.34 3.80E‐28 4.46 1.11E‐08

ZIC2 Zic family member 2 6.56 6.91E‐22 5.64 1.03E‐14

Abbreviations: log2FC, log2 fold‐change; FDR, false discovery rate.

T A B L E  1   Known cancer genes found 
using both methods
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4  |   DISCUSSION

In this research, we used both the Reference and de novo as-
sembly approaches to identify genes that could be used as 
biomarkers to predict recurrence in HCC. We analyzed one 
RNA‐Seq dataset that with the recurrent tumors after ortho-
topic liver transplantation (and their paired normal samples) 

and the nonrecurrent tumor after orthotopic liver transplanta-
tion (and their paired normal samples). We did both de novo 
transcriptome assembly and reference‐based analysis because 
through our previous research, we discovered that de novo as-
sembly is valuable even when a reference genome available 
(S. Wang & Gribskov, 2017). And we indeed identified some 
unique and interesting biomarkers that were not showed in 

T A B L E  2   Top 30 biomarkers that are used to predict recurrence

Reference De novo assembly

  Name Description   Name Description

1 PLP1 Proteolipid protein 1 1 MT1JP Metallothionein 1J

2 MT1M Metallothionein 1M 2 SYT9 Synaptotagmin 9

3 SYT9 Synaptotagmin 9 3 TH Tyrosine hydroxylase

4 NA LincRNA 4 MT1F Metallothionein 1F

5 KRT16P2 Keratin 16 pseudogene 2 5 CYP1A2 Cytochrome P450 family 1 subfamily A 
member 2

6 KRT16P1 Keratin 16 pseudogene 1 6 CLEC4M C‐type lectin domain family 4 member M

7 MT1JP Metallothionein 1J 7 PLIN2 Perilipin 2

8 KRT16P3 Keratin 16 pseudogene 3 8 HAMP Hepcidin antimicrobial peptide

9 NA LincRNA 9 SYT10 Synaptotagmin 10

10 CYP1A2 Cytochrome P450 family 1 subfamily A 
member 2

10 CLEC4G C‐type lectin domain family 4 member G

11 ZAN Zonadhesin 11 CD209 CD209 molecule

12 CLEC1B C‐type lectin domain family 1 member B 12 RAB25 RAB25 member RAS oncogene family

13 HAMP Hepcidin antimicrobial peptide 13 FAM83F Family with sequence similarity 83 member F

14 CLEC4G C‐type lectin domain family 4 member G 14 CD5L CD5 molecule like

15 LYPD2 LY6/PLAUR domain containing 2 15 MARCO Macrophage receptor with collagenous 
structure

16 MARCO Macrophage receptor with collagenous 
structure

16 MT1G Metallothionein 1G

17 MT1X Metallothionein 1X 17 PLP1 Proteolipid protein 1

18 MT1G Metallothionein 1G 18 MT1E Metallothionein 1E

19 MT1H Metallothionein 1H 19 GDF2 Growth differentiation factor 2

20 NA LincRNA 20 NRDE2 NRDE necessary for RNA interference domain 
containing

21 DHAP8 Double Homeobox A Pseudogene 8 21 SLITRK6 SLIT and NTRK like family member 6

22 IBSP Integrin binding sialoprotein 22 GPM6A Glycoprotein M6A

23 CLEC2L C‐type lectin domain family 2 member L 23 ADGRA1 Adhesion G protein‐coupled receptor A1

24 TOP2A Topoisomerase (DNA) II alpha 24 SFRP5 Secreted frizzled related protein 5

25 NA RNA gene 25 AGBL4 ATP/GTP binding protein‐like 4

26 UCHL1 Ubiquitin C‐terminal hydrolase L1 26 B3GNT5 Beta‐1,3‐N‐Acetylglucosaminyltransferase 5

27 CDCA7 Cell division cycle associated 7 27 CKAP2L Cytoskeleton associated protein 2 like

28 NA RNA gene 28 MCF2L2 MCF2 cell line derived transforming sequence‐
like 2

29 EXO1 Exonuclease 1 29 DUXAP9 Double homeobox A pseudogene 9

30 NA RNA gene 30 TLX1 T‐cell leukemia homeobox 1

Note: The biomarkers identified by both methods were in bold.
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reference method. For example, CLEC4M, a protein encodes a 
transmembrane receptor and expressed in the endothelial cells 
of the lymph nodes and liver, together with CD209, mediate 
transinfection of liver cells by HCV (Cormier et  al., 2004). 
Another example is PLIN2, belonging to the perilipin family, 
members of intracellular lipid storage droplets. This protein is 
found in hepatocytes in alcoholic liver cirrhosis, suggesting 
that it may serve as a marker of lipid accumulation in liver dis-
eases (Graffmann, Ring, Kawala, Wruck, & Ncube, 2016). And 
CD5L, a key regulator of lipid synthesis, was also identified 
as a possible marker in liver disease (Gangadharan, Antrobus, 
Dwek, & Zitzmann, 2007). Therefore, these results further 
confirmed the necessity of conducting a de novo assembly.

In addition to some unique biomarkers identified in de novo 
method, it was also very interesting that we identified some 
long noncoding RNA in reference method. Since long noncod-
ing RNA plays important roles in regulating gene expression, 
these long‐noncoding RNA may be promising biomarkers in 
HCC diagnostics. However, because we used BLAST program 
to match the assembled Trinity transcripts to known cDNA 
gene file, long noncoding RNA was not in the cDNA gene 
file, therefore, no long noncoding RNA identified in de novo 
assembly. Furthermore, lower expression of metallthionein 
protein in HCC tumor has been found before (Cherian et al., 
2003), but through our analysis, we systematically pointed out 
that these genes may use as biomarkers in HCC. However, 
we recommend more analyses and molecular experiments are 
needed to confirm the utility of these biomarkers.

In terms of de novo transcriptome assembly programs, 
it was suggested that SOAPdenovo‐trans and Trinity were 
the best in case of Arabidopsis study (S. Wang & Gribskov, 
2017). In this study, we used Trinity, but we found that Trinity 
produced many redundant or duplicated transcripts when 
compared with human reference gene annotation. Therefore 
it may be advantageous using more transcriptome assembly 
programs in de novo assembly. And for the bioinformatics 
analysis, DEG were usually discovered by comparing two 
conditions at one time. But in our analysis, we compared 
four conditions simultaneously, taking into account the group 
(recurrent or nonrecurrent) and condition (normal or tumor) 
information into the integrated statistical model, therefore 
improves the accuracy of identifying the significant DEG.
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  Name log2FC FDR

Genes from reference

ENSG00000205364 metallothionein 1M −5.33 9.04E‐34

ENSG00000255986 metallothionein 1J −4.72 5.95E‐26

ENSG00000125144 metallothionein 1G −4.10 3.96E‐18

ENSG00000187193 metallothionein 1X −4.10 1.92E‐20

ENSG00000205358 metallothionein 1H −4.07 2.67E‐13

ENSG00000198417 metallothionein 1F −3.85 2.24E‐24

ENSG00000169715 metallothionein 1E −3.57 3.09E‐16

ENSG00000125148 metallothionein 2A −3.35 4.09E‐17

ENSG00000205361 metallothionein 1D −3.13 3.46E‐08

ENSG00000260549 metallothionein 1L −3.10 5.87E‐19

Genes from trinity

ENSG00000255986 metallothionein 1J −5.53 4.70E‐26

ENSG00000198417 metallothionein 1F −4.84 1.47E‐22

ENSG00000125144 metallothionein 1G −4.15 4.40E‐19

ENSG00000169715 metallothionein 1E −4.11 3.71E‐16

ENSG00000205358 metallothionein 1H −3.75 3.25E‐12

ENSG00000260549 metallothionein 1L −3.59 9.01E‐17

ENSG00000205361 metallothionein 1D −3.24 9.65E‐15

Abbreviations: log2FC, log2 fold‐change; FDR, false discovery rate.

T A B L E  3   Biomarker‐Metallothionein 
expression and significance level identified 
using references and de novo assembly
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