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Abstract: Quantifying the urbanization level is an essential yet challenging task in urban studies
because of the high complexity of this phenomenon. The urbanization degree has been estimated
using a variety of social, economic, and spatial measures. Among the spatial characteristics, the
Shannon entropy of the landscape pattern has recently been intensively explored as one of the most
effective urbanization indexes. Here, we introduce a new measure of the spatial entropy of land
that characterizes its parcel mosaic, the structure resulting from the division of land into cadastral
parcels. We calculate the entropies of the parcel areas’ distribution function in different portions of
the urban systems. We have established that the Shannon and Renyi entropies R0 and R1/2 are most
effective at differentiating the degree of a spatial organization of the land. Our studies are based on
30 urban systems located in the USA, Australia, and Poland, and three desert areas from Australia. In
all the cities, the entropies behave the same as functions of the distance from the center. They attain
the lowest values in the city core and reach substantially higher values in suburban areas. Thus,
the parcel mosaic entropies provide a spatial characterization of land to measure its urbanization
level effectively.

Keywords: urbanization; land parcel; land division pattern; city growth; spatial analysis; Shannon
entropy; Renyi entropy; land fragmentation

1. Introduction

Urban systems have become a subject of extensive studies in recent years. They aim
to understand and quantify various spatial, social, economic, and demographic aspects
of the urban growth process. In particular, evaluating urban sprawl is an important issue
due to its significance in effective urban planning and environmental management. A
fair amount of scientific research is focused on the geometric properties of the expanding
cities. The main object of interest is the morphology of the landscape pattern obtained by
the classification of land concerning the land-use type. Usually, the landscape pattern is
determined by the mosaic of built-up and non-built-up pieces of land. Entropy is currently
the most widely used method for analyzing the landscape pattern or cartographic maps.
It provides an effective tool for quantifying the amount of randomness or information
contained in the area under investigation. For this reason, entropy is often employed as a
measure of the urban sprawl and urbanization level.

While applying the concept of the thermodynamic entropy to describe urban systems
is still problematic [1], spatial entropy [2,3], as a measure of disorder, can be successfully
utilized to describe their geometric aspects. Several studies [4–13] employed entropy as
an useful metric to describe the level of organization in various urban spatial structures.
Spatial Shannon entropy was used [4] to analyze remote sensing data, and Geographic
Information System (GIS) maps to characterize the urban growth patterns. The level of the
urban sprawl was also quantified using Renyi entropy [6]. Chen et al. [8] demonstrated that
the entropy of the spatial pattern of the land combined with its fractal properties [14–20]
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can be successfully applied to characterize the morphology of cities and regions. Spa-
tial conditional entropies were employed [9] as a measure of the urban sprawl values.
Huynh et al. utilized [10] the idea of the entropy maximization to characterize the spatial
pattern of urban locations. Entropy as a spatial landscape metrics was applied [12] to
investigate the nature of the fragmentation of the urban landscape and compactness of
the towns.

To measure disorder in the landscape pattern, the concept of the configurational (Boltz-
mann) entropy was used [11,13]. In the works cited, the Wasserstein metric between the
distributions was employed to quantify spatial configurational entropy of the landscape
mosaic, and demonstrated that the Wasserstein metric is capable of capturing discrep-
ancies between different spatial configurations. Gudmundsson and Mohajeri [21] have
investigated urban street networks of British cities. They introduced entropy measures
for quantifying the complexity of street orientations and length variations within planar
networks. They found that the entropy and street length increase with distance from the
network center. That is, the city center streets are more ordered than those in the outer
parts of the city. Interestingly, the second law of thermodynamics was also invoked to
explain [22] trends observed in the economy. In the work cited, the author suggested that
property follows the universal law of entropy growth, and there is a one-directional bias
leading toward increasing its fragmentation.

The cadastral parcel mosaic constitutes the most fundamental land fragmentation
structure. It is determined by the boundaries of the lots and covers the whole area of
the urban system. The parcel mosaic a geometric attribute of a city that provides useful
information about its formation and growth processes. We established [23,24] that the
parcel mosaic can form three morphological types that are determined by the shape of
the distribution function of the parcel areas, a. Three distinct types were found: Highly
urbanized core of a city, suburban area, and rural area. In the city core, the probability
distribution function possesses a characteristic shape with a single peak located at the parcel
size around 103 m2, with a tail following the power-law decay with the exponent equal
to −2. The core is surrounded by suburban land displaying the log-normal distribution
of parcel sizes. The rural area is the outermost part of the urban system and follows the
distribution function obeying an inverse power-law with the exponent close to 1. The
results [23] suggest that the above classification depends neither on historical conditions
nor the land investigated’s geographical location.

Because the cadastral parcel is the elementary building block of the landscape pattern,
the parcel mosaic is expected to bear information about the urbanization level. Here, we
employ entropy to investigate land parcel mosaic morphology to extract information about
its degree of randomness. To achieve this goal, we calculated entropies of the parcel areas’
distribution function in the land under investigation. We established that the Shannon,
S, and Renyi entropies R0 and R1/2 are the most effective measures of the amount of
randomness of the land. We investigated 30 urban systems located in the USA, Australia,
Poland, and low-urbanized areas located in Australia’s desert region. As the main result,
we found that the entropies change in the same way with the distance from the city’s origin.
They display the lowest values in the city’s central part and significantly higher values
in the suburban/rural areas surrounding the city. Our findings prove that the Shannon
and Renyi entropies R0 and R1/2 of the parcel size distribution provide a useful tool for
measuring the urbanization level.

2. Materials and Methods
2.1. Data Sources

Our analysis was based on a collection of Geographical Information System (GIS)
cadastral maps in Shapefile format. In the cadastral map, the land parcel (a lot) is the basic
spatial unit assigned with a unique parcel number. In the GIS maps the lots are represented
by sets of vertexes that determine polygons. The maps contained various types of land
parcels, such as built-up and not built-up areas, green areas, public utilities, and industrial
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areas. Streets and roads were excluded from the analysis. We investigated data covering
the whole state of Queensland in Australia (AU) and data for selected counties in the USA:
Travis, Tarrant, Williamson, and Harris (TX), Clark (OH), Wake (NC), Marion (IN), and
Kern (CA). Additionally, we analyzed one European city (Krakow) located in Poland. The
analysis presented in the paper was based on a set of available data. We selected isolated
cities for the analysis so that the presence of neighboring towns or villages or other objects
like lakes or forests could not distort significantly the parcel mosaic structure. We also
investigated data for circular rural areas located in the North-West Region in Queensland
(AU). The GIS data for the USA were obtained from publicly accessible sources. The data
for Krakow were provided by the City Board of Data Bases in Krakow. The GIS map of
Queensland (AU) was obtained courtesy of Professor K. Becek.

2.2. Gis Data Processing
2.2.1. Preparation of the Ensembles of the Land Parcels

The spatial data concerning the parcels were extracted from the GIS maps and pro-
cessed using ESRI ArcView software [25]. In the first step, we established the center of
the urban system under investigation. In most cases, it was identified with the geomet-
ric center of the central business district (CBD). We determined the GIS positions of the
parcel (centroid) as its geometric centers of mass. The parcel area was calculated as the
area of a polygon determined by the positions of the parcel’s vertexes. Then, the parcels
whose centroids were enclosed within a circle of a prescribed radius centered at the city
center were exported for further processing. The circle radius was limited by the presence
of neighboring towns or villages or other objects like lakes or forests that could distort
significantly the parcel mosaic structure. The land was divided into several concentric
rings in the next steps. The width of the rings employed for each urban system was 0.5 km.
Then the parcels were sorted concerning their distance from the center. The lots whose
centroids were included in subsequent rings were collected as an ensemble to prepare
the probability distribution (histogram) function. The parcel size distribution functions
were calculated for parcels contained in subsequent rings located at various radii from the
city center. Importantly, in our approach, we did not take into account the administrative
boundaries of the city. All parcels included in the ring, regardless of whether they lie within
the city’s administrative boundaries or not, were analyzed. Figure 1 illustrates the data
processing procedure described above.

2.2.2. Preparation of the Parcel Area Distribution

The parcel areas in each ensemble analyzed spanned over a wide range of sizes and
covered a range of several orders of magnitude. However, bigger areas were sparsely
distributed. Thus, to circumvent this problem, to obtain the parcel sizes probability distri-
butions (histograms), the data was split into N exponentially spaced bins spanning from
the smallest (amin) to the greatest (amax) value of the parcel area. Such an approach results
in binpoints that are equidistant on a logarithmic scale. The set of area values determined
the boundaries of the bins {ab

i }, 0 ≤ i ≤ N. The positions of the consecutive values of ab
i

were calculated from the following formula:

ln ab
i = ln amin +

i
N

ln
amax

amin
, (1)

The weight, wi, of the i-th bin (0 ≤ i ≤ N) was calculated as the difference:

wi = ab
i+1 − ab

i = amin

(
amax

amin

)i/N
[(

amax

amin

)1/N
− 1

]
. (2)
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The weights obey the following relation:

N−1

∑
i=0

wi = amax − amin. (3)

The probability associated with the i-th bin, pi, was obtained as the count in the bin
divided by the total number of areas in the ensemble analyzed. To establish the number
of bins in the parcel areas’ distribution, we carried out calculations for N = 20, 30, 40,
and 50. We found that the obtained entropies did not differ much for N varying in the
range 30–50. For this reason, we chose N = 40 as the number of bins to generate the
probability distributions.

Figure 1. The land parcel mosaic of Warwick (AU) urban system (left), and the corresponding arrangement of the centroids
of the parcels (right). The solid lines represent boundaries of the parcels. The areas of the parcels whose centroids lie within
the pinkish ring are collected and used to prepare histogram.

2.3. Calculation of the Entropies

For a given parcel size probability distribution function we calculated the Shannon, S,
and the Renyi, Rq, entropies that are defined as

S = −
n

∑
i=1

pi ln pi, (4)

and

Rq =
1

1− q
ln

(
n

∑
i=1

pq
i

)
, q 6= 1. (5)

The parameter q is non-extensive parameter. For q approaching 1 the Renyi entropy
reduces to Shannon entropy. In the case of distributions with non-uniformly spaced bins, n
is the number of bins, one has to account for different widths of the bins to calculate the
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entropies [26]. The modified, bin width-weighted formulas for the Shannon and Renyi
entropies are the following:

S = −
n

∑
i=1

pi ln
(

pi
wi

)
, (6)

and

Rq =
1

1− q
ln

[
n

∑
i=1

wi

(
pi
wi

)q
]

, (7)

where the weights, wi, are given by Equation (2).
The maximum value of the entropy is attained for an uniform distribution of the

parcel sizes. Let us denote the maximum value of the distribution of the Shannon and
Renyi entropy, respectively, by Ssup and Rsup

q . Then, regardless of the binning scheme used,
one gets

Ssup = Rsup
q = ln(amax − amin). (8)

We also analyzed a quantity calculated as a difference between the entropy’s maximum
value associated with a given distribution and its actual entropy. In the text, this difference
is also referred to as the “relative entropy”. The relative Shannon and Renyi entropies are
calculated according to the formulas

Ssup − S = ln
n

∑
i=1

pi ln
(

pi
wnorm

i

)
, (9)

and

Rsup
q − Rq = − 1

1− q
ln

[
n

∑
i=1

wnorm
i

(
pi

wnorm
i

)q
]

. (10)

Here, the normalized weights, wnorm
i , are defined as

wnorm
i =

wi
amax − amin

, (11)

with the weights wi given by Equation (2). The quantities given by Equations (9) and (10)
are always positive, and the lowest possible value is equal to zero. The bigger value of the
relative entropy, the more ordered the parcel mosaic is. In the following, for the sake of
brevity, we use a common symbol H for the Shannon and Renyi entropies.

2.4. Analysis of the Dependence of the Entropy on the Distance from the Center of the City

Two quantities were determined based on the obtained dependence of the entropy
on the distance from the center of the city. The first one was the entropy’s value, Hsur,
observed in the area surrounding the city. Hsur was calculated only for the urban systems
for which the entropy as a function of r flatted out to reach an apparent plateau. In our
approach, Hsur was obtained as a fitting parameter. We employed the least-squares fit of
the following stretched-exponential function to the data:

H(r) = Hsur − ∆H exp
[
−
(

r
ρ

)α]
, (12)

with Hsur, ∆H , ρ, and α being fitting parameters. The fitting procedure allowed us to avoid
arbitrariness in selecting the data points for calculating the plateau level. Moreover, the
fitting provided the statistical uncertainty of Hsur. The second quantity was the minimum
entropy, Hmin, observed within the city, typically in its central portion (core). It was
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determined as the lowest value in the set H(ri). The meaning of the quantities Hmin and
Hsur is explained in Figure 2, where the dependence of the Shannon entropy on the distance
r is plotted for the city of Warwick (AU).

0 2 4 6 8 10 12 14 16 18 20
r (km)

8

10

12

14

S
S

sur

S
min

Warwick (AU)

Figure 2. Shannon entropy, S, as a function of the distance from the center obtained for the city of
Warwick (AU). The solid line represents a fit of Equation (12) to the data. The values of Smin and Ssur

are indicated.

3. Results and Discussion

We investigated 9 urban systems located in the USA, 20 in Australia, and one in
Poland. For each city, we calculated parcel size distribution functions for parcels contained
in concentring circular rings located at various radii from the city center. We investigated
how different entropies of the distribution function change with the distance r from the
center. Our purpose was to find a new measure of urbanization level. We have chosen two
representative entropies: Shannon (applicable to systems with extensive property) and
Renyi entropy (for non-extensive systems). Surprisingly both can be used as a measure
of the level of land urbanization. We analyzed the Renyi entropies, Rq, for q = −2, −1/2,
0, 1/2, and 2, and the Shannon entropy, S. To calculate Rq and S, the bin width-weighted
formulas given by Equations (6) and (7), respectively, were employed.

We established that for each system analyzed, the values of the entropies obey the
following relationship: R−2 > R−1/2 > R0 > R1/2 > S > R2. This is shown for the
example of the city of Dlaby (AU) in Figure 3, where the five entropies are plotted a
function of the distance, r, from the center. We also found that, among the entropies
analyzed, the Renyi entropies with the indexes q = 0 and 1/2, and the Shannon entropy
display the most regular behavior as the functions of r. That is, they are the least scattered
and exhibit best to determine variability with r. This feature of the entropies is also
demonstrated in Figure 3. For this reason, we selected the three entropies for detailed
analysis: S, R0, and R1/2. These entropies as the function of the distance, r, are presented
for 12 selected urban system in Figures 4–6, respectively. We found that the Shannon
entropy changes with r similarly for all the cities analyzed. Generally, it increases with
the distance from the center to reach a plateau. In some cases (e.g., Brisbane or Austin), it
has a minimum in the center’s vicinity. Moreover, for some cities, the entropy grew with r
without reaching a plateau. Qualitatively, the same dependence on r exhibits the Renyi
entropy R1/2, as shown in Figure 6. As to the Renyi entropy R0, it behaves in quite a similar
way to S and R1/2 as a function of r. It is, however, generally more scattered. What also
makes R0 different from the other two is the lack of the minimum. That is, R0 exhibits a
monotonic growth with the distance from the center.
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Figure 3. The entropies R−2, R−1/2, R0, R1/2, S, and R2 plotted as functions of the distance from the
center of a city of Dalby (AU).

All the entropies analyzed displayed the lowest values in cities’ centers and grow
with the distance from the center to reach maximum value in the suburban or rural areas
surrounding the city. The city cores represent the highest urbanization level that is also
encoded in their spatial structure. In particular, the spatial organization is reflected in the
morphology of the land parcel mosaic. A regular street grid organizes the city center’s
space, and land parcels of some characteristic size prevail. In the suburban and rural
areas, the land is much less organized. In terms of the land fragmentation pattern, the
parcels areas’ distribution is more spread out compared to that observed in the center.
This difference is illustrated in Figure 7, where the land parcel size distributions observed
in the center of Brisbane and in its distant suburbian areas are presented along with the
corresponding parcel mosaic samples.

As mentioned, in some cases, the entropies S and R1/2 exhibit a shallow minimum
in some distance from the city center. This can be because of the choice of the specific
location of the origin. However, the maps of the city cores suggest other, more plausible
explanation of this fact. Namely, it can be attributed to the presence of parks, large squares,
and public facilities. They introduce some disorder into the spatial structure and gives rise
to the increase of the entropies. A more regular form of the land fragmentation pattern is
observed at a certain distance from the city center.

Besides the Shannon and Renyi R0 and R1/2 entropies, we investigated the relative
entropies defined by defined by Equations (9) and (10). We found that Rsup

0 − R0 possesses
properties that are best suitable for the determination of the urbanization level. We found
that the relative entropy R0 exhibited the same behavior for most of the urban systems
analyzed. The dependence of the relative R0 entropy for selected cities is shown in Figure 8.
It attains some non-zero value at the origin and rapidly drops to zero. We did not observe
values of Rsup

0 − R0 bigger than 10−3 for r > 3.0 km. There were three urban systems
for which the relative R0 entropy was equal to zero for all distances from the center:
Maryborough (AU), Toowoomba (AU), and Krakow (PL). Very small values were observed
also for Houston (USA). The observed properties of Rsup

0 − R0 can be explained in view
of Equation (10). Namely, for q = 0 the relative Renyi entropy becomes a function of
the fraction φ of the distribution domain for which pi > 0, viz. Rsup

0 − R0 = − ln φ.
In the highly organized city cores the parcel area distribution generally displays some
gaps (empty bins) in its domain, which yields φ < 1. When the distance from the core
increases, the parcel size distribution becomes more uniform, the gaps are filled, and the
relative entropy rapidly reaches the value of zero. Thus, the positive value of Rsup

0 − R0 is
characteristic of spatially well-organized city centers.
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Figure 4. Shannon entropy plotted as a function of r for selected urban systems.
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Figure 5. Renyi entropy, R0, plotted as a function of r for selected urban systems.
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Figure 6. Renyi entropy, R1/2, plotted as a function of r for selected urban systems.
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Figure 7. Two samples of the land parcel mosaic observed in (a) 4 km from the center of Brisbane, and (b) in the suburban
region of Brisbane at the distance of 25 km from the center. In both cases the scale bar is 500 m. The white color in the maps
represents streets that are excluded from the analysis. The corresponding parcel area probability distribution functions are
shown on the (right).
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Emerald (AU)

Warwick (AU)

Figure 8. The dependence of the relative entropy Rsup
0 − R0 as a function of the distance from the center plotted for

selected cities.
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For each system, we determined the minimum entropies Hmin along with the corre-
sponding values of Hsur. The results of the analysis are summarized in Table 1. In some
cases, the values of Hsur were impossible to determine because the dependence of H(r) did
not exhibit a clear plateau. In the last column, the maximal values of the relative entropies,
calculated as Rsur

0 − Rmin
0 , are listed.

Table 1. Results of the analysis performed for 30 urban systems located in the USA, Australia (AU), and Poland (PL). The
dash represents that the value of a given quantity was impossible to establish.

No. City Country Population Smin Ssur Rmin
0 Rsur

0 Rmin
1/2 Rsur

1/2 Rsup
0 − Rmin

0

1 Austin, TX 656,562 7.26 - 10.21 15.77 ± 0.34 8.64 - 1.30
2 Bakersfield, CA 247,057 7.38 13.01 ± 0.23 9.55 14.99 ± 0.06 8.48 14.48 ± 0.31 0.90
3 Fort Worth, TX 534,694 9.16 - 9.90 - 9.66 - 0.77
4 Georgetown, TX 28,339 7.65 - 9.76 15.23 ± 2.5 8.30 - 0.73
5 Houston, TX USA 1,953,631 7.09 - 8.90 14.48 ± 0.62 8.56 - 0.03
6 Indianapolis, IN 807,459 9.15 - 10.74 14.88 ± 0.47 10.15 - 0.63
7 Raleigh, NC 276,093 9.07 - 10.83 15.28 ± 0.37 10.26 - 1.34
8 S. Charleston, OH 1850 7.77 12.00 ± 0.15 10.33 14.12 ± 0.11 8.69 13.08 ± 0.09 0.14
9 Springfield, OH 8990 7.13 10.70 ± 0.20 9.37 14.18 ± 0.26 8.29 12.40 ± 0.10 0.16

10 Blackall 1662 7.97 15.57 ± 2.20 9.96 17.03 ± 0.24 8.70 15.68 ± 0.24 0.53
11 Brisbane 958,504 7.42 - 9.77 15.50 ± 0.28 8.36 - 0.00
12 Bundaberg 45,873 7.41 11.22 ± 0.09 10.03 14.71 ± 0.78 8.32 12.61 ± 0.15 0.36
13 Cairns 125,327 7.06 - 9.68 16.67 ± 2.2 8.09 - 1.36
14 Charters Towers 8846 7.21 13.52 ± 0.09 9.24 - 7.84 - 0.97
15 Dalby 10,215 7.63 13.30 ± 0.12 10.15 15.44 ± 0.29 8.48 14.52 ± 0.08 0.11
16 Emerald 13,523 7.27 13.61 ± 0.15 10.06 - 8.12 15.15 ± 0.20 1.15
17 Gladstone 28,548 6.61 - 10.37 - 8.00 - 0.90
18 Gympie 16,000 7.49 12.49 ± 0.09 10.08 - 8.26 13.89 ± 0.13 0.35
19 Innisfail AU 8394 7.10 - 9.40 - 7.99 - 0.32
20 Ipswich 135,791 7.13 - 9.88 14.19 ± 0.34 8.50 11.57 ± 0.07 0.48
21 Mackay 79,949 6.83 11.26 ± 0.18 9.31 15.09 ± 0.61 9.97 13.63 ± 0.43 0.55
22 Maryborough 25,635 7.13 - 10.83 - 7.92 13.95 ± 0.34 0.00
23 Nanango 4500 7.93 12.78 ± 0.39 10.51 - 8.56 14.28 ± 0.64 0.29
24 Rockhampton 59,755 7.99 - 10.92 - 8.38 14.15 ± 0.15 0.63
25 Roma 6736 7.15 13.50 ± 0.12 9.55 16.29 ± 0.97 8.60 14.40 ± 0.16 0.70
26 Stanthorpe 10,592 7.57 12.09 ± 0.15 9.21 14.39 ± 0.42 8.17 12.89 ± 0.13 0.59
27 Toowoomba 94,189 5.83 - 9.79 - 8.16 - 0.00
28 Townsville 98,075 6.46 - 11.37 - 8.30 - 0.22
29 Warwick 21,564 7.45 13.06 ± 0.11 10.20 15.47 ± 0.52 8.20 13.86 ± 0.08 0.32

30 Krakow PL 734,400 7.62 9.27 ± 0.05 10.19 12.88 ± 0.14 8.48 10.26 ± 0.08 0.00

It follows from Table 1 that the minimal Shannon entropy attains quite similar values
for all cities. The same is true for the Renyi entropies Rmin

0 and Rmin
1/2 . Moreover, for each

country, there is a significant difference between the values of Hmin and the values Hsur

observed in the surrounding suburban areas. Table 2 shows average values of the entropies
analyzed calculated separately for the USA and Australia (data for Krakow (PL) are also
presented), and the minimum entropies averaged for the whole set of cities studied. Note
that there are some differences between the average values,

〈
Hmin〉, obtained for each

country. However, the data presented in Table 2 indicate that the value of 10.0 is—within
statistical uncertainty—an constant value for the average Rmin

0 in all areas studied.

Table 2. Average values of S, Rmin
0 , and Rmin

1/2 .

Country
〈
Smin〉 〈

Rmin
0
〉 〈

Rmin
1/2
〉

USA 7.96 ± 0.30 9.95 ± 0.21 9.00 ± 0.26
AU 7.23 ± 0.12 10.02 ± 0.13 8.35 ± 0.10
PL 7.62 10.19 8.48

USA+AU+PL 7.46 ± 0.13 10.00 ± 0.11 8.55 ± 0.12

To further explore the land parcel mosaic properties, we also investigated three non-
urbanized areas located in the desert regions in Queensland, Australia. They are denoted
as C-1, C-2, and C-3, have forms of circles. They are remote from urban systems and
do not contain any cities or bigger settlements. Locations of these areas on the map of
Queensland are visualized in Figure 9. The dots indicate the centroids of the land parcels.
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For each area we determined Shannon and Renyi entropies R0 and R1/2. Moreover, the
value of the relative Renyi entropy, Rsup

0 − R0 was calculated for each land. The results are
summarized in Table 3. As seen, all the areas display relatively high values of the entropies
compared to the values of Hmin observed in the urban systems that are listed in Table 1.
However, they overlap with the corresponding values of the Hsur entropies. The results
show that, although all three areas represent similar low-populated low-developed rural
land, they exhibit different urbanization (organization) levels. Based on the Shannon and
Renyi entropies’ values, one can conclude that the region C-1 is less developed than C-2,
and the region C-2 than C-3.

Figure 9. Location of the areas C-1, C-2, and C-3 on the map of Queensland in Australia. The solid
lines represent boundaries of the land parcels.

We found that the relative Renyi entropy, Rsup
0 − R0, is equal to zero for all the regions

under investigation. This result is not surprising as the areas C-1, C-2, and C-3 represent
an early stage of land development. The parcel mosaic in such areas results from a very
initial cadastral division that can be modeled by the process of random partitioning of
a plane [23,27,28]. In this process, which is also referred to as the fenced-off process, the
plane is subsequently subdivided by straight lines randomly oriented and positioned. Each
line divides the area into two parts. The smaller part is selected as a parcel, while the larger
one undergoes further fragmentation. This land division process leads to an inverse power
law distribution of the parcel areas, f (a) ∼ a−β, with the exponent β close to 1. The parcel
area distribution for the region C-1 is presented in the double logarithmic scale in Figure 10.
As seen, the distribution follows with a good approximation of the inverse power law
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function. The exponent was found to be β = 0.88± 0.03. The area distributions for the
regions C-2 and C-3 have quite similar shapes.

1000 10000 1e+05 1e+06 1e+07 1e+08 1e+09

area (m
2
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p
i/w

i
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Figure 10. Parcel area probability distribution function calculated for the area C-1.

Table 3. The results for three circular regions located in the desert areas in Queensland, Australia.
The positions of the centers are given in the Geographic Coordinate System GCS_GDA_1994.

No. Region Coordinates of the Center (X, Y) Radius (km) S R0 R1/2

31 C-1 142.918516, −16.651888 150 18.08 21.86 20.40
32 C-2 139.963044, −19.201577 150 16.35 20.98 19.53
33 C-3 152.439683, −27.021106 30 12.24 18.23 14.66

Figure 11 summarizes results for all the urban systems and the non-urbanized areas
investigated. The results presented demonstrate that both the Shannon and Renyi entropies
of the parcel area distribution provide a spatial characterization of land that can be used to
quantify the urbanization level. First, the data show that the value of the minimal Shannon
entropy attained within the urban system (Figure 11a) is quite similar for all the cities
studied. Significantly, they are clearly separated from the values of Hmin. The same is also
true for the minimal Renyi entropies Rmin

0 (Figure 11b) and Rmin
1/2 (Figure 11c). Second, the

values of Ssur observed in the suburban or rural areas surrounding the cities vary in some
range, reflecting differences in the urbanization degrees. The Hsub entropies are calculated
for an ensemble of parcel areas collected in a piece of land that is uniform with respect
to the urbanization level. Thus, they can be compared to the corresponding values of the
entropies obtained for the circles C-1, C-2, and C-3. The highest values of the Shannon
entropy were observed in the non-developed areas located in the desert. In contrast, the
smallest ones were found in the suburban land surrounding well-developed urban systems.
As demonstrated in Figure 11b,c, the same behavior exhibit also the Renyi entropies R0
and R1/2.
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Figure 11. Summary of results for the urban systems and three desert areas for (a) S, (b) R0, and (c) R1/2. The numbers on the abscissa
correspond to the numbers of the urban systems and the desert areas that are given in Tables 1 and 3.

4. Conclusions and Discussion

Urbanization is a process by which a given area and its inhabitants acquire urban
characteristics. The process transforms the environment and leaves behind a characteristic
spatial structure as a kind of its morphological fingerprint. Here, a morphological finger-
print of the urbanization process is a mosaic formed by land parcels. Parcel boundaries
are the most solid form of human settlements. We believe that changes of the morpho-
logical structure of land division are the first sign of the process of spatial urbanization.
This is because land division starts further transformations, functional changes and land
settlement. The paper “Universal rules for fragmentation of land by humans” [23] was the
first to point out that the structure of cadastral parcels might be an indicator of the level of
land urbanization.

In this paper a new measure of urbanization level, the spatial entropy of parcel
mosaic, was introduced. We have applied Shannon and Renyi entropies to investigate
the land parcel mosaic morphology. In our approach, we have calculated entropies of the
distribution function of the parcel areas. We have found that the Shannon, S, and Renyi
entropies R0 and R1/2 are the best at differentiating the level of the spatial organization
of the land. We have studied 30 urban systems located in the USA, Australia, Poland,
and three low-urbanized areas situated in Australia’s desert. For all the cities analyzed, it
has been found that the entropies display the same behavior as functions of the distance,
r, from the city center. They attain the lowest values in the central oldest part of the
city and grow with r to reach substantially higher values in the suburban or rural areas
surrounding the city. The highest values of the entropies have been observed in the desert-
like regions. Remarkably, the minimum value of a given entropy observed in the city core
takes similar values in all the urban systems analyzed. Thus, we conclude that the Shannon
and Renyi entropies R0 and R1/2 of the parcel size distribution provide a robust spatial
characterization of land that can be used as a measure of its urbanization level.

Our studies demonstrate that cadastral maps are a reliable source of information
about large-scale spatial phenomena. Information about the degree of urbanization enables
a more optimal use of the area under study. It facilitates the creation of strategies for
sustainable development of the area and using it for industrial or commercial investments,
for investing in hotels or housing. Determination of parcel mosaic entropies enables better
land management.
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