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Abstract

Attentional modulation of cortical networks is critical for the cognitive flexibility required to

process complex scenes. Current theoretical frameworks for attention are based almost

exclusively on studies in visual cortex, where attentional effects are typically modest and

excitatory. In contrast, attentional effects in auditory cortex can be large and suppressive. A

theoretical framework for explaining attentional effects in auditory cortex is lacking, prevent-

ing a broader understanding of cortical mechanisms underlying attention. Here, we present

a cortical network model of attention in primary auditory cortex (A1). A key mechanism in

our network is attentional inhibitory modulation (AIM) of cortical inhibitory neurons. In this

mechanism, top-down inhibitory neurons disinhibit bottom-up cortical circuits, a prominent

circuit motif observed in sensory cortex. Our results reveal that the same underlying mecha-

nisms in the AIM network can explain diverse attentional effects on both spatial and fre-

quency tuning in A1. We find that a dominant effect of disinhibition on cortical tuning is

suppressive, consistent with experimental observations. Functionally, the AIM network may

play a key role in solving the cocktail party problem. We demonstrate how attention can

guide the AIM network to monitor an acoustic scene, select a specific target, or switch to a

different target, providing flexible outputs for solving the cocktail party problem.

Author summary

Selective attention plays a key role in how we navigate our everyday lives. For example, at

a cocktail party, we can attend to friend’s speech amidst other speakers, music, and back-

ground noise. In stark contrast, hundreds of millions of people with hearing impairment

and other disorders find such environments overwhelming and debilitating. Understand-

ing the mechanisms underlying selective attention may lead to breakthroughs in improv-

ing the quality of life for those negatively affected. Here, we propose a mechanistic

network model of attention in primary auditory cortex based on attentional inhibitory

modulation (AIM). In the AIM model, attention targets specific cortical inhibitory neu-

rons, which then modulate local cortical circuits to emphasize a particular feature of
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sounds and suppress competing features. We show that the AIM model can account for

experimental observations across different species and stimulus domains. We also demon-

strate that the same mechanisms can enable listeners to flexibly switch between attending

to specific targets sounds and monitoring the environment in complex acoustic scenes,

such as a cocktail party. The AIM network provides a theoretical framework which can

work in tandem with new experiments to help unravel cortical circuits underlying

attention.

Introduction

A hallmark of cortical processing is the capacity for generating flexible behaviors in a context-

dependent manner. A striking example of a problem that requires such cognitive flexibility is

the cocktail party problem, where a listener can selectively listen to a speaker amongst other

speakers [1]. Listening in such settings can be highly flexible, depending on the goal of the lis-

tener. For example, a listener can monitor the entire auditory scene, select a particular target,

or switch to another target. Recent theoretical and experimental studies have begun to propose

model networks and cortical mechanisms for producing flexible behaviors [2–8], and top-

down control of cortical circuits via attention is thought to be a critical component.

The influence of attention on cortical processing has been intensively investigated in vision,

resulting in a prominent theoretical framework of attention [9,10]. In contrast, relatively little

is known about attentional mechanisms in auditory cortex. After the early discovery of “atten-

tion units” in the auditory cortex [11], there has recently been renewed interest on attentional

effects in auditory cortex [12–14]. In comparison to the effects of attention in primary visual

cortex, which are relatively small and excitatory [15], attentional effects in primary auditory

cortex (A1) can be much larger and suppressive [13,16,17]. However, a theoretical framework

for cortical mechanisms underlying auditory attention is lacking.

The responses of neurons in A1 can change rapidly when an animal is actively engaged in a

task [8,13,16,17]. For example, cortical neurons with broad spatial tuning curves can sharpen

tuning during attentive behavior [16]; whereas the spectral temporal receptive fields (STRFs)

of cortical neurons with narrow frequency tuning can display the emergence of entirely new

excitatory regions [17] or suppressive effects [13]. Cortical network mechanisms underlying

such diverse attentional changes in tuning remain poorly understood. Changes in cortical tun-

ing can also be driven by competing auditory stimuli in cocktail-party settings, even when an

animal is anesthetized [18,19], suggesting the involvement of both bottom-up and top-down

mechanisms [1,12,20,21].

There is a growing literature on computational models of auditory attention in the context

of auditory scene analysis, as discussed in a comprehensive review [22]. These models can be

grouped into bottom-up or top-down models. Bottom-up models have employed time-fre-

quency representations of sound as an “auditory image” to compute salience maps using static

or temporally evolving features of the image; and predictive coding theory to account for

behavioral results in humans and animals processing auditory scenes [23,24]. Top-down mod-

els have formulated neural processing as spectral-temporal “filters” which extract features

from the auditory image. In these models, attention adjusts the filter characteristics to optimize

the detection and discrimination of targets to explain changes in receptive field properties in

behaving animals [25]. Subsequent models have extended the feature analysis framework to

propose computational principles, e.g., temporal coherence for linking multiple features across

time (“streaming”) [26], and incorporated task structure to demonstrate that changes in
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receptive field properties during behavior can be specific to task demands [27] as observed

experimentally [28]. These previous computational models are all formulated in terms of sta-

tistical, signal processing or optimization principles. Thus, a key gap in current state-of-the-art

models remains in formulating mechanistic models of how cortical computations are imple-

mented by underlying cortical circuits. Indeed, as the review points out, “The field is particu-

larly challenged by the lack of theories that integrate our knowledge of cortical circuitry in the

auditory pathway with adaptive and cognitive processes that shape behavior and perception of

complex acoustic scenes” [22]. So far, circuit-level models of cortical processing underlying

the cocktail party problem have largely focused on bottom-up mechanisms [29,30]. Specific

cortical circuit mechanisms underlying top-down attentional changes in cortical responses,

and their functional role in solving the cocktail party problem, remain unclear [22].

Here we propose a network model to explain how experimentally observed cortical

response properties in A1 could arise from underlying network mechanisms, via the interplay

between bottom-up and top-down processes. Central to our network model is attentional

inhibitory modulation (AIM), i.e., attention-driven modulation of distinct populations of cor-

tical inhibitory neurons. Specifically, this mechanism relies on disinhibition of bottom-up cor-

tical circuits, mediated via top-down inhibitory neurons, a prominent motif observed in

cortex [5–8,31]. We first use the AIM network to model attentional changes in spatial and

spectral tuning in auditory cortex [16,17], and then illustrate its potential functional role in

solving the cocktail party problem.

Results

The AIM network

We began by focusing on spatial processing of multiple sound sources in auditory cortex,

extending previous models of bottom-up processing (Fig 1A and 1B). The bottom-up network

is made up of integrate-and-fire neurons and implements two key operations–integration and

competition. Integration is mediated by broad convergence across spatial channels on the cor-

tical neuron (C, Fig 1A), whereas competition is mediated by inhibition across spatial channels

via I neurons (Fig 1B). These bottom-up mechanisms explain two key features observed exper-

imentally in anesthetized or passive animals: broad spatial tuning of cortical neurons to single

sounds, and sharpening of spatial tuning in the presence of multiple competing sounds

[18,19,29,30].

We extended the bottom-up network to model the effects of attention in the AIM network

(Fig 1C). Previous studies have shown that bottom-up cortical representations can be modu-

lated in the attentive state by distinct sub-types of inhibitory neurons. To model such atten-

tional inhibitory modulation, we introduced an additional layer of inhibitory neurons (I2, Fig

1C). I2 neurons can control the spatial and spectral tuning of the cortical neuron in different

attentive states, by modulating the activity of E and I neurons in the bottom-up network.

Attentional changes in spatial tuning

A previous experimental study in cat A1 demonstrated that the spatial tuning of cortical neu-

rons sharpen during attentive behavior [16]. Specifically, the authors observed that A1 neurons

exhibited broad spatial tuning when the animal was idle but sharpened their spatial tuning

when the animal performed a spatial localization task, as demonstrated by the changes in the

azimuth-dependent peristimulus time histograms (PSTHs) (Fig 2, 3rd column). We modeled

this attention-induced sharpening effect using the AIM network.

In this simulation, the AIM network consisted of an array of spatial channels tuned to loca-

tions between -90˚ and 90˚ azimuth. We then probed the network with broadband noise from
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various spatial locations and analyzed the C neuron’s response as a function of space. Based on

the azimuth-dependent PSTHs, we found that when I2 neurons in all spatial channels were on,

the cortical neuron in the AIM network exhibited broad tuning—similar to the idle condition

in the experiment (Fig 2A). The release of acetylcholine (ACh) during behavioral task perfor-

mance can suppress intracortical excitatory connections and strengthen thalamocortical con-

nections [32–34]. When we simulated these effects in the AIM network, the spatial tuning of

the cortical neuron sharpened, resembling the tuning in the behaving condition in the Lee and

Middlebrooks study (Fig 2B). In that study, however, animals were not required to attend to a

specific location during the task. We simulated selective attention to a specific location by

Fig 1. Sub-networks within the AIM network. (A) A convergence network. S1, S2, and S3 denote distinct audio

stimuli 1, 2, and 3, which are placed virtually at -90˚, 0˚, and 90˚ azimuth, respectively. (B) A passive switching network

realized with the addition of I neurons. (C) The AIM network, realized with the addition of I2 neurons, which

modulates the I neurons. One spatial channel is highlighted in blue. Neurons in the same spatial channel process the

stimuli from a specific spatial location. Response of the cortical neuron, C, represents the output of the network.

https://doi.org/10.1371/journal.pcbi.1009356.g001
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inactivating an I2 neuron in a specific channel, e.g., 30˚ (Fig 2C, left). We found that, in this

case, the spatial tuning of the cortical neuron also sharpened (Fig 2C, right). In the AIM net-

work, this effect occurs because of two key mechanisms: the disinhibition of the attended

channel by the I2 neuron, which then drives powerful inhibition of competing channels by the

I neuron. Thus, selective attention activates focal disinhibition at the attended location and

suppression at other locations in the network.

Attentional changes in spectral tuning

Rapid changes in receptive fields during task performance, thought to arise from attentional

mechanisms, have also been observed in the frequency domain as in the experiments by Fritz

et al., (2003) and Atiani et al., (2009). Here, we show that the attentional mechanisms in the

AIM network can also account for these experimental observations.

Fig 2. Attentional sharpening of spatial tuning. First column shows the spatial AIM network in (A) passive

condition; (B) Behaving condition, where the network is modulated with the cholinergic system; (C) Attending

condition, where selective attention is simulated by controlling the state of specific I2 neurons. Second column shows

the spatial tuning, i.e., PSTH expanded vertically to show the spatial dimension, calculated from the network output.

Firing rate is shown (red is higher) as a function of stimulus location over time, in response to a broad band noise.

Third column shows experimentally recorded spatial tuning in the cat A1. �White bars indicate the duration of the

noise stimulus (80ms). Figures from Lee and Middlebrooks reproduced here with the permission of Nature

Neuroscience.

https://doi.org/10.1371/journal.pcbi.1009356.g002
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We first constrained the AIM network to incorporate experimentally observed features of

network connectivity in the frequency domain (Fig 3). Unlike the broad connectivity in the

spatial domain (Figs 1 and 2), connectivity across frequency channels is localized to nearby fre-

quencies, reflecting the tonotopic organization of the auditory cortex.

We then simulated the spectral tuning of neurons in the network in the passive vs. attentive

states. Here, we probed the network with pure-tone stimuli in the frequency ranges shown in

Fig 4. In the attentive state, the network attended to a specific target frequency, distinct from

the best frequency of the neuron, as in the experiments by Atiani et al. [35]. Atiani et al.

showed the neuron’s response as spectrotemporal receptive fields (STRFs). Here, we used fre-

quency-dependent PSTHs as an approximation to STRFs in order to compare our results.

In the attentive state, the I2 neuron in the attended channel (i.e., the target frequency chan-

nel, fT, Fig 4) is suppressed during attention, disinhibiting the E and I neurons in that channel

(Fig 4A). In this case, we found that when the target frequency was close to the best frequency

of the neuron, attention produced an increase as well as a sharpening of the response near the

best frequency, as observed experimentally (Fig 4B). In the AIM network, this occurs because

when the target frequency is close to the best frequency, excitation from the disinhibited E

neuron in the target channel increases the peak response of the cortical neuron, and inhibition

via the I neuron in the target channel sharpens the shape of response. In contrast, when the tar-

get frequency is far from the best frequency of the neuron, the effect due to inhibition domi-

nates, producing a net suppressive effect on the response, which is also observed

experimentally (Fig 4C). Thus, the AIM network qualitatively explains salient features of the

experimental observations by Atiani et al.

In addition to sharpening, strengthening, and weakening of STRF hotspots, the experimen-

tal results of Fritz et al. showed that a secondary hotspot in the STRF may arise when the ani-

mal is in the attentive state. (Fig 5).

Fig 3. AIM Network Diagram for the spectral network. A) convergence of connectivity across neuron types. E

neurons converge to C neurons locally, centered around a neuron at the best frequency, fB. The connectivity strength

decays across adjacent channels, and is modeled by a Gaussian function. The convergence width is determined by σEC,

and the connectivity strength is determined by gEC (see Methods). The spread of inhibitory connection from I neurons

to E neurons is modeled by a thresholded, inverted Gaussian function. The connectivity within 2σIE of this Gaussian

function is zero. The inhibition gradually rises to a value determined by gIE. B) The network connectivity matrix which

describes all connections within the network for these simulations.

https://doi.org/10.1371/journal.pcbi.1009356.g003
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We hypothesized that this is a result of the strengthening of an intracortical connection

between the target frequency and the best frequency in the attentive state (see Discussion for

possible mechanisms). To test this hypothesis, we added an additional E-E connection between

the fT and fB, and found that in the passive state, the neuron responded to frequencies near its

best frequency, showing a single hotspot. On the other hand, in the attentive state, the same

neuron also responded to the target frequency, as seen by the emergence of a new excitatory

region at the target frequency in Fig 5B. This effect occurs due to the strengthening of synaptic

connection between the target frequency and the best frequency in the attentive state. There is

also a suppressive effect on the response to the best frequency, as seen in the slight reduction

in amplitude of the tuning curve at best frequency. This effect occurs due to inhibition driven

by the I neuron in the target frequency channel. Both of these effects were observed in experi-

mentally measured receptive fields [17]. Thus, the AIM network qualitatively explained salient

features of experimentally observed changes by Fritz et al.

Functional implications

We hypothesized that the attentional mechanisms in the AIM network play an important

functional role in processing complex auditory scenes. Two highly effective mechanisms for

sound segregation are spatial hearing and frequency selectivity. We first considered functional

implications in the spatial domain.

When entering a cocktail party, one might want to monitor the entire scene, focus one’s

attention on a conversation partner, or switch attention between conversation partners. How

does top-down attentional control modulate bottom-up mechanisms to enable this flexible

behavior? To illustrate the behavior of the AIM network in these different modes, we simulated

several scenarios. In these simulations, we used three spatial channels corresponding 0˚, 90˚,

Fig 4. Simulating attentional effects in Atiani et al. A) The AIM network in passive and attending state. Black arrow marks the activation of attention on the

target frequency channel. The target frequency fT represents the attended frequency, while fB represents the neuron’s best frequency. Dashed blue line indicates

that connections to frequency channels far from fB are weaker than connections to frequency channels close to fB. B) The results of the AIM network (left panels)

versus the results described in Atiani et al. (right panels), when fT (black arrow) is near fB. Marginals show the total spiking activity across the duration of the

simulation. C) The results of the AIM network versus the results shown by Atiani et al., when fT is far from fB. Figures from Atiani et al. are reproduced here with

the permission of Neuron. White patches hide irrelevant text.

https://doi.org/10.1371/journal.pcbi.1009356.g004
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and -90˚ azimuths, presenting the network with different tokens of speech stimuli at these

locations, either sequentially or simultaneously (see Methods).

To demonstrate passive listening (the “monitor” mode), we set all I2 neurons active, thereby

silencing all I neurons (Fig 6A). In this case, when the speech tokens were presented sequen-

tially to the network, the network output resembles each individual speaker (Fig 6A). When

the speech tokens were presented simultaneously, the network output resembles their mixture.

Thus, in this mode, the network broadly monitors the acoustic scene across different spatial

locations.

To simulate selective attention to a particular speech token, we first inactivated the I2 neu-

ron in the 0˚ spatial channel, thereby activating lateral inhibition via the disinhibition of I neu-

rons in that channel (Fig 6B). In this case, the network output resembled the 0˚ speaker

output, regardless of whether the speakers were presented sequentially or simultaneously.

Finally, to simulate switching attention to a different location (90˚), we turned off the I2 neu-

ron at 90˚, activating lateral inhibition via the disinhibition of I neuron at that location (Fig

6C). In this case, the network output was more similar to the output for the speaker at 90˚

(Fig 6D).

Finally, we demonstrate the effect of speaker separation on network performance. First, we

expanded the network to have seven spatial channels tuned from 0˚ to 90˚ azimuth in 15˚

increments. We then kept the first speaker at 0˚ while varying the location of the second

speaker, and presented both speakers to the network simultaneously. We found that the net-

work output became more representative of the attended targets (either speaker 1 or speaker

2) as the two speakers separate in space, demonstrating the effect of spatial release from mask-

ing [36] (Fig 6E). In summary, when an I2 neuron in a specific spatial channel is inactivated, it

disinhibits the I neuron at that location, causing the network to selectively attend to that spatial

Fig 5. Simulating the effects in Fritz et al., A) The proposed mechanism underlying the changes in A1 behavior.

Frequency channels adjacent to the best frequency fB as well as the target frequency fT are shown. Black arrow indicates

the target of selective attention. The dark blue connection highlights the additional intracortical connection unique to

this simulation. B) Simulated A1 neuron STRFs in the two states of attention. The model qualitatively reflects the

changes observed in physiological recordings. C) Physiological recording of a STRF of an A1 neuron when the animal

is passively listening (top) and when the animal is attending to a target tone, marked by the black arrow (bottom).

Figures from Fritz et al. are reproduced here with the permission of Nature Neuroscience.

https://doi.org/10.1371/journal.pcbi.1009356.g005
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location. Additionally, the ability of the network to attend to a target depends on the spatial

separation between the target and its maskers.

We next investigated the functional role of the AIM network in the frequency domain

using the same network shown in Fig 4. In this simulation, two competing speech tokens, a

Fig 6. Functional implications of the AIM network: Spatial tuning of the network is dictated by the state of TD neurons. (A) The network monitors the

entire azimuthal plane when all TD neurons are active. (B) The network attends to a specific direction if the corresponding TD neuron is off. (C) The network

attends to a different location if a different TD neuron becomes inactive. Column 3 shows the result of simulations when speakers are presented sequentially to

the network, in spike rasters. Column 4 shows the result of simulations when speakers are presented simultaneously to the network. (D) The AIM network can

recover an attended target within a speech mixture, as quantified by the cross-correlation measures between the simultaneous simulation network output and

single speaker spike rasters. Error bars show standard deviation (n = 20). X-axis is the reference speaker, and each line color denotes the attended location. (E)

Spatial separation of two talkers (S1, S2) vs. network performance, as quantified by correlation between the network output to the attended target. The encoding

becomes more representative of the attended speaker as the separation between the two speakers increases. In the “not attending” case, S1 is used as the reference

for correlation calculation. Shaded area represent 95% confidence interval, n = 20.

https://doi.org/10.1371/journal.pcbi.1009356.g006
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male and female speaker, originate from the same spatial location. In this case, differences in

spatial cues cannot be exploited for segregation, but differences in spectral features of the two

speakers, e.g., the fundamental frequency (F0), are available. We simulated the network in

three conditions: passive, attending to male F0, or attending to female F0. Attention was simu-

lated (as in Fig 2) by inactivating the I2 neuron which disinhibits the I neuron at the attended

frequency channel. In the attending modes, network activity showed a sharp peak around the

F0 of the attended speaker, and a suppression of activity around the F0 of the competing

speaker (Fig 7). Similar to the earlier results shown in Fig 3, the attended F0 received an

increase in spiking activity in that region while spiking activity in frequencies far from the F0

are suppressed (Fig 7A marginals and Fig 7B).

Discussion

The capacity for generating flexible behaviors in a context-dependent manner is central to

many complex cognitive tasks. How cortical circuits achieve such flexible computations is a

central area of investigation in both theoretical and experimental neuroscience. Recent theo-

retical studies have begun to propose model networks capable of producing flexible behaviors,

e.g., gating mechanisms for flexible routing of information [2–4], and experimental studies

have begun to reveal cortical mechanisms underlying flexible gating of information and atten-

tional control [4,6,37]. However, such models are lacking for auditory cortex. In this study, we

propose the AIM network, which describes a mechanism of interaction between top-down

and bottom-up processes in auditory cortex that may underlie the attention-driven changes in

cognitive behavior.

Flexible cortical processing

The rapid flexibility of the AIM network is generated by top-down inputs, which control the

state of the network by dictating the on/off state of specific I2 neurons. The top-down inhibi-

tion of I2 neurons disinhibits the I neuron of the attended channel, which then suppresses

competing channels via top-down lateral inhibition, resulting in focused attention. On the

other hand, when I2 neurons in all channels are active, the network integrates information

from all input channels. In the spatial case, this produces broad spatial tuning and allows the

network to monitor the entire scene. The ability to switch between these behaviors is impor-

tant from a functional standpoint. A network that is always selective for a single channel may

Fig 7. Functional role of the AIM network in the frequency domain. (A) AIM network outputs (raster plots) when attending to the male talker’s f0 (left) or female

talker’s f0 (right). Yellow rasters in the background shows the network output in the passive condition. Blue and red lines mark the estimate f0 for each speaker. Blue,

red, and yellow lines in the marginal show the total spike counts per frequency channel for attend male, attend female and passive conditions. (B). Change in spike

count (%) in the male or female f0 channel when attending to the male or female target, compared to the passive condition. Error bars show standard deviation (n = 20).

https://doi.org/10.1371/journal.pcbi.1009356.g007
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fail to detect important events in the scene at other locations. The different states of the I2

layer (e.g., all on vs. one off), allows the opportunity for exploration (by detecting events across

a broad range of locations) as well as exploitation (by selectively listening to a particular chan-

nel) in a dynamic manner.

Switching between exploration and exploitation is especially interesting in the context of

findings that the “spotlight of attention” fluctuates in a rhythmic manner [38]. In our model,

such fluctuations in the strength of the top-down input would cause the network to alternate

between periods favoring broad detection of sounds across the entire acoustic scene and fine

discrimination at a single spatial location [39]. Such periods may allow salient sounds in the

background to capture the spotlight of attention, as demonstrated in a recent study in humans

[40]. Moreover, changes in the location of the top-down input would promote switching atten-

tion to a different location [41]. These various behaviors may play important roles in how ani-

mals navigate complex environments.

Alternative/additional mechanisms

The AIM network describes the mechanistic interaction between top-down and bottom-up

processes, and even though it can explain various experimental observations, alternative/addi-

tional mechanisms may be involved in some aspects of the experiments modeled here.

Neuromodulation. The neuromodulatory systems can exert powerful control over the

global state of cortical networks, e.g., asleep, quiet arousal, and active attention [42]. Two key

modulatory projections to cortex involve norepinephrine (NE) and acetylcholine (ACh),

which have been implicated in arousal and attention, respectively. In our network, we assumed

that when the network is in the “monitor” mode, the I2 layer is on. Such a global state may cor-

respond to arousal and be NE-dependent. Top-down suppression of I2 neurons in our model

could correspond to an attentive state and be ACh-dependent.

Indeed, we showed that global cholinergic effects on cortical circuits, i.e., suppression of

intracortical connections and enhancement of thalamocortical connections, could also pro-

duce a sharpening in spatial tuning (Fig 2). In the study by Lee and Middlebrooks [16], animals

were not required to attend to a fixed location when performing the localization task. Thus,

sharpening of attention via the activation of global cholinergic mechanisms may be more con-

sistent with that experimental design.

Top-down inputs from frontal areas. Although cholinergic mechanisms are clearly

important in attentional states, such mechanisms are thought to operate on slow timescales

and can be long lasting [42], whereas switching between exploration and focused attention

requires rapid, reversible changes in cortical outputs, potentially on sub-second timescales.

Recent studies with EEG and fMRI in humans have suggested top-down activation in the fron-

tal areas modulates processing in auditory cortex on the time scale of hundreds of milliseconds

[43,44]. Evidence from studies in mice also support the idea that the frontoparietal network

can modulate processing in the primary sensory cortices during selective attention [5,45–47].

Together, these studies suggest that the top-down signals responsible for modulating the AIM

network may originate from the frontal areas.

Synapse-specific gating. Our model predicts that experiments where animals are required

to selectively attend to a specific location should also produce a sharpening of spatial tuning in

A1. For the experiments by Fritz et al. [17], we found that strengthening of the intra-cortical

synaptic connection between the target frequency and the best frequency could explain the

emergence of new excitatory regions at the target frequency. A possible mechanism for tran-

sient, reversible strengthening of intracortical synapses is synapse-specific gating [3,4], which

may then promote long-term strengthening via classic Hebbian plasticity.
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Cortical inhibitory neurons and function

Inhibitory neurons play key roles in the AIM network. There are several types of inhibitory

neurons in cortex [48]. The majority of inhibitory neurons can be placed into three categories:

those that express parvalbumin (PV), somatostatin (SOM), or vasointestinal peptide (VIP). It

is worth noting that most currently available information on specific classes of interneurons

come from studies in rodents in a variety of cortical areas, whereas key experimental observa-

tions modeled in this study were obtained in other species. Thus, it is difficult to directly map

the functional groups of neurons, e.g., I2 and I, in the model to identified interneuron types

e.g., PV, SOM and VIP neurons. Nevertheless, we suggest some hypotheses on a possible cor-

respondence based on recent experiments in rodents, to motivate future experimental work.

VIP neurons. The top-down input in the model could correspond to inputs from VIP

neurons. VIP mediated inhibition is engaged under specific behavioral conditions, including

attention [5,7]. It has been proposed that VIP cells “open holes in the blanket of inhibition”

[49], generating the “spotlight of attention” [5]. Our results are consistent with this intuition,

with the top-down input being critical for selecting a particular target and switching to a differ-

ent target.

VIP input is often thought to favor excitation, due to the disinhibition of excitatory neurons

[50]. In the model, top-down inhibition of an I2 neuron in a specific channel activates power-

ful inhibition via I neurons that suppress competing channels, leading to the selection of the

target. Thus, the model also explains powerful suppressive effects of selective attention, which

have been observed in auditory cortex [13]. The model predicts that silencing top-down inputs

to a specific channel, via optogenetics or other methods, should block the effects of selective

attention.

SOM and PV neurons. VIP neurons are known to inhibit SOM neurons, which in turn

inhibit excitatory neurons [31]. This motif suggests that the I2 neurons in our model may cor-

respond to SOM neurons, specifically Martinotti cells, which are strongly targeted by VIP neu-

rons [51].

The I neurons mediate powerful and sustained inhibition of competing channels in the

model. A key distinction between this type of inhibition and “classical” lateral inhibition

observed at multiple stages of sensory processing starting at the periphery is noteworthy. Clas-

sical lateral inhibition is activated by bottom-up stimulus-driven mechanisms, whereas the

inhibition in our model is driven by top-down attentional mechanisms. To distinguish these

two cases, we refer to the inhibition mediated by I neurons in the model as “top-down lateral

inhibition”. This distinction is conceptually and functionally important, because unlike classi-

cal lateral inhibition, which is recruited automatically by the stimulus, top-down lateral inhibi-

tion can be recruited volitionally. Such top-down lateral inhibition can be activated by direct

disinhibition of I neurons, disinhibition of E neurons which drives feedback lateral inhibition

via I neurons (S1 Fig), or a combination of the two.

In principle, top-down lateral inhibition could be mediated by any interneuron type.

Although PV neurons are a possible candidate, the long-lasting inhibition required to suppress

competing channels in our model should be distinguished from the fast and transient dynam-

ics of inhibition typically associated with PV neurons [48]. SOM neurons can also mediate

feedback lateral inhibition to generate a “winner-take-all” circuit and suppress competing

channels [52], or modulate bottom-up inputs in specific layers [51,53]. Developing behavioral

paradigms for investigating attention in rodents combined with optogenetic manipulations,

and/or developing methods for selectively manipulating different interneuron types in other

species, are promising future directions for identifying specific cell-types involved in mediat-

ing top-down lateral inhibition.
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Space vs. frequency

We related the effects of attention in the AIM network to key experimental observations on

changes in cortical spatial and frequency tuning in animals engaged in a behavioral task vs.

passive animals [16,17]. Similar changes have also been reported in the primary auditory cor-

tex of humans [54]. Assuming that attentional mechanisms are a key factor in driving such

changes [12,16,55], the effects of attention appear very different in the spatial and frequency

domains. In the spatial domain, broad tuning sharpens during task performance, whereas in

the frequency domain, narrow tuning can be enhanced or suppressed depending on the target

frequency and other parameters such as SNR. Our results suggest these apparent differences in

the spatial vs. the frequency domain may share similar underlying attentional mechanisms.

A key difference between the spatial and frequency domains in our model is the conver-

gence from the E neurons to the C neuron, which is broad in the spatial domain but narrow in

the frequency domain. Previous studies in the auditory cortex have found a tonotopic organi-

zation, but no topographic organization for spatial tuning [56]. Therefore, local synaptic con-

nections in a patch of cortex may result in convergence from neurons with similar tuning in

frequency but a broad range of tuning in space, which is consistent with our model. Thus, our

results suggest that the same cortical mechanisms underlying attention can produce diverse

effects on stimulus tuning, due to differences in the cortical organization of stimulus features,

e.g., space or frequency. For simplicity, we considered spatial and spectral networks separately.

Future models should unify these two dimensions.

Domain-specific considerations

Spatial domain. Here, we did not explicitly model how spatially tuned inputs to the AIM

network arise, an aspect that is likely to be species dependent. In the AIM network, spatial tun-

ing is inherited from tuning for acoustic cues in pre-cortical areas [30], perhaps the simplest

scenario consistent with experimental observations [57–59]. Additional mechanisms, e.g., for-

ward suppression, may further sharpen or generate spatial tuning in cortex [60,61]. In rodents,

spatially tuned responses covering a range of azimuths have been observed in cortical areas

[62], and may emerge from excitatory-inhibitory interactions in the underlying network [63].

From a functional standpoint, it is interesting to note that sharp tuning is not necessary for the

monitor mode, but only for the selective mode of the AIM network. In some species, the

sharpness of tuning may emerge in the attentive state based on state-dependent mechanisms,

and/or inputs from other brain areas, e.g., the superior colliculus, which shows a map of audi-

tory space [64,65] and can modulate responses in A1 via the pulvinar [66]. These outstanding

issues will require further experimental work, especially in attentive animals, as well as the

development of species-specific models.

Spectral domain. The model has several simplifications and limitations that motivate

future directions of work. For example, in the frequency network, we used pure tones to char-

acterize the responses of neurons in the network and relate them to experimentally observed

STRFs obtained with ripple noise stimuli. Although this approach captured salient attentional

effects observed experimentally, future studies should probe non-linear components using

complex stimuli, e.g., ripples and natural sounds.

In this study, we focused on excitatory regions of STRFs, modeling three representative

changes in the excitatory regions of STRFs observed by Fritz et al and Atiani et al. [35]. How-

ever, it is known that the balance between both excitatory and inhibitory subregions can play

an important functional role [67]. In preliminary simulations we found that attention could

also decrease an inhibitory subregion, as observed by Fritz et al. (S2 Fig). Modeling the effects

of attention on inhibitory regions, and complex STRFs with both excitatory and inhibitory
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regions, merit further investigation in the future. For example, the diverse effects of training

paradigms on inhibitory regions [28], will require modeling the effect of training, reward or

punishment on cortical circuits in the model.

We used the AIM network to illustrate how top-down inhibition of I2 neurons can enhance

the representation of sounds at an attended location, or an attended feature, e.g., F0 in speech,

by suppressing competing sounds at a different location or F0. F0 is likely to be one of many

potential features that contribute to speech segregation. However, a similar principle could be

applied to more complex features, e.g., enhancing the representation of an attended harmonic,

employing harmonic template neurons in the auditory cortex [68]. Such enhancement of an

attended feature accompanied by suppression of competing features may contribute to speech

segregation in settings where spatial cues are unavailable [69].

Temporal domain. Temporal dynamics likely play a large role in auditory processing. For

example, the neurons observed by Lee and Middlebrooks are highly sensitive to stimulus onset

(Fig 2). Our work focused on the effect of attention in the spatial and spectral domain, and

thus we did not include detailed models of temporal dynamics, e.g., adaptation or sensitivity to

stimulus onset or offset, or investigate the transient tuning properties during attention switch-

ing. Additionally, we did not investigate temporal phenomena that is likely to play an impor-

tant role in speech segregation, e.g., temporal aspects of F0 or tracking of slow spectrotemporal

modulations [70], and auditory “streaming” for linking sound segments over time [71]. We

believe that thoroughly investigating these aspects at the cortical circuit level will require

modeling rich temporal aspects of neuronal and network dynamics, e.g., adaptation, synaptic

facilitation and depression, oscillations, synchrony, and coherence, and is outside the scope of

this current study. Future extensions of the AIM network should incorporate these aspects to

link mechanisms of neuronal and network dynamics to attentional dynamics.

A mechanistic model of attention

Previous studies have modeled the effects of attention on auditory cortical receptive fields

using mathematical and computational principles such as temporal coherence [22,72]. In con-

trast, the AIM network is a cortical circuit level model underlying attentional effects. One

recent study modeled different STRFs in the attending vs passive state of the ferret A1 with a

two-layer spiking network [73]. The focus of that study was to produce detailed fits of STRFs

in attending and passive animals. In contrast, the focus of this study was to propose general

cortical circuit mechanisms, e.g., top-down disinhibition, underlying the effects of attention

on both spatial and spectral tuning. Another previous study modeled global cholinergic mech-

anisms underlying changes in STRF [74], similar to the effects modeled in Fig 2B. However,

that study did not include the selective top-down disinhibitory mechanism, which was

unknown at that time and is a key mechanism in the AIM network.

Original models of attention in vision were also developed based on computational princi-

ples, e.g., biased competition or normalization [9,10]. At the time, available information on

cortical circuits to guide and constrain circuit-based models were limited. Subsequently, corti-

cal circuit-based models of visual attention have been proposed [75]. With the rapidly emerg-

ing knowledge of specific cell types and circuitry in auditory cortex, along with the availability

of powerful optogenetic tools for cell type-specific perturbations, the AIM network may help

guide the design of new experiments to unravel cortical circuits that underlie general

attention.

Methods

Simulations and models were implemented in Matlab (Natick, MA, USA).
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Stimuli

Three sets of auditory stimuli were used, depending on the specific simulation. White Gauss-

ian noise was used as the stimulus in spatial tuning simulations, pure tones with frequencies

approximately equal to the center frequencies of the gammatone filterbank (see Subcortical

Processing) were used in spectral tuning simulations, and speech tokens from the Coordinated

Response Measure (CRM) corpus were used in the functional demonstration simulations [76].

In spatial simulations where stimuli were placed along the azimuth, directionality is imparted

on the stimuli by convolving them with the head-related transfer functions (HRTFs) of the

Knowles Electronics Mannikin for Acoustic Research (KEMAR) [77,78].

Subcortical processing

Stimuli for each simulation were first processed and encoded with models of the auditory

periphery and midbrain, then presented to the network. The auditory periphery was mod-

eled by a gammatone filterbank, implemented using the Auditory Toolbox [79]. It was used

to separate the sentence mixture into 64 narrowband frequencies, with center frequencies

ranging from 200 to 8000 Hz, uniformly spaced on the equivalent rectangular bandwidth

scale.

We used a previously published model of the midbrain to perform spatial segregation of

spatialized stimulus mixtures, as well as to encode the stimuli. If a simulation did not use spa-

tial stimuli as the input, the stimuli were treated as dichotic. For details pertaining to the mid-

brain model, see Fischer et al. and Chou et al. [30,80]. Briefly, the midbrain model computed

binaural features (i.e., interaural timing and level differences) in each time-frequency tile (i.e.,

narrowband and short time window). Model neurons encoded the stimulus at specific time-

frequency tiles if the binaural features of the stimuli matched the “preferred” binaural features

of the model neuron, thereby performing spatial segregation. The preferred binaural feature of

each model neuron is specific to the frequency and spatial channel each neuron belonged to.

There were 64 frequency channels in the midbrain model, corresponding to each channel of

the gammatone filter. The number of spatial channels in the midbrain model depended on

each specific simulation. The input neuron in a spatial channel is spatially tuned to the azimuth

corresponding to that channel, consistent with spatial tuning of acoustic cues observed in sub-

cortical areas [57–59]. The spiking responses of these model neurons were used as the input to

the AIM network.

Attentional inhibitory modulation (AIM) network

The AIM network was implemented using the DynaSim package [81], and its structure is illus-

trated in Fig 1. For simplification purposes, only one frequency channel and three spatial chan-

nels are shown. A “spatial channel” refers to the sub-network of neurons that are responsible

for processing inputs from a specific spatial location (blue shading, Fig 1). The number of spa-

tial and frequency channels in the network, and their connectivities, depended on the specific

simulation being explored.

Five neural populations were created within the network: excitatory input (IC), excitatory

(E), inhibitory (I), output cortical (C), and a second inhibitory (I2) population. IC neurons

represent the bottom-up inputs to the network from the subcortical model. I2 neurons

represent attentional top-down control. With the exception of the C neurons, a number of

neurons were created within each population, corresponding to each of the spatial or fre-

quency channels needed in a simulation. All five neural populations are implemented as

leaky integrate-and-fire neurons whose dynamics are defined by The following differential
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equation [82]:

dV
dt
¼
ðgleakðEleak � VÞ � isynÞ

C

where V is the membrane potential, isyn is the synaptic input current, C is membrane capaci-

tance, gleak is the membrane conductance, and Eleak is the equilibrium potential. The spike-

and-reset mechanism employed in our model dictates that if V>Vthresh, then V!Vreset.

Here, Vthresh is the action potential threshold and Vreset is the reset voltage. Values for these

parameters are listed in Table 1.

The dynamics of the synaptic input current is defined by a double exponential:

isyn t þ 1ð Þ ¼ isyn tð Þ þ gsyn e�
t
tD � e�

t
tR

� �
uðtÞ

h i
netconð Þ V � Esyn

� �
þ iapp netconð Þ

where t is time since the previous spike, gsyn is the synaptic conductance, τD and τR are the

decay and rise time constants, respectively, and the difference of exponentials represent the

excitatory post-synaptic potential (EPSP) waveform. u(t) is the unit step function to ensure

that EPSP is zero before the previous spike has occurred. Esyn is the reversal potential, ie is the

externally applied current, iapp is the externally applied current, and netcon refers to a binary

matrix of network connectivities that define the connections between populations of neurons.

Each row in the netcon matrix represents a presynaptic neuron, and each column represents a

postsynaptic neuron. Binary entries of netcon represents presence of a synaptic connection

between neurons. Inhibitory synapses have the following parameters: τR = 1ms, τD = 10ms,
Esyn = −80mv. Excitatory synapses have the following parameters: τR = 0.4ms, τD = 2ms, Esyn =

0mv. The values for gsyn and iapp are simulation- and connection-dependent, and are listed in

Table 2. The network connections are illustrated in Figs 1 and 3.

The default gsyn were chosen such that if I neurons were off, then the inputs would be

relayed and combined at the C neuron with a similar firing rate, and if I neurons were on, then

E neurons would be completely silenced.

Simulation-specific model configurations

Lee & Middlebrooks simulations. In this spatial tuning simulation, 80 ms of white gauss-

ian noise was placed between -80˚ to 80˚ azimuth, in 10˚ increments. The spatialized stimuli

were then processed and encoded with the subcortical model. The midbrain model in this sim-

ulation consisted of 19 spatial channels from -90˚ to 90˚ azimuth, in 10˚ increments, and 64

frequency channels. To reduce the computational demand of simulating the AIM network, a

new set of spike trains, generated using a Poisson model based on the overall firing rate across

Table 1. Default parameters of cellular dynamics.

Parameter Value

C (nF) 1

gleak (μS) 0.1

Eleak (mV) -70

Vthresh (mV) -55

Vspike (mV) 50

Vreset (mV) -75

iapp (μA) 0

Noise 0

https://doi.org/10.1371/journal.pcbi.1009356.t001
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all frequency channels, were computed for each spatial channel. This operation essentially col-

lapses the neural response over the frequency dimension. Therefore, the AIM network for this

simulation consisted of 19 spatial channels and one single frequency channel, where each spa-

tial channel processed the set of spike trains that represent the average activity across all fre-

quencies. Network connectivities between spatial channels are as shown in Fig 2. Spatial

tuning curves were then calculated based on the response of the C neuron of the AIM

network.

The effects of neuromodulators were simulated by applying a gain on the network connec-

tions. During the behavior state, off-target E-C connectivities were applied a gain of 0 to simu-

late the effects of muscarinic receptors, and off-target IC-E connectivities were applied a gain

of 2.5 to simulate the effects of the nicotinic receptors. These gains were chosen to replicate the

effects observed experimentally.

Atiani et al. and Fritz et al. simulations. Pure tones were presented dichotically to the

subcortical model, which consisted of a single spatial channel, corresponding to 0˚ azimuth,

and 64 frequency channels. Spike trains were passed directly to the AIM network, which also

consisted of a single spatial channel and 64 frequency channels. Network connectivities

between spatial channels are as shown in Fig 3. Approximations to spectral temporal receptive

fields were calculated based on the response of the best-frequency cortical neuron to each of

the pure tone stimulus.

Calculation of frequency- and azimuth- dependent peristimulus time histograms

(PSTHs). To Approximate STRFs of cortical neurons, we show the responses of the model

cortical neuron as functions of time and either frequency or space. In the spatial case, white

Gaussian noise were used as stimuli. In the spectral case, pure tones were used as stimuli.

Model neuron response for each frequency or azimuth were shown as its firing rate, which was

calculated using a 5ms moving window.

Functional example–spatial listening. In this example, we demonstrate how the AIM

network can be used to isolate a specific talker of interest within a speech mixture. 20 pairs of

speech tokens, one male and one female, were randomly chosen from the CRM corpus. The

male token was placed at 0˚ and the female token was placed at 90˚ azimuth. For simultaneous

Table 2. Simulation-specific parameters. gsyn have units of μS and iapp have units of nA. Parameters of local convergence gIE, gEC σIE, and σEC are also shown (Fig 3).

Connection or Neuron Param Lee Fritz Atiani a Atiani b Spatial Function Freq Function

IC!E gSYN 2.5 4 4 3 2 4

E!C gSYN 2 1.25 1.25 3 2 1.5

E!I gSYN 2.5 3 3 3 2 3

E!E (Attend) gSYN - 5 - - - -

E!E (Passive gSYN - 3 - - - -

I2!I gSYN 4 3 3 3 2.25 3

I2!E gSYN 2.8 4 4 3 1.25 3

I!E gSYN 3 4 4 4 3 3.5

I iapp 3 - - - 4 -

E iapp 1 3 3 3 0 3

I2 iapp 8 8 8 8 3.5 8

gEC - - 1 1 1 - 1

gEC - - 1 1 1 - 1

σIE (kHz) - - 0.65 1.7 2 - 0.01

σEC (kHz) - - 0.32 1.15 0.35 - 0.05

https://doi.org/10.1371/journal.pcbi.1009356.t002
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presentation, speech tokens were summed prior to being processed by the subcortical model.

The subcortical model used 5 spatial channels, tuned from -90˚ to 90˚ azimuth in 45˚ incre-

ments, and 64 frequency channels, and spatially segregates the speech tokens. Its output is

relayed directly to the AIM network, which also has 5 spatial channels and 64 frequency chan-

nels. In this simulation, network connectivities across spatial channels and parameters are as

shown in Fig 2, and each frequency channel operated independently of each other.

To demonstrate the effect of spatial separation on model performance, the male speaker

was placed at 0˚ azimuth while the female speaker was placed at locations between 15˚ and 90˚

azimuths in 15˚ increments (Fig 6E). The subcortical model for this simulation used 7 spatial

channels, corresponding to locations from 0˚ to 90˚ azimuths in 15˚ increments, and 64 fre-

quency channels. The output is then processed with the AIM network, which has 7 spatial

channels corresponding to the same locations in space. The AIM network was set to 1) attend

to the male target at 0˚ or 2) attend to the female target at various locations or 3) to be in the

monitor mode. The network performance was measured by “similarity” between the network

outputs and the attended speakers. In the monitoring mode, male speaker was used as the ref-

erence talker. Similarity was quantified by calculating the two-dimensional correlation coeffi-

cient between the network output of the specific simulation and the network output of the

reference speakers. More specifically, we first calculated the firing rates for each frequency

channel, then calculated the two-dimensional correlation coefficient of the firing rates.

Functional example–monaural listening. In this example, we demonstrate that the AIM

network can also operate in the spectral domain to aid in sound segregation during monaural

listening. The same 20 pairs of speech tokens as above were summed and presented dichoti-

cally to the subcortical model. Here, both the subcortical model and the AIM network has one

spatial channel (0˚ azimuth) and 64 frequency channels. In this simulation, the network con-

nectivities are as shown in Fig 3. The pitch of each speech token was estimated using MATLAB

Audio Toolbox’s pitch() function. The I-E connectivity parameters were chosen based on the

two speaker’s f0, such that when attention is focused on one speaker’s f0, the other speaker’s f0

would be inhibited.

Supporting information

S1 Fig. Two possible modes to achieve top-down lateral inhibition, resulting in sharpening

of the spatial tuning of the attended channel. A) Direct inhibition from I2 to I neuron, and

B) Feed forward inhibition from I2 -> E -> I neuron. Voltage traces of each model neuron

under the passive or attending condition is shown on first two columns of the grid. The final

column shows spatial tuning of the attended channel in the passive vs attending conditions.

(TIF)

S2 Fig. AIM mechanism can weaken inhibitory regions of frequency-dependent PSTHs. A)

Within-channel inhibition (S neuron) is added to the AIM network for this simulation to

induce suppression of activity relative to spontaneous firing of E neurons, thereby creating an

inhibitory region in the frequency-dependent PSTH. Note that S neurons are distinct from I

neurons, which inhibit other frequency channels. B) Frequency-dependent PSTHs. Blue

regions in PSTH indicate lower firing rate relative to the spontaneous firing rate. When atten-

tion is turned on and I2 neuron is turned off, the E neuron is released from inhibition, result-

ing in the weakening of the inhibitory region. Simulation parameters are listed in the table

below.

(TIF)
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S1 Table. Model parameters for attention-induced weakening of inhibitory regions in fre-

quency-dependent PSTHs as shown in S2 Fig.

(XLSX)
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