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Simple Summary: Despite the rapid advance in cancer therapies, treatment-resistant relapse remains
a significant challenge in cancer treatment. Acquired resistance arises during or after treatment
administration, and is usually the main contributor to relapse. For example, prostate cancer, the
most frequent type of cancer in the elderly male population, frequently develops into aggressive
forms resistant to chemical and hormonal therapies. In this condition, the so-called “cholinic phe-
notype” that is characterized by the overexpression of choline kinase alpha (CHKA) and increased
phosphocholine levels leads to aberrant lipid metabolism. Our work demonstrates that CHKA,
which is necessary for membrane phospholipid synthesis, is a target of the long non-coding RNA
MALAT1. This study helps to further decipher how MALAT1 affects the regulation of crucial phos-
pholipid/sphingolipid metabolic enzymes, as well as how the androgen receptor pathway is involved
in MALAT1-dependent transcriptional regulation.

Abstract: Background. Choline kinase alpha (CHKA), an essential gene in phospholipid metabolism,
is among the modulated MALAT1-targeted transcripts in advanced and metastatic prostate cancer
(PCa). Methods. We analyzed CHKA mRNA by qPCR upon MALAT1 targeting in PCa cells, which is
characterized by high dose-responsiveness to the androgen receptor (AR) and its variants. Metabolome
analysis of MALAT1-depleted cells was performed by quantitative High-resolution 1 H-Nuclear Mag-
netic Resonance (NMR) spectroscopy. In addition, CHKA genomic regions were evaluated by chromatin
immunoprecipitation (ChIP) in order to assess MALAT1-dependent histone-tail modifications and AR
recruitment. Results. In MALAT1-depleted cells, the decrease of CHKA gene expression was associated
with reduced total choline-containing metabolites compared to controls, particularly phosphocholine
(PCho). Upon MALAT1 targeting a significant increase in repressive histone modifications was observed
at the CHKA intron-2, encompassing relevant AR binding sites. Combining of MALAT1 targeting with
androgen treatment prevented MALAT1-dependent CHKA silencing in androgen-responsive (LNCaP)
cells, while it did not in hormone-refractory cells (22RV1 cells). Moreover, AR nuclear translocation
and its activation were detected by confocal microscopy analysis and ChIP upon MALAT1 targeting or
androgen treatment. Conclusions. These findings support the role of MALAT1 as a CHKA activator
through putative association with the liganded or unliganded AR, unveiling its targeting as a therapeutic
option from a metabolic rewiring perspective.
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1. Introduction

The average age in Western countries is increasing rapidly, and with it the incidence
of aging-associated cancers [1]. Finding effective therapeutic strategies targeting the most
resistant forms of aging-associated tumors is a recent unmet need. Prostate cancer (PCa) is
the most frequent type of cancer in the elderly male population [2,3]. It frequently develops
into aggressive forms resistant to chemical and hormonal therapies. In this condition, the
so-called “cholinic phenotype”, which is characterized by the overexpression of choline
kinase alpha (CHKA) and increased phosphocholine (PCho) levels, supports aberrant lipid
metabolic pathways typical of different cancers, including PCa. Choline kinase (CHK) has
already been identified as a promising target for controlling castration-resistant prostate
cancer (CRPC) through modulation of androgen receptor (AR) signaling [4,5].

CHK exists in three isoforms, CHKA-1, CHKA-2, and CHKB. These isoforms are encoded
by two separate genes, CHKA and CHKB, and are active in homodimeric, heterodimeric,
and oligomeric forms [6]. Increased expression and enzymatic activity of CHKA-1/2 have
been identified in human malignancies, including breast, lung, colorectal, bladder, prostate,
ovarian, endometrial carcinomas, osteosarcoma, and T-cell lymphoma [7–9]. Therefore, the
upregulation of CHK activity in cancer probably results from an increase in CHKA expression,
which would lead to a higher proportion of CHKA-]–CHKA dimers exerting a higher CHK
activity level than CHKA–CHKB heterodimers or CHKB–CHKB homodimers [10].

CHK catalyzes the formation of PCho, the committed step in phosphatidylcholine
biosynthesis. Phosphatidylcholine (PC) is the major phospholipid in eukaryotic membranes
with different essential functions, including (i) cholesterol transport support through the
organism; (ii) substrate for the production of second messengers; and (iii) cofactor for the
activity of several membrane-related enzymes [11]. Notably, CHK-derived PC is necessary
for mitogenesis-related pathways, especially in the proliferation of human mammary
epithelial cells [12]. In this light, alterations in choline metabolism, typical in many cancer
cell types, are thought to reflect the increased demands of proliferating cancer cells [10].

Furthermore, CHK plays a vital role in producing Sphingomyelin, another essential
membrane phospholipid crucial for cell growth [13]. The enhanced lipid de novo synthesis
during tumorigenesis supports the rapid proliferation of cancer cells, cell signaling, and
tumor survival [10,14].

In PCa, CHKA acts as an AR co-chaperone, supporting its signaling [5]. The working
hypothesis is that a reduction in CHKA function may negatively influence AR activity
and PCa growth. Blockade of this enzyme induces cells to activate a different route
for phospholipid production, which causes a toxic effect and eventually leads to cell
destruction. CHKA plays a significant role in cellular proliferation, apoptosis evasion,
cell motility, and metastasis. Consistently, shRNA-mediated in vivo depletion of CHKA
decreases the growth of prostate tumor xenografts [5]. Very efficient CHKA inhibitors have
been developed and considered in clinical trials, however, they have manifested elevated
toxicity, as reported in [7,15–17]. Hence, alternative strategies should be considered.

We previously reported that the long noncoding RNA MALAT1, which is involved
in cancer progression and metastasization, is efficiently targeted by specific gapmers in
Pca cell lines and an ex vivo model of organotypic slice cultures (OSCs) derived from
Pca surgery tissue explants [18]. Of interest, MALAT1 depletion determined a profound
reprogramming of cancer cells and tumor tissue metabolism, causing a switch toward a
more glycolytic phenotype, which is unusual for PCa and does not efficiently support
tumor growth [18]. In the present work, we observe that MALAT1 targeting broadly hurts
the cholinic phenotype via the downregulation of CHKA and PCho synthesis, with essential
consequences on tumor cell proliferation.

2. Materials and Methods

Antibodies: Androgen Receptor (1:1000, Merk Millipore, Burlington, MA, USA,
#06680); CHKA (1:500, Sigma-Aldrich, St. Louis, MO, USA, HPA-024153); β-actin (1:8000,
Sigma, #1305556); CERK (1:1000, Abcam, Cambridge, UK, #155061); GAPDH (as described
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in [18]; Bcl2 (1:1000, Biotechnology, Dallas TX, USA, M0887); Fibrillarin (1:1000, Ther-
moFisher, Waltham, MA, USA, MA3-16771); Tubulin (1:5000, Cell Signaling, Danvers, MA,
USA, #2146).

Cell cultures, treatments, and MALAT1 silencing: LNCaP, PC3, PC3-AR, and 22RV1
cells were grown in RPMI medium (1640 Corning, New York, USA, #10-040-CV), and
DU145 cells were grown in MEM medium (Corning, #15-010-CVR); C27IM and HUVEC
cells were grown as in [19]. All media were supplemented with 10% FBS (Gibco, Invitrogen,
Carlsbad, CA, USA, #10270106), 1% glutamine (Corning #25005-CI), 1% penicillin and
streptomycin (Corning #30002-CI), 1% HEPES (Corning #25060-CI) for LNCaP and 22RV1
cells, and 1% sodium pyruvate (Corning #25000-CIR) and 1% glucose for 22RV1 cells. Cells
were incubated at 37 ◦C with 5% CO2. At least 72 h before use, LNCaP and 22RV1 cells
were switched to a medium with hormone-deprived serum as in [19] and treated with
5 α-Dihydrotestosterone (DHT) (NMID, Sydney, NSW, AU, #680) with the concentrations
and times indicated in the figure legends. BMR Genomics authenticated the genetic identity
of the PC3, DU145, and C27IM cell lines as previously described in [18]. LNCaP cells were
obtained from the American Type Culture Collection. PC3AR and 22RV1 cells were kindly
provided by Prof. Aria Baniahmad (Institute for Human Genetics and Anthropology,
Friedrich-Schiller-University, Jena, Germany) and Prof. Claudio Sette (Department of
Neuroscience, Catholic University, Rome, Italy), respectively. MALAT1 silencing was
obtained using specific MALAT1 gapmers. LacZgapmers were used as a negative control
as described in [18,19].

RNA extraction and real-time qPCR. RNA extraction and real-time PCR were per-
formed on QuantStudio 5 Real-Time PCR System (Applied Biosystems, Foster City, CA,
USA) using SYBR Green quantification as in [18]. Quantification was performed using
2−∆∆Ct as in [18]; data are expressed as fold change. In addition, the following primers
(forward and reverse, respectively) were used:

hCHKA 5′-GGTCACTTGGGCCAAAACTC-3’ and 5′-GCCGGCTCGGGATGA-3′;
hPLCG1 5′-GCTTCTATGTAGAGGCAAACCCTATG-3′ and 5′-CCCTCTGGGCCTTGTAGTCA-3′

hSMPD1 5′-TGCCCAATCTGCAAAGGTCTA-3′ and 5′-GCCACATTGGGTTCCTTCTTC-3′

hSGMS1 5′-AGCATGATTCAGGCACACCAT-3′ and 5′-TCATGTTTCCCAACCAGACACT-3′

hCERK 5′-TGGCACCACTGTTCACCTTA-3′ and 5′-CTCCTTGGCCTGATTAGCAT-3′

Primers to MALAT1, PSA, GAPDH, P0, and β-actin were as in [19,20].
Protein extraction and western blot: Total and Nuclear/Cytoplasmatic protein extract

was performed as in [19] and [18], respectively. Western blot assay was performed using
25 µg of protein extract and proteins solved by SDS-PAGE. Protein signals were revealed
with ECL Prime (Amersham, GE Healthcare, Boston, MA, USA) and detected by UVITEC
(Eppendorf S.r.l., Hamburg, Germany). Densitometric analysis was performed with NIH
Image J 1.8 software (National Institutes of Health, Bethesda, MD, USA) and specific values
were normalized to loading control (βActin, GAPDH, tubulin, and fibrillarin, as indicated).
All original western blots can be found in File S1.

Chromatin Immunoprecipitation (ChIP). ChIP was performed in PC3 (N = 2) and
LNCaP (N = 2) cells as in [19,20]. Briefly, DNA fragments were recovered and analyzed
by qPCR on QuantStudio 5 Real-Time PCR System (Applied Biosystems) using SYBR
Master Mix (Applied Biosystems, Foster City, CA, USA) with the evaluation of dissociation
curves. DNA Input serial dilutions were used as standard curves and data normalized to
corresponding inputs were expressed as relative enrichment. Immunoprecipitations were
performed using specific antibodies to H3K4me3 (Active Motif, Carlsbad, CA, USA, #39160),
H3Ac (Millipore, #06599), H3K9me3 (Active Motif, #39162), EZH2 (D2C9, Cell Signaling,
#5246), H3K27me3 (Active Motif, #39157), and AR (441, Santa Cruz Biotechnology, Dallas,
TX, USA, #7305, C-19, Santa Cruz #815). No antibody or IgG (Bethyl, Montgomery, TX,
USA, #P120-101) were used as negative controls. Primer sequences (forward and reverse,
respectively) are listed below:

CHKAprom (−3500) 5′-GGAAAAGGTTTGGTAATTGGAACA-3′ and 5′-CTGTGCACAAG
TAGACGAGTTTGA-3′
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CHKAprom (−1500) 5′-CGCCACAGCAGCCTTACAA-3′ and 5′-CCCAAAGTGCTGGG
ATTACAG-3′

CHKAprom (Intron 2, 37,500) 5′-CAGGACTTAGGGAGCCTGAACA-3′ and 5′-GGCAAG
ATGGACTTCTGCAATAT-3′.
hCHKA (Intron 2, 27,500) 5′-GATGGGAGTAATGGAGGGTTCTG-3′ and 5′-CGTTAGTG
ACATGTGGCTGATGA-3′

CERKprom (TSS) 5′-ACAAGACGGACTGTGGATGGA-3′ and 5′-CATCTGTTCTTGGAG
TAAACTGCAA-3′

CERKprom (−8600) 5′-GCCACTCTGTTCTGCGATCAC-3′ and 5′-CTGTTGGAGCCTC
CGTTTTC-3′

CERKprom (Intron, 46,500) 5′-CTTGGGAGACGGGTCTTCTG-3′ and 5′-GGTTGGTGT
GCCTGATGAGA-3′

Putative AR-binding sites on the CHKA gene (Intron 2, 37,500 bp from TSS; −1500 bp
from TSS) were identified using both MatInspector (Genomatix, Munich, Germany) and
LASAGNA-Search 2.0 [21]. In addition, intronic regions of interest were selected according
to ChIP-seq data by Massie et al. [22]. The other putative AR-binding sites on CERK
(−8600 bp from TSS) and CHKA (Intron 2, 27,500 bp from TSS) genes were selected
according to ChIP-seq data by Wilson et al. [23] and Camacho et al. [24].

Proliferation assay: Assessment of proliferation was conducted using the IncuCyte
system after MALAT1 gapmer delivery or CHKA inhibitor treatment (Hexadecyltrimethy-
lammonium bromide (CHKAi, Merk Millipore, Burlington, MA, USA, #219374) [5] at times
and doses indicated in figure legends. Cells were seeded at 35,000 cells/well in quadrupli-
cate on a 24-well plate (Corning), with IncuCyte readings taken at six h-cycles starting from
day 0 (16 images per well). The IncuCyte algorithm was used for phase area confluence
ratio calculations.

Cell death assay: Apoptosis was determined using a Cell Death Detection ELISA PLUS
kit (Roche, Basel, Switzerland) with cell lysates following the manufacturers’ instructions.
Absorbance at 405 nm and 490 nm was measured using VICTOR X4 (Perkin Elmer).

Intracellular and extracellular samples for NMR Analysis: Cell pellets and related
cell culture media were stored at −80 ◦C until metabolomic analysis was performed
by NMR spectroscopy. Then, the shots were resuspended in ice-cold extraction sol-
vents (methanol/chloroform/water (1:1:1)) and vigorously vortexed for intracellular
metabolome. At least 24 h later, polar and lipid phases were separated by centrifuga-
tion at 20,000× g at 4 ◦C for 30 min. Next, the polar methanol/water phase containing
water-soluble cellular metabolites was lyophilized using a rotary evaporator (Savant
RTV 4104 freeze dryer). In contrast, the organic phase (lipid phase) was collected in a
tube, evaporating chloroform under nitrogen gas flow. Both phases of extracted cells
were stored at −20 ◦C. For extracellular metabolome, cell culture medium extraction
was performed by adding ice-cold extraction solvent (ten volumes of ethanolic solution
(EtOH:H2O, 77:23, v/v)) to each tube and stored at −20 ◦C for at least 24 h. Afterward,
the samples were centrifuged at 14,000× g for 30 min and the supernatant obtained
was then freeze-dried in a Savant RTV 4104 freeze dryer. The aqueous fractions from
cells and extracellular media were reconstituted in 700µL D2O using TSP (0.1 mM) as
NMR internal standards. In contrast, lipid fractions from cells were resuspended in a
CD3OD/CDCl3 solution (2:1 v/v) with 0.05% of tetramethylsilane (TMS) as an internal
reference [25].

Metabolomics analysis by NMR spectroscopy: Deuterated reagents (methanol (CD3OD),
chloroform (CDCl3) and deuterium oxide (D2O) (Cambridge Isotope Laboratories, Inc.), and
3-(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (TSP) (Merck & Co., Montreal, QC,
Canada) were used for NMR analyses. High-resolution 1H-NMR analysis was performed
at 25 ◦C at 400 MHz (9.4 T Bruker AVANCE spectrometer; Karlsruhe, Germany, Europe) on
aqueous and organic cell extracts using acquisition pulses, water pre-saturation, data process-
ing, and peak area deconvolution, as previously described [26]. The absolute quantification of
aqueous metabolites, determined by comparing the integral of each metabolite to the integral
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of reference standard TSP and corrected by respective proton numbers for metabolite and
TSP, was expressed as nanomoles/106 cells (nmol/106) [27]. The relative quantification of
lipid metabolites was expressed by % determined by individual metabolite/all metabolites
investigated. Due to the large number of cells needed for NMR-based metabolomics studies
(>106 cells/sample) for statistical analyses, we considered a pool (n = 3) of PCa cell lines (PC3,
n = 2; and C27IM, n = 1). We reported the mean concentration (nmol/106 cells) of individual
metabolites for both cell lines in Table S1. Quantitative enrichment analysis identifies biolog-
ically meaningful patterns enriched in quantitative metabolomic data. MetaboAnalyst 4.0
(Free web server available at http://metaboanalyst.ca, accessed on 13 April 2022) was used to
identify the biochemical pathways affected by MALAT1 depletion determined by quantitative
enrichment analyses.

RNA ImmunoPrecipitation (RIP): RIP was performed in LNCaP (n = 2) and HUVEC
(n= 2) cells as described in [28]. A specific antibody to AR was used (C-19, Santa Cruz #815).
The negative control was the absence of antibodies (NoAb). In addition, lncRNA recovery
was analyzed as described in Aiello et al. [19].

Immunofluorescence and confocal microscopy: LNCaP cells were fixed in 4% paraformalde-
hyde and were maintained for 1 h at room temperature in blocking buffer (PBS, 10% Goat
Serum). Cells were incubated overnight with anti-AR antibody (441; sc-7305), diluted
1:50 in PBS 5% Goat Serum, and then 45 min at room temperature with anti-mouse Alexa
Fluor 546 (ThermoFisher, Waltham, MA, USA, A11003), diluted 1:200 in 5% Goat Serum in
PBS, Nuclei were counterstained with DAPI. Images were taken using a Nikon Eclipse Ti2
confocal microscope and Z stack images were processed by NIS Elements AR 5.30 software
(Nikon Europe B.V.) using the same acquisition settings. Representative fields were further
analyzed with ImageJ software (National Institute of Health) to show red fluorescence
intracellular distribution in control conditions and after DHT treatment or exposure to
LACZ and MALAT1 gapmers.

Statistical analysis: Data were expressed as mean ± SEM or fold change, as indicated
in figure legends. Statistical significance was calculated using a parametric paired two-tailed
Student’s t-test and a one-way ANOVA test (Bonferroni’s multiple comparisons test). Statistical
analysis was performed using GraphPad Prism 8.0 software or Excel. p-values ≤ 0.05 were
considered significant.

3. Results
3.1. MALAT1 Targeting Changes Metabolites of the Choline Pathway in PCa Cells

The impact of MALAT1 targeting on the metabolic function of PCa cells was analyzed
by quantitative High-resolution 1H Nuclear Magnetic Resonance (NMR) spectroscopy in
MALAT1-depleted vs. LACZ PCa control cells after 48 h from gapmer delivery. In the
presence of MALAT1 gapmers, we found a significant decrease in the intracellular levels of
total choline-containing metabolites (tCho) (Figure 1A). The resonances originating from
tCho include signals of several phosphatidylcholine metabolites. They include choline
(Cho), phosphocholine (PCho), and glycerophosphocholine (GPC), revealing a significant
reduction of the PCho metabolite (p = 0.02). In addition, we found a significant decrease
in glutathione (p = 0.03) and its precursor L-glutamic acid (p = 0.04), a decrease in the
average content of glycine, which is involved in the redox balance, and a reduction in
the antioxidant taurine (p = 0.07 and p = 0.06, respectively, Figure 1B). Conversely, no
significant changes in other metabolites involved in energy production or amino acid and
nucleotide metabolism were observed (see Table S1). Quantitative enrichment analysis
was performed on the metabolites obtained by NMR-based spectroscopy in MALAT1-
depleted vs. LacZ PC3 and C27IM cells (Figure 1C). Phosphatidylcholine, Phospholipid
biosynthesis, Sphingolipids, and arachidonic acid metabolism were the most enriched
pathways associated with MALAT1 targeting (Figure 1C). This finding is in agreement with
the reduced content in PCho and glutathione.

http://metaboanalyst.ca


Cancers 2022, 14, 2902 6 of 19

Cancers 2022, 14, x FOR PEER REVIEW 6 of 20 
 

 

glycerophosphocholine (GPC), revealing a significant reduction of the PCho metabolite (p 
= 0.02). In addition, we found a significant decrease in glutathione (p = 0.03) and its 
precursor L-glutamic acid (p = 0.04), a decrease in the average content of glycine, which is 
involved in the redox balance, and a reduction in the antioxidant taurine (p = 0.07 and p = 
0.06, respectively, Figure 1B). Conversely, no significant changes in other metabolites 
involved in energy production or amino acid and nucleotide metabolism were observed 
(see Table S1). Quantitative enrichment analysis was performed on the metabolites 
obtained by NMR-based spectroscopy in MALAT1-depleted vs. LacZ PC3 and C27IM 
cells (Figure 1C). Phosphatidylcholine, Phospholipid biosynthesis, Sphingolipids, and 
arachidonic acid metabolism were the most enriched pathways associated with MALAT1 
targeting (Figure 1C). This finding is in agreement with the reduced content in PCho and 
glutathione. 

 
Figure 1. Metabolomic analysis in MALAT1-depleted PCa cell lines: (A,B) Quantitative H-1NMR 
spectroscopy of Phosphatidylcholine metabolites in MALAT1-depleted and LacZ control PCa cells. 
Phosphatidylcholine metabolites (choline, Cho; phosphocholine, PCho; glycerophosphocholine, 
GPC, (A) and Redox Balance metabolism (GSH, Glutathione; Tau, Taurine; L-Gly, L-Glycine; L-Glu, 
L-Glutamic acid, (B) are expressed as mean ± SEM (N = 3). * p < 0.05 vs. gapmer LacZ. (C) 
Quantitative Enrichment Analysis of the biologically meaningful patterns significantly altered the 
whole metabolome obtained by quantitative NMR-based spectroscopy in MALAT1-depleted vs. 
LacZ control cells. 

3.2. MALAT1 Targeting Decreases CHKA Gene Expression in PCa Cells 

Figure 1. Metabolomic analysis in MALAT1-depleted PCa cell lines: (A,B) Quantitative H-1NMR
spectroscopy of Phosphatidylcholine metabolites in MALAT1-depleted and LacZ control PCa cells.
Phosphatidylcholine metabolites (choline, Cho; phosphocholine, PCho; glycerophosphocholine, GPC,
(A) and Redox Balance metabolism (GSH, Glutathione; Tau, Taurine; L-Gly, L-Glycine; L-Glu, L-Glutamic
acid, (B) are expressed as mean± SEM (N = 3). * p < 0.05 vs. gapmer LacZ. (C) Quantitative Enrichment
Analysis of the biologically meaningful patterns significantly altered the whole metabolome obtained by
quantitative NMR-based spectroscopy in MALAT1-depleted vs. LacZ control cells.

3.2. MALAT1 Targeting Decreases CHKA Gene Expression in PCa Cells

Consistent with the metabolites screening, CHKA, which catalyzes the conversion of
choline to phosphocholine along the Kennedy pathway, emerged among the modulated
genes identified in a MALAT1-dependent transcriptome analysis performed in advanced
and metastatic PCa cell lines [18]. In order to investigate the consequences of MALAT1
targeting on the expression of CHKA, we first analyzed CHKA mRNA by qPCR in five
PCa cells chosen according to the differences in their level of AR expression. Specifically,
PC3 and DU145 are deleted for AR (AR-null cell lines), PC3AR, and LNCaP express full-
length AR (AR-FL), and 22RV1 co-expresses the AR-FL and AR variant ARV7, which lacks
the AR Ligand Binding Domain. Figure 2A,B shows that the downregulation of CHKA
appeared early upon MALAT1 silencing and was prolonged up to 48 h in the AR-null cell
lines compared to AR-positive cells (Figure 2A,B; the blue line represents the MALAT1
transcript). In AR-positive cells (PC3AR, LNCaP, and 22RV1), the CHKA expression profile
(red line) exhibited repression compared to control (LacZ gapmers) in a time window
ranging between 12 and 24 h either in cells cultured in standard (data not shown) or
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hormone-deprived medium (Figure 2B). Similarly, CHKA protein levels decreased in PC3,
LNCaP, and 22RV1 cells (Figure 2C).
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Figure 2. Effects on Choline kinase alpha (CHKA) expression in MALAT1-depleted PCa cells:
(A,B) Quantification of CHKA and MALAT1 transcripts by qRT-PCR in androgen-independent (PC3
and DU145, (A), androgen-sensitive (PC3AR and LNCaP, (B), and androgen refractory (22RV1, (B))
cell lines after transfection with specific (MALAT1) or control (LacZ) gapmers at different time points.
LNCaP and 22RV1 cells were cultured with hormone-deprived (SS) serum. (C) Representative CHKA
western blot and densitometry analysis in PC3, LNCaP, and 22RV1 cells after MALAT1 depletion (24 h
in PC3 and 22RV1 and 16 h in LNCaP cells). β-actin was used as a loading control. Data represented as
mean of fold change vs. LacZgapmer ± SEM (N = 3). * p < 0.05 MALAT1gapmer vs. LacZgapmer.

Because CHKA is involved in the phosphatidylcholine biosynthesis, we evaluated
whether other genes belonging to the phospholipid and sphingomyelin metabolism were
modulated under the same experimental conditions. Specifically, the analysis included phos-
pholipase C gamma 1 (PLCG1), sphingomyelin phosphodiesterase 1 (SMPD1, and Ceramide
kinase (CERK). As shown in Figure S1, MALAT1 targeting did not substantially alter PLGC1,
SMPD 1, or CERK gene expression in the AR-null cell lines (PC3 and DU145). Consistently,
CHKA pharmacological inhibition (Figure 3C) led to a dose-dependent reduction in LNCaP
cell growth over time, about 40% at 2.5 nM and 90% at higher concentrations, specifically, 5,
10, and 20 nM, peaking after 65 h of treatment (Figure 3A,B). On the other hand, MALAT1
targeting caused a 25% reduction in proliferation rate, a two-fold increase in apoptosis as
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measured by cell death assay, and a decrease in Bcl2 expression (Figure S2). These results
indicate that perturbation of the MALAT1 or CHKA axis reduces the oncogenic phenotype of
LNCaP cells, leading to cell growth inhibition and apoptosis.
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Figure 3. Effects on cell proliferation and cell death upon MALAT1 depletion or CHKA inhibitor
treatment in LNCaP cells: (A) LNCaP cells were treated with CHKAi at the dose and time indicated
and monitored using the IncuCyte live cell analysis system. Cell confluence was calculated from
raw data images; data represent mean ± SEM of n = 2 independent experiments, each performed
in quadruplicate. * p < 0.05 vs. NT. (B) Cell proliferation after MALAT1 gapmer delivery was
monitored using the IncuCyte live cell analysis system. Cell confluence was calculated from raw
data images; data represent mean ± SEM of n = 2 independent experiments, each performed
in triplicate. * p < 0.05 vs. LacZgapmer. (C) Apoptosis induction by MALAT1 depletion (96 h)
evaluated using Cell Death Detection ELISA Kit (Roche, Palo Alto, CA, USA) as described in
Methods. Data are expressed as fold change vs. LacZ gapmer, representing the mean ± SEM of
three independent experiments. * p < 0.05 MALAT1gapmer vs. LacZgapmer. (D) Representative
blc2 western blot and densitometry analysis after MALAT1 depletion (72 h). β-actin was used as
a loading control. Data are represented as mean of fold change vs. LacZgapmer ± SEM (n = 3).
* p < 0.05 MALAT1 gapmer vs. LacZ gapmer.

3.3. MALAT1 Targeting Determines Chromatin Remodeling on CHKA Genomic Region

In order to dynamically map the most common epigenetic modifications along the
specific genomic regulatory regions of CHKA (see schematic diagram in Figure 4A), we
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performed a ChIP assay in PC3 cells before and after MALAT1 targeting. Potential EZH2
recruitment or enrichment in histone modifications, including histone H3 pan-acetylation
(H3Ac), histone H3 trimethylation at lysine (K) residues 27, 4, and 9 (H3K27me3, H3K4me3,
and H3K9me3) was investigated at the 16 h time-point upon MALAT1 or LacZ gapmers
delivery (Figure 4B). The no-antibody (NoAb) condition served as a negative control.
MALAT1 targeting determined a significant enrichment of the repressive H3K9me3 modifi-
cation within the CHKA intron two sequence (primers designed as III and IV), a genomic
region known for AR putative binding sites [5,22]. A trend in terms of decrease in pan-
acetylated histone H3 was appreciated at −1500 base pairs (bp) from the transcription
starting site (TSS) of the CHKA gene promoter, which is consistent with the repression of
CHKA mRNA observed at that time window (Figure 2A,C). No changes were observed in
the level of H3K27me3 or its methylase EZH2 and H3K4me3 enrichment.
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Figure 4. Chromatin remodeling in CHKA and Ceramide kinase (CERK) genes upon MALAT1
targeting: (A) Schematic diagram of CHKA genomic regions. Double-arrowed lines and roman
numbers identify primer position among CHKA genomic regions; arabic numerals refer to the
genomic positions in base pairs; black boxes refer to exons of the CHKA gene. (B) EZH2 chromatin
binding and H3Ac, H3K27me3, H3K4me3, and H3K9me3 histone tail modifications on CHKA genome
regions after MALAT1 gapmers transfection (16 h). (C) H3Ac, H3K27me3, and H3K9me3 histone
tail modifications on CERK genome regions after MALAT1 gapmer transfection (16 h). No Antibody
(NoAb) served as a negative control. Data are represented as relative enrichment in Arbitrary Units
(AU). * p < 0.05 MALAT1gapmer vs. LacZgapmer.
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Another kinase relevant to the sphingolipid homeostasis, namely, the ceramide kinase
(CERK), has been recently identified as an AR target [24]. Therefore, CERK genomic regions
were explored by ChIP as an internal control reference (Figure 4C). No significant changes in
histone modification levels were found in this chromatin context, in line with the unaltered
expression of CERK mRNA in PC3 cells upon MALAT1 targeting (Figure S1B).

Overall, these data indicate that in MALAT1-depleted cells the chromatin landscape
enriches repressive signals, contributing to CHKA mRNA reduction.

3.4. Effects of MALAT1 Targeting Combined with Dihydrotestosterone (DHT) Treatment on
Metabolic Genes Involved in Phospholipid/Sphingolipid Homeostasis

Previous studies [5,22] have shown that CHKA is a clinically relevant AR gene target.
In these reports, ChIP-Seq detected strong intragenic AR binding sites. Herein, we asked
whether MALAT1 targeting could have a different impact in PCa cells cultured in the
presence or absence of androgen. In order to address this question, we used LNCaP, which
endogenously expresses AR full length (AR-FL) and 22RV1 cells, in which the AR variant
ARV7 (lacking the AR Ligand Binding Domain) co-exists with AR-FL. LNCaP or 22RV1
were transfected with gapmers targeting MALAT1.

As CERK kinase is under the control of AR, we measured the expression of CERK before
and after MALAT1 targeting in cells cultured in a hormone-deprived medium. CERK mRNA
was efficiently and stably silenced upon MALAT1 targeting in LNCAP. In 22RV1, however,
this effect was evident at 24 h upon MALAT1 gapmer delivery (Figure 5A). A similar impact
upon MALAT1 targeting was observed for SMPD1 and SGMS1 (Figure 5A). A significant
decrease in CERK protein level was found in both LNCaP and 22RV1 cells (Figure 5B).

To realize MALAT1 targeting plus DHT combination treatment, a DHT dose-dependent
experiment ranging from 10−8 M to 10−6 M was carried out in both cell lines. The expression
of CHKA and CERK, the latter having been recently identified as an androgen-repressed
gene, and of PSA, a classical AR-positive regulated gene, was analyzed by qRT-PCR. In
LNCaP cells, CHKA mRNA increased more than three-fold, although only at the highest
dose of DHT, whereas PSA and CERK were significantly modulated at a physiological
concentration (10−8 M). In 22RV1 cells, a defective androgen sensitivity was observed,
which can reasonably be attributed to the presence of the ARv7 variant. Consequently,
we observed a small increase in CHKA and PSA regardless of DHT concentration in this
model, while CERK was modulated at the lowest dosage (Figure S3A,B).

In the combined treatment (Figure 6), LNCaP and 22RV1 cells transfected with MALAT1
or LacZ gapmers were treated with DHT (10−6 M for LNCaP and 10−8 M for 22RV1) for
16 h, focusing on CHKA gene modulation. As a control, we examined the effect of MALAT1
targeting and androgen treatment on the CERK gene as an androgen-repressed target, and in
parallel on PSA mRNA as an androgen-induced target. In this setting, LNCaP cells transfected
with LacZgapmers preserved androgen responsiveness in terms of CHKA and PSA mRNA
increase (2.5- and six-fold induction by LacZgapmers DHT vs. LacZgapmers NT) and CERK
mRNA downmodulation (40% repression LacZgapmers DHT vs. LacZgapmers NT), which is
in line with the data reported by Camacho et al. [24].

MALAT1 targeting reduced basal level of CHKA and CERK mRNA, as shown in
Figures 2 and 5, whereas no modulation of PSA was found in LNCaP cells. In addition,
MALAT1 targeting did not alter the induction of CHKA or PSA mRNA mediated by
androgen treatment, preserving a consistent increase vs. MALAT1 gapmers alone. Similarly,
MALAT1 targeting and DHT treatment did not enhance CERK mRNA inhibition in the
same cells.

In 22RV1 cells (expressing the AR-V7 variant), we noted an overall reduced androgen
responsiveness compared to LNCaP cells in all experimental conditions (Figure 6A vs. Figure 6B).
In 22RV1 cells, PSA appeared to be repressed upon MALAT1 targeting at the 24 h time point.
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Figure 5. Effects on sphingolipids/ceramide enzymes in MALAT1-depleted PCa cells cultured with
hormone-deprived (SS) serum: (A) CERK, SMPD1, and SGMS1 transcripts quantified by qRT-PCR in
LNCaP and 22RV1 cells grown were grown in SS condition after transfection with specific (MALAT1)
or control (LacZ) gapmers at different time points. (B) Representative CERK western blot and relative
densitometry analysis in LNCaP and 22RV1 cells upon 16 h and 24 h, respectively, from transfection
with specific (MALAT1) or control (LacZ) gapmers. B-actin was used as a loading control. Data are
represented as the mean of fold change vs. LacZgapmer ± SEM (N = 4). * p < 0.05 MALAT1gapmer
vs. LacZgapmer.

Upon MALAT1 targeting, CHKA and CERK protein levels paralleled those observed
in mRNA in terms of inhibition in both LNCaP and 22RV1 cells (Figure S4). However, this
time point corresponds to maximum efficiency in mRNA silencing after MALAT1 targeting
(see Figure 2). Here, a stabilization of CHKA protein by DHT was only partially observed
despite induction of AR protein levels (two-fold vs. LacZ gapmers in LNCaP and 22RV1
cells) and reduction of CERK protein level (30% in LNCaP).
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Figure 6. Effects on CHKA expression in MALAT1-depleted PCa cells combined with Dihydrotestos-
terone (DHT) treatment: (A,B) CHKA, CERK, Prostate-specific antigen (PSA), and MALAT1 transcript
levels quantified after MALAT1 gapmer transfection in LNCaP (16 h of transfection), (A) and 22RV1
(24 h of transfection), (B) cells treated with or without DHT (10–6 M for LNCaP and 10–8 M for 22RV1)
for 16 h. Data are represented as mean of fold change vs. LacZgapmer ± SEM (LNCaP N = 5; 22RV1
N = 4). * p < 0.05.

Altogether, these results suggest that the androgen responsiveness characterized by a
complete response with AR full length or by a weak response with the ARv7 variant was
preserved regardless of MALAT1. However, the consequence of MALAT1 depletion was
particularly evident on the androgen-repressed target gene, CERK, and on the high-dose
androgen positive-regulated gene, CHKA.

3.5. Dynamic Recruitment of AR on CHKA Genomic Sequences before/after MALAT1 Targeting in
the Presence or Absence of DHT

In order to investigate this aspect further, we performed ChIP experiments for AR
recruitment on CHKA and CERK regulatory regions at the 16 h time point upon MALAT1
or LacZ gapmer delivery (Figure 7A). The no-antibody (NoAb) condition served as a
negative control. Of interest, upon MALAT1 targeting AR was tightly recruited to CHKA
regulatory region, specifically, at the ARE in intron-2 described by Wilson et al. [23] and
not in the ARE located at +35,000 bp from TSS (Asim et al. [5]), designated as III and IV,
respectively, in Figure 4A,B. In parallel, AR recruitment was observed at the ARE site
on the CERK promoter described by Camacho et al. [24] (Figure 7A, designed as I in the
schematic of the CERK regulatory genomic region in Figure 4C). AR recruitment after
MALAT1 depletion paralleled that obtained with the androgen treatment. DHT stimulation
at both concentrations, 10−8 M and 10−6 M, increased the AR recruitment at the same
genomic regulatory regions in both genes. This suggests that in cells depleted of MALAT1,
AR recruitment is facilitated.
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In order to investigate this aspect further, we performed ChIP experiments for AR 
recruitment on CHKA and CERK regulatory regions at the 16 h time point upon MALAT1 
or LacZ gapmer delivery (Figure 7A). The no-antibody (NoAb) condition served as a 
negative control. Of interest, upon MALAT1 targeting AR was tightly recruited to CHKA 
regulatory region, specifically, at the ARE in intron-2 described by Wilson et al. [23] and 
not in the ARE located at +35,000 bp from TSS (Asim et al. [5]), designated as III and IV, 
respectively, in Figure 4A,B. In parallel, AR recruitment was observed at the ARE site on 
the CERK promoter described by Camacho et al. [24] (Figure 7A, designed as I in the 
schematic of the CERK regulatory genomic region in Figure 4C). AR recruitment after 
MALAT1 depletion paralleled that obtained with the androgen treatment. DHT 
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same genomic regulatory regions in both genes. This suggests that in cells depleted of 
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These data prompted us to evaluate whether MALAT1 might associate with AR to 
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address this possibility, we immunoprecipitated the AR in LNCaP cells treated with 
androgens and analyzed whether MALAT1 was co-immunoprecipitated by RNA 
immunoprecipitation (RIP). AR appeared to associate with MALAT1 in basal conditions 
(Figure 7B). However, upon DHT treatment, this interaction was abrogated. No such 
association was elicited in the HUVEC cells used as a control reference cellular context, 
regardless of DHT stimulation.  

We queried whether the AR might translocate into the nucleus upon MALAT1 
targeting in order to deepen insight into the underlying mechanism. We analyzed the AR 
shuttling from cytoplasm to nucleus in LNCaP cells before/after MALAT1 targeting using 
confocal microscopy (Figure 7C). As negative or positive reference controls, we included 
proliferating (NT) and DHT-treated LNCaP cells (10–8 M and 10–6 M, respectively). Figure 
7C depicts cytoplasm–nuclear translocation of AR upon MALAT1 targeting comparable 

Figure 7. AR recruitment by ChIPs on CHKA and CERK regulatory regions and AR nuclear translocation
upon MALAT1 targeting or dihydrotestosterone (DHT) treatment and MALAT1/AR interaction by
RIP: (A) AR recruitment onto CHKA ARE located at +27,500 and +37,500 bp from TSS (Intronic region)
and CERK ARE located at −8500 bp from TSS or after MALAT1 gapmer transfection (16 h) or DHT
treatment (10–8 M and 10–6 M 4 h). No Antibody (NoAb) served as a negative control. Data represented
as the mean of AR fold change after subtraction of NoAb ± SEM (N = 2). * p < 0.05 vs. gapmer LacZ.
(B) MALAT1 interaction with AR in LNCaP and HUVEC cells (used as control) before and after DHT
(10–7 M, 1 h) treatment detected by RIP assay. RIPs were performed using antibodies specific to AR or in
the absence of Ab (NoAb) as a negative control. RNA was recovered and analyzed by qRT-PCR. Data
are represented as mean ± SEM of two independent experiments performed in duplicate. * p < 0.05.
(C) Androgen receptor subcellular localization was evaluated by confocal microscopy upon MALAT1
gapmer delivery (16 h) or DHT treatment (10−8 M or 10−6 M for 4 h). Scale bar: 15 µm.

These data prompted us to evaluate whether MALAT1 might associate with AR to act
as a co-regulator and eventually affect the transcription of AR-dependent genes. To address



Cancers 2022, 14, 2902 14 of 19

this possibility, we immunoprecipitated the AR in LNCaP cells treated with androgens and
analyzed whether MALAT1 was co-immunoprecipitated by RNA immunoprecipitation
(RIP). AR appeared to associate with MALAT1 in basal conditions (Figure 7B). However,
upon DHT treatment, this interaction was abrogated. No such association was elicited in
the HUVEC cells used as a control reference cellular context, regardless of DHT stimulation.

We queried whether the AR might translocate into the nucleus upon MALAT1 tar-
geting in order to deepen insight into the underlying mechanism. We analyzed the AR
shuttling from cytoplasm to nucleus in LNCaP cells before/after MALAT1 targeting using
confocal microscopy (Figure 7C). As negative or positive reference controls, we included
proliferating (NT) and DHT-treated LNCaP cells (10–8 M and 10–6 M, respectively). Fig-
ure 7C depicts cytoplasm–nuclear translocation of AR upon MALAT1 targeting comparable
to that achieved upon DHT at both concentrations. Accordingly, nuclear cytoplasmic
fractionation, observed with western blotting, increased AR in the nuclear compartment
(1.9-fold vs. NT), which was mirrored by a decrease in the cytoplasm upon MALAT1 gap-
mer delivery of LacZ gapmers (0.7-fold vs. NT, Figure S5). In addition, MALAT1 targeting
increased the H3k27me3 level at both CHKA and CERK genomic regulatory regions, thus
substantiating the repressive chromatin conformation (Figure S5B). These data suggest that
MALAT1 is an active regulator of AR-mediated signaling.

4. Discussion
4.1. CHKA Is a Target of MALAT1

The present work significantly establishes CHKA, an essential gene in phospholipid
metabolism, as a MALAT1 target. In our previous work [18], the transcriptomic analysis
performed in advanced or metastatic PCa cell lines and OSCs upon MALAT1 targeting
revealed CHKA among a subset of differentially-expressed genes associated with metabolic
reprogramming. Accordingly, the NMR spectroscopy significantly altered the choline/PC
metabolism, placing MALAT1 targeting as a potential therapeutic option for PCa. Interest-
ingly, CHKA expression is androgen-regulated in cell lines, xenografts, and human tissue
and is positively associated with Asim’s tumor stage [5]. Indeed, different studies have
shown the role of CHKA in human PCa; however, the molecular mechanisms have not
yet been fully elucidated. Recently, in the human DU145 PCa cell line, the presence of a
molecular complex involving FGFR1 and CHKA was described by [29]. FGFR1 promotes
PCa progression by dysregulating choline metabolism and CHKA [29]. In this light, the
crosstalk between FGFR1–choline metabolism might represent an additional potential
target for managing PCa progression.

Moreover, CHKA is involved in antioxidant cellular defenses by regulating glu-
tathione, cysteine content, and reactive oxygen species level. In ovarian cancer, the antioxi-
dant role of CHKA, which is exerted by decreasing glutathione cysteine and methionine
content, contributes to sensitizing cancer cells to chemotherapy [30,31]. In our hands,
MALAT1 was found to modulate CHKA expression, PCho, and glutathione in PCa cells,
revealing a new MALAT1-dependent link between PC biosynthesis and redox balance in
cancer cells.

In hepatocellular carcinoma [32], MALAT1 knockdown inhibited glucose uptake and
lipogenesis by reducing the expression levels of lipidic metabolism-related genes. This con-
dition contributes to the oncogenic role of MALAT1 in tumor cell proliferation and invasion.
In this light, following MALAT1 depletion we observed a metabolic reprogramming involv-
ing PC, redox balance, and sphingolipid metabolism. In fact, in addition to the well-known
role of CHK in PC metabolism, the CHKA substrate phosphocholine influences bioactive
sphingolipid level and activity, playing a critical role in different biological processes such
as growth regulation and cell migration, adhesion, apoptosis, senescence, and inflammatory
response [33]. Pharmacological or genetic depletion of CHKA induces cell growth arrest
in both in vivo and in vitro experimental models by altering key players in oncogenic cell
signaling. On the other hand, the inhibition of cell signaling (e.g., PI3K) inhibits expression
of CHKA, highlighting the role of choline kinase in cancer cell transduction and oncogenic
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metabolic reprogramming [10,16,34–36] (and see references therein). This supports the
role of bioactive sphingolipids in cancer progression [33]. Lastly, Sphingomyelin (SM),
the most abundant sphingolipid in mammalian cells, can be degraded into Ceramide and
Phosphocholine by sphingomyelinases.

Conversely, sphingomyelin synthases (SGMSs) use Phosphatidylcholine and Ceramide
to form SM and diacylglycerol (DAG) [37]. In particular, Sphingomyelin and Ceramide
play opposite roles in cell death, survival, and proliferation. Specifically, high levels of
Sphingomyelin lead to survival, migration, proliferation, and inflammation. Instead, high
levels of Ceramide induce cell death and cell cycle arrest [38]. Of note, SGMS and CERK are
involved in sphingolipid homeostasis. CERK and its product, ceramide 1-phosphate (C1P),
regulate cell growth, death, and cell migration/invasion in different cancers, including
PCa [24]. In cancer cells, low levels of Ceramide are maintained by high SGMS activity,
which reduces ceramide-induced cell death [38].

On the other hand, the CERK-dependent phosphorylation of Ceramide enhances its
role in proliferation and migration. Furthermore, CERK activity and its metabolites support
cancer progression, particularly PCa cell aggressiveness [24]. In this scenario, our data
indicate that both kinases, being sensitive to AR signaling, are modulated by MALAT1
targeting. The cholinic phenotype abrogation is clinically relevant (see cartoons in the
graphical abstract).

4.2. Lipid Metabolism Is under the Control of AR Signaling

Lipogenesis and lipid catabolism is controlled by AR signaling. Lipid biosynthesis
promotes CRPC development, counteracting the effect of AR antagonist treatment [24,39].
Furthermore, the lipid-related enzyme level, including CHKA, CERK, and SMPD1, seems
to be associated with AR expression (Figure 8A). Indeed, CHKA and CERK expression
levels are higher in AR null cells than in PC3AR, LNCaP, and 22RV1. SMPD1 shows a mir-
rored trend, possibly associated with its role in sphingomyelin catabolism opposite SGMS,
which acts as a pro-tumoral gene [38]. Therefore, as lipogenesis and lipid metabolism
play a pivotal role in PCa progression by fueling membrane material and steroid hormone
precursors, MALAT1 targeting might represent a potential RNA-based therapy in combina-
tion with third-generation AR antagonists by affecting CHKA/SGMS (Kennedy pathway)
and CERK/Ceramide metabolism. In keeping with this, the complex sphingomyelin net-
work decreases SGMS1 in LNCaP upon MALAT1 targeting (Figure 5A). The metabolic
step of sphingomyelin synthesis involves the phosphocholine head group transferring
from phosphatidylcholine to Ceramide, and is catalyzed by the SGMS. Therefore, PCho
pool reduction following CHKA depletion might negatively affect SGMS expression, and
thereby the maintenance of PhosphatidylCholine/SphingoMyelin (PC/SM) homeostasis.

Sphingolipid metabolism is under the control of AR [24] through its regulation of
CERK transcription and sphingolipid homeostasis. Therefore, PC and SM status conserva-
tion is a critical event for PCa cell biology, as their oscillations affect membrane structural
homeostasis and cell proliferation/death signaling. In particular, MALAT1 might be essen-
tial in the crosstalk between the SM cycle [38] and PC cycle [40] as well as between their
related mediators, Ceramide and DAG.

4.3. Crosstalk between MALAT1/AR and AR Recruitment along CHKA Genomic Regions
before/after MALAT1 Depletion +/− DHT

This work demonstrates that AR signaling might interact with MALAT1 in PCa cells.
This evidence adds a layer of complexity to the role of MALAT1 in cancer, particularly
in hormone-driven cancers such as PCa. In our hands, AR/MALAT1 interaction occurs
predominantly without androgens (Figure 7B). Interestingly, we observed higher CHKA
and CERK mRNA expression in AR-null than in AR-expressing PCa cell lines (Figure 7A).
These results suggest AR-dependent transcriptional repression of selected target genes,
e.g., CHKA and CERK, (Figures 7A and 8B), detectable in the absence of ligand in cells
cultured in a hormone-deprived environment. Specifically, MALAT1 targeting unveils a
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novel unliganded AR-dependent transcriptional repression of CHKA and CERK which
exerts antitumoral activity.
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Figure 8. The basal level of CHKA, CERK, and SMPD1 mRNA in different PCa cell lines: (A) Quan-
tification of CHKA, CERK, and SMPD1 by qPCR. Data were normalized to GAPDH expression.
Data are represented as the mean of 2-∆Ct ± SEM (n = 3). * p < 0.05. (B) The antitumoral effect of
MALAT1 targeting. Schematic cartoon showing the role of MALAT1 in androgen receptor signaling
in advanced prostate cancer. The metabolic genes CHKA and CERK are transcriptionally regulated
by androgen/androgen receptor (AR) on Androgen Responsive Element (ARE) sites (Left). MALAT1
reduces AR activity by forming a MALAT1/AR complex without androgens. MALAT1 depletion
enables unliganded-AR to regulate CHKA and CERK genes, exerting anti-tumoral activity (Right).

Interestingly, AR is released from MALAT1 either by adding the ligand or after
MALAT1 targeting (Figures 7B and 8B). In this scenario, MALAT1 acts as an AR activity
inhibitor, forming an AR/MALAT1 complex. The AR nuclear enrichment observed upon
MALAT1 knockdown by confocal microscopy as well as in wbweb analysis reinforces
and substantiates this concept. These data suggest the essential role of lncRNAs in PCa
at the border between metabolism and AR signaling, per se, as well as upon response to
androgens. In this light, therapeutic intervention to reduce MALAT1 intracellular content
might restore a physiological metabolism in highly aggressive transformed cells, with
resulting detrimental consequences on tumor growth.
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5. Conclusions

In conclusion, this work reports an unprecedented role of MALAT1 in Choline
metabolism with implications in Sfingolipid and Ceramide biosynthesis, as suggested
by the downregulation of CHKA and CERK upon MALAT1 targeting (see Figure 7B and
graphical abstract). Although the role of MALAT1 on PCa metabolism has previously
been reported as impacting on the TCA cycle [18], the results reported here suggest that
MALAT1 is more profoundly interconnected with the cellular metabolism, including a
negative regulatory effect on the Kennedy pathway. Hence, as Choline synthesis is a crucial
step toward membrane biogenesis and sphingolipid production, the MALAT1 targeting
effect appears to overlap with that of CHKA inhibitors. This evidence suggests the option
of a combined or temporally consequential powerful therapeutic strategy, at least in more
resistant/aggressive cases of PCa. This possibility is further substantiated by the negative
effect of MALAT1 targeting on CERK, implying a reduction in the synthesis of the sph-
ingolipids. It is noteworthy that sphingolipids are essential components of the lipid raft
domains of the plasma membrane, and this structural function is critical for apoptosis or
cell proliferation.

Moreover, dysregulation of sphingolipids, including Ceramide, Sphingomyelin, or
Sphingosine 1-phosphate, has been linked to drug resistance in different types of cancer.
Hence, MALAT1 targeting might have essential antitumor consequences affecting these
critical biosynthetic pathways. In conclusion, this manuscript describes a novel aspect of
MALAT1 in cellular metabolism, possibly leading to innovative therapeutic strategies.
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