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Abstract: Chronic hyperglycemia has been associated with an increased prevalence of pathological
conditions including cardiovascular disease, cancer, or various disorders of the immune system.
In some cases, these associations may be traced back to a common underlying cause, but more often,
hyperglycemia and the disturbance in metabolic balance directly facilitate pathological changes in the
regular cellular functions. One such cellular function crucial for every living organism is cell cycle
regulation/mitotic activity. Although metabolic challenges have long been recognized to influence cell
proliferation, the direct impact of diabetes on cell cycle regulatory elements is a relatively uncharted
territory. Among other “nutrient sensing” mechanisms, protein O-linked β-N-acetylglucosamine
(O-GlcNAc) modification emerged in recent years as a major contributor to the deleterious effects
of hyperglycemia. An increasing amount of evidence suggest that O-GlcNAc may significantly
influence the cell cycle and cellular proliferation. In our present review, we summarize the current
data available on the direct impact of metabolic changes caused by hyperglycemia in pathological
conditions associated with cell cycle disorders. We also review published experimental evidence
supporting the hypothesis that O-GlcNAc modification may be one of the missing links between
metabolic regulation and cellular proliferation.
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1. Introduction

For living organisms, one of the most basic survival skills is the ability to adjust their metabolism
to the available resources. When molecules and chemicals required for energy and for the building
blocks of cellular components are in excess, it is evolutionary advantageous to gather and use these
molecules as fast and as effectively as possible. On the other hand, when resources are scarce, cellular
metabolism needs to be reduced or diverted to alternative resources in order to survive. Consequently,
a major determining factor in cellular proliferation is the amount of available nutrients. The first
discovered and relatively simple gene regulatory mechanism is the Lac operon in prokaryotic cells that
enables bacteria to switch to lactose metabolism in the absence of glucose [1,2]. Transition (transcription
and expression of enzymes such as beta-galactosidase) to lactose metabolism is switched on only if it is
a necessity since it requires time and energy, which will considerably slow down the proliferation rate
of the bacteria [2,3].

Eukaryotic and mammalian cells possess much more complex systems to deal with either
sub-optimal or surplus nutrients, and metabolism-fueled logarithmic growth is usually overruled
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by cellular differentiation and hormonal regulation. Nevertheless, nutrient-driven regulation is still
an essential attribute of every living cell. Any disorders in either the nutrient sensing, in the signal
interpretation/transduction, or in the adaptation of the metabolic state might lead to disturbances of
the cell growth, proliferation or the mitotic activity.

The prevalence of metabolic disorders is on the rise. Most importantly, the prevalence of diabetes
(especially type 2) is increasing around the world (from 4.7 to 8.5%) due to longer life-span, obesity,
sedentary lifestyle, and unhealthy eating habits during the past decades [4–6]. Numerous studies
showed that diabetes increases the risk of various diseases that are generally considered to be cell
proliferative disorders [7–10]. Although the cause-and-effect relationship is not always clear or
obvious, increased risk of neoplasia [11], impairment of tissue regeneration [12,13], and disturbed
inflammatory responses [14–18] are known issues of diabetic complications. In this review, we list a
number of proliferative disorders of which diabetes or insulin resistance is thought to play a role in the
pathomechanism. We also present how the metabolic changes of diabetes and insulin resistance impact
various intracellular regulatory pathways, nutrient sensing, and downstream signaling events. We
discuss how the hyperglycemia-induced disturbance of these pathways, including protein O-linked
β-N-acetylglucosamine (O-GlcNAc) regulation, may induce changes in the cell cycle regulation and
cell proliferation.

2. Diabetes and Its Effect on Cell Cycle Regulation

According to WHO statistics, in 2014, 422 million people had diabetes worldwide, and the
global prevalence among adults over 18 years of age was 8.5% [4]. Diabetes mellitus is a metabolic
disorder characterized by chronic hyperglycemia, i.e. abnormally elevated level of glucose in the
blood and interstitial fluids [19]. It is caused by decreased uptake of glucose by insulin sensitive cells
(hepatocytes, myocytes, adipocytes) [20]. In type 1 diabetes, insulin production by pancreatic beta cells
is deteriorated by a presumably autoimmune mechanism [21,22]. In type 2 diabetes, insulin resistance
of the peripheral cells is the primary cause [23]. In the first phase, the body compensates insulin
resistance by upping the insulin level until beta cells are exhausted and insulin drops below normal
values [24]. Interestingly, recent development in neuropathological studies suggest that Alzheimer’s
disease (AD) may have similarities with diabetes—hence, the proposed term for AD being type
3 diabetes [25]. AD is characterized by decreased glucose uptake of the neurons, similarly to the
insulin-sensitive peripheral cells in type 2 diabetes. (However, it has to be noted that the extent of the
involvement of insulin in the brain glucose metabolism is still far from completely understood) [26].

Despite the fact that the main problem of diabetes is that cells do not remove glucose from the blood
efficiently, the deleterious effects and diabetic complications are due to elevated intracellular glucose
(e.g., 2/3 of the advanced glycation end-products are produced intracellularly) [27]. This paradox
can be explained by variances in insulin dependence between various cell types. While myocytes
and adipocytes require insulin to facilitate glucose uptake, other cell types such as endothel cells and
neurons do not need insulin for glucose uptake [25]. Not surprisingly, the most prominent pathological
changes of diabetes are microangiopathies, neuropathies, and nephropathies [28]. In contrast, diabetic
cardiomyopathy is rather caused by decreased glucose uptake (due to decreased GLUT4 membrane
translocation upon insulin stimuli) and side-effects of the elevated insulin levels—decreased nitric
oxide and increased intracellular Ca2+ [29].

Several pieces of direct experimental evidence suggest that hyperglycemia will lead to disturbed
cell cycle regulation and proliferations even in non-malignant cells [30]. Altered cell cycle regulation
has been observed in diabetic nephropathy [31], endothelial [9], and mesangial cells [32], as well as
in astrocytes [33] and embryonic stem cells [34]. The contribution of hyperglycemia to enhanced
tumor progression in malignant cells is also well known [8,35–38]. The underlying mechanisms are
complex and deeply interconnected; evidence has been found that metabolic flux (increased substrate
availability for nucleotide synthesis), oxidative stress, activation or inhibition of transcriptional factors,
and various signaling cascades are all (at least partially) responsible for disturbing the cell cycle.
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2.1. Metabolic Effects

Glucose, once it enters the cells, has a direct effect on cellular metabolism. It provides fuel for ATP
generation, carbohydrate metabolites for protein post-translational modifications, glycolipids, and
nucleic acids. Considering the latter, excess or the lack of glucose and its downstream metabolites could
significantly influence DNA synthesis. Indeed, it was suggested a long time ago that manipulating
glucose levels could differentiate malignant and non-malignant cells by measuring thymidine
incorporation [39]. Another early study showed that brain tumor cells utilize more glucose (supposedly
for increased nucleic acid synthesis) [40]. A more recent study found evidence that DNA synthesis
and glycolysis is linked genetically and suggested that it is an adaptation mechanism in response
to the energy provided by the environment [41]. Moreover, Ribose-5-phosphate, which is required
for nucleotide synthesis and NADPH, is generated by the pentose phosphate pathway (PPP), the
rate limiting enzyme being glucose-6-phosphate dehydrogenase. Takahashi et al. found that the
flux through PPP greatly increased under hyperglycemic conditions in astroglia cells [42], although
they assume that this effect is rather a transcriptionally regulated response (Nrf2 translocation to the
nucleus) to oxidative stress than a metabolic effect. In another cell type (aortic smooth muscle cells),
Peiro et al. also found that hyperglycemia is activating PPP by channeling the excess of glucose. They
proposed that this mechanism may contribute to diabetic complications [43]. Through the progress
of cell cycle, PPP is dynamically regulated, i.e., the highest flux through PPP occurs during the S
phase [44] and contributes to cell cycle progression [45]. In malignant cells, PPP plays a part in the
so-called Warburg effect and thus may contribute to tumor growth [46,47]. Warburg effect in essence
is a switch from aerobic to anaerobic glucose metabolism even in the presence of oxygen (i.e., a less
effective, “primitive” process) observed in malignant cells [48]. Interestingly, recent considerations
suggest that normal cells can have a similar metabolic signature when entering proliferation (G1

phase) [49]. Some argue that rather than a consequence of malignant transformation, Warburg effect
might preclude cancer [50]. Nevertheless, it seems to be that controlled metabolic change from aerobic
to anaerobic glycolysis is also employed by normal cells for cell proliferative or other physiological
purposes [51]. Taken together, it seems plausible that the excess of intracellular glucose is diverted
to other metabolic pathways, such as PPP, and contribute to the initiation of the Warburg effect [47],
which in turn have significant consequences on cell proliferation.

2.2. Oxidative Stress and Intracellular Consequences

Brownlee’s seminal work in Nature [27] proposed that oxidative stress and superoxide
overproduction are the central elements of the diabetic complications. In short, excess intracellular
glucose and increased flux through the tricarboxylic acid cycle overloads mitochondria with
electron donors (NADH, FADH2) and increases membrane potential by accumulating protons in the
intermembranous space. As a result, electron transfer is blocked at a certain threshold [52], and some
of the electrons are used to generate O2- radicals. This free radical is then converted to H2O2 by
superoxide dismutase (MnSOD). Eventually, H2O2 is converted by other enzymes to H2O and O2 [53].
Basically, the extra “fuel” of intracellular glucose is branching off at the electron transport system into
reactive oxygen species (ROS) production instead of supplying further proton pumping. Interestingly,
decreasing the membrane potential by ADP, Pi, or by transfection with uncoupling protein 1 (UCP-1)
prevents ROS formation just as well as MnSOD overexpression does [54]. It seems to be that the
proper function of ATP synthase is key in this process [55]. Decreased ATP synthesis has been found
in diabetes [56] and in insulin resistance [57]. Since mitochondrial proton gradient also depends on
ATP synthesis, its lower rate might contribute to increased ROS production [58]. On the other hand,
enhancing the activity of ATP synthase by, e.g., exercise seems to have an inhibitory effect on oxidative
stress [59,60].

An excess amount of H2O2 inside and leaking out of mitochondria introduces a number of
detrimental effects; peroxidation of lipids, nucleic acids, and proteins might occur before free radicals
are detoxified by glutathione peroxidase or catalase. Thus, increased ROS and oxidative stress are
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usually associated with cellular damage, apoptosis, or cell cycle arrest. However, ROS increases
throughout G1, S, G2, and mitotic phases [61], where the mitochondria proliferation is also the
highest [62]. One way that ROS influences cell cycle progression is by inactivating a protein complex
called anaphase, promoting complex (APC) [61]. On the other hand, hyperglycemia-induced oxidative
stress can also cause decreased proliferation [63], e.g. by increased expression of cell cycle inhibitor
p21cip1 through the FOXO3A/ β-catenin signaling pathway [34]. These various effects of chronic
hyperglycemia and associated oxidative stress on cellular proliferation might depend on the cell type,
duration, and seriousness of hyperglycemia and/or ROS and the actual state of the free radical scavenge
system [64]. Thus, severe damage to DNA due to toxic level of ROS will lead to apoptosis, while a
moderate level of intracellular ROS might cause disturbances in the mitotic activity.

A key consequence of the overproduction of superoxide by mitochondria is its inhibitory effect
on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [27]. This has a deep impact on the
metabolic flux through glycolysis and its bypassing metabolic routes. The process is a self-stimulating
mechanism because enhanced flux through these pathways also generates more ROS [65]. Since
GAPDH is (partially) inhibited, glucose metabolites upstream of GAPDH are increased. For example,
dihydroxyacetone phosphate (or glycerone phosphate) is an isomer of glyceraldehyde-3-phosphate,
which is a substrate for various glycerolipid and glycerophospholipid synthesis. Diacylglycerol (DAG)
is a direct activator of protein kinase C (PKC). Among the many targets of PKC, cyclins as well as cell
cycle inhibitory proteins are also present. However, the cell cycle promoting or inhibiting effect of PKC
is the sum of many factors, including the cell type and the PKC isoenzyme composition of the cell [66].

Methylglyoxal is another byproduct of glyceraldehyde-3-phosphate and dihydroxyacetone
phosphate and is a toxic metabolite due to its capacity to react covalently with arginine, lysine and
cysteine on proteins. These irreversibly modified proteins are called advanced glycation end-products
(AGEs), and they may have altered or disabled functions compared to the non-modified form of
the protein [67]. AGEs can induce oxidative damage as well [65,68]. Extracellular AGEs, which can
form directly from glucose reacting with the proteins’ amino group through Schiff base and Amadori
product, may also activate AGE receptors (RAGE) [69]. RAGE is a transmembrane receptor, and its
activation leads to NF-κB nuclear translocation [70] and activation of Ras, which is a starting point
of many signaling pathway, including the mitogen-activated protein kinase (MAPK), protein kinase
C (PKC), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of
rapamycin (mTOR) [71]. Interestingly, RAGE signaling has been implicated in influencing both cell
proliferation [72,73] and in cell cycle arrest [74].

In hyperglycemia, the excess amount of glucose is reduced to sorbitol by aldose reductase.
Although sorbitol can be converted to fructose, which can be cycled back to glycolysis by hexokinase,
the balance is tipped toward sorbitol in diabetes. Aldose reductase requires NADPH for its reaction.
Some of the NADPH may be replaced by the PPP pathway, but the net effect will be an oxidative
state due to the sorbitol overproduction and NADPH depletion of the polyol pathway. Sorbitol
may also contribute to the oxidative stress by glycating proteins, producing AGEs, and activating
RAGE signaling. A recent study revealed that the increased transcription of the polyol pathway gene
aldo-keto-reductase-1-member-B1 (AKR1B1) promotes the epithelial-to-mesenchymal transition (EMT)
in human lung and rodent colon cancer through autocrine TGFβ stimulation. According to these data,
the polyol pathway serves as a molecular link between glucose metabolism and cancer differentiation
and could be a novel therapeutic target [75]. Sorbitol is also often used in in vitro experiments to
induce hyperosmotic stress [76]. In these experiments, p38 activation is regularly found to be mediating
the effect of sorbitol. Apoptosis and cell cycle arrest are the mostly likely outcome [77], but the p38
pathway may have other effects on the cell cycle as well [78,79].

The fourth metabolic pathway involved in the by-passing of GAPDH and glycolysis inhibition
is the hexosamine biosynthesis pathway (HBP). Normally, only a few percent of the hexoses is
metabolized through this pathway, but a partial block after the branching off of the HBP will increase
the substrate availability (fructose-6-P) for the first enzyme of the HBP: glutamine-fructose-6-phosphate
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amidotransferase (GFAT). The end-product of HBP is uridine diphosphate N-acetylglucosamine
(UDP-GlcNAc), which is used in many post-translational modifications of proteins. While most
of these modifications are permanent and concern membrane proteins and extracellular proteins,
one particular type of glycosylation, called O-GlcNAc modification, modifies intracellular proteins
and serves as a signaling mechanism [80,81]. So far, hundreds of proteins have been shown to be
modified by O-GlcNAc, including transcriptional factors and several elements of signaling cascades [82].
O-GlcNAc seems to be a direct link between nutrient sensing and cellular metabolism. Increased
O-GlcNAc modification due to elevated substrate availability influences insulin receptor signaling,
protein degradation, cell proliferation, and mitotic activity. We demonstrate more details and evidence
about O-GlcNAc modification’s influence on cell cycle regulation in the following sections.

2.3. Downstream Signaling Pathways Regulating Cell Cycle During Hyperglycemia

The signaling pathways associated with the pathophysiological changes of hyperglycemia are
numerous. Either by direct metabolic effect, by alternative metabolic pathways, or by oxidative
stress, hyperglycemia may influence literally hundreds of various intracellular signaling routes, some
of them converging to cause the same effects, some of them counteracting each other. In Figure 1,
we summarize some of the signaling routes regulating cell cycle that could be influenced by the
metabolic consequences of hyperglycemia. Most studies focus only on smaller pieces of the puzzle,
thus clarifying the multi-layer cause and effect relationships (e.g. hyperglycemia initiates secondary
metabolic changes such as ROS formation, which in turn impacts subsequent signaling pathways,
leading to the direct influence of cell cycle regulating elements such as cyclins) would require more
vertical, in depth analysis. Nevertheless, several studies identified secondary intracellular messengers
that relay the effects of hyperglycemia to cell cycle regulation. For example, central elements of the
insulin signaling pathway, PI3K and Akt, were implicated in several studies to conduct the effects
of hyperglycemia on cell proliferation. Interestingly, some reported increased Akt activation and
proliferation [30,83], while others showed the opposite; Akt was downregulated, and consequently,
cyclin D was as well, while cell cycle progression inhibitor p27 was upregulated [9,84,85]. Along the
PI3K/Akt axis, mTOR is an important intermediate element; it is a direct or indirect regulator of gene
expression, glycolysis, mitochondrial activity, autophagy, or membrane transport processes. mTOR
was also recognized as a nutrient sensing system. It can re-organize the distribution of resources and
the cellular metabolism, but it also impacts cell proliferation and cell cycle regulation [86,87]. Inhibitors
of mTOR are used in anti-cancer therapies and as immunosuppressants [88,89], and mTOR has been
associated with the regulation of multiple elements of the cell cycle signaling including cyclins and
p21 [90,91]. AMPK is another nutrient sensing mechanism (also interacts with mTOR). It is a kinase
that is activated when the ratio of ATP/AMP decreases. Its downstream targets also include p53 and
p21. The anti-diabetic drug metformin, frequently used in the therapy of insulin resistance and type 2
diabetes, seems to also act on AMPK, which eventually leads to the membrane translocation of the
GLUT4 transporter. Interestingly, AMPK has been studied as a potential target for cancer therapy as
well [92]. Moreover, studies found that metformin therapy decreased the prevalence of malignant
diseases [93].
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Figure 1. The effect of hyperglycemia on intracellular signaling pathways and cell cycle regulation.
The primary metabolic changes caused by excess amount of intracellular are increased levels of
diacyl-glycerol (DAG), reactive oxygen species (ROS), advanced end-glycation products (AGEs),
sorbitol (Polyol), and protein O-Glycosylation (O-GlcNAc). Dozens of secondary messengers and
signaling elements are activated (or de-activated) that are connected to the cell cycle regulatory system
and eventually influencing cell proliferation by either directly influencing cyclins, cyclin-dependents
kinases and cell cycle inhibitors such as p21 or altering their expression level through influencing
transcriptional activity. The figure shows some of these connections; positive or negative effects inherent
to the interactions are indicated by green or red lines between proteins, respectively. The effect of
hyperglycemia (if it is known) on the activity of individual signaling elements are indicated by green
(up-regulation) or red (down-regulation) background coloring. For clarity, the connections of O-GlcNAc
are omitted from this figure, however please note that increasing number of evidences suggest that the
majority of intracellular signaling elements are modified and influenced by O-GlcNAc modification.

FOXO regulation is normally suppressed by Akt signaling, however in diabetes, Akt suppression
could be weaker. Moreover, FOXO is activated by AGE and ROS formation through the JNK pathway.
Activated FOXO is considered a cell cycle inhibitor by influencing several actors, such as upregulating
p21 and cyclin-dependent kinase inhibitor while suppressing cyclin D1 and D2 [34,94]. A recent study
by McClelland Descalzo et al. suggest that there is an interaction between FOXO and β-catenin [34].
According to their proposed mechanism, they form a complex and are translocated in the nuclei, their
transcription activity leading to slower proliferation. Interestingly, β-catenin is usually implicated in
enhancing cell proliferation as part of the Wnt pathway [95], but its effect on cell cycle regulation is
probably much more complex than first assumed [96]. Since Wnt pathway can be inactivated by ROS
formation, the β-catenin destruction complex is allowed to degrade β-catenin prematurely. However,
Wnt activation by ROS has been also reported [97,98]. Glycogen synthase kinase 3 (GSK3) is part of the
β-catenin destruction complex, which can prime β-catenin for degradation. Effects of hyperglycemia
may also converge on GSK3 through the PI3K/Akt pathway. Although GSK3 is “constitutively”
activated, under normal circumstances, it is also inhibited by Akt phosphorylation [99]. In diabetes,
PI3K/Akt may be disrupted by ROS and AGEs [100,101]; thus, GSK3 is released from their inhibition.
However, the regulation of PI3K/Akt by oxidative stress is more complex, and it may be stimulated
by ROS just as well as inhibited [102,103]. As mentioned, activated GSK3 is regulating β-catenin, but
several other targets of GSK3 are also known that are related to cell cycle regulation [104]. This wide
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range of functions of GSK3 may counteract each other, and the view seems to currently be shifting
from considering it as a tumor suppressor [105] to a positive regulator of cell proliferation [106]. One
possible explanation of GSK3 pro-oncogenic activity is that, despite its suppression on β-catenin and
cyclin D, it also activates NF-κB [106], which promotes cell cycle progression at many targets [70].

3. Cell Proliferative Disorders Related to Diabetes

3.1. Cancer Development

Hyperglycemic conditions have been numerously reported to impact oncogenesis and tumor
progression [30,107–109], and it was also observed that hyperglycemia can negatively influence
the effect of anti-cancer therapies [110,111]. Tumor development, recurrence, metastasis, and fatal
outcome have been shown higher occurrence in patients with diabetes or hyperglycemia [7,110].
Meta-analysis showed increased incidence of liver [112], pancreas [113,114], breast [115], kidney [116],
colorectal cancers [117], and Non-Hodgkin’s lymphoma [118] among diabetic patients. Women
with diabetic metabolic disorder have higher (20–28%) risk for breast cancer [115], which has been
further linked to poor overall survival rate [119]. Hyperglycemia was also reported to change surface
glycophenotypes both in vitro and in vivo to phenotypes typically present on malignant cells [120].
In A549 lung adenocarcinoma cells, increased amount of glucose uptake resulted in shunting glucose
through HBP and in significantly higher amount of UDP-GlcNAc and its derivatives, leading to
aberrant glycosylation [121]. Colon adenocarcinoma cells kept in high glucose and colon tumors from
hyperglycemic mice presented more UDP-GlcNAc than those of cells cultured under low glucose
and tumors of euglycemic mice [120]. Others also demonstrated that excess in UDP-GlcNAc and
in its derivates due to hyperglycemia has an effect on changed protein glycosylation [122]. Many
studies confirmed hyperglycemia-induced aberrant glycosylation is strongly associated with oncogenic
transformation [123–126].

These findings indicate that there is a link between glucose metabolic disorders and tumor
growth and behavior of cancer cells, but the complex molecular mechanisms remain to be mapped
and analyzed. Selectively targeting pathways (metabolic or downstream signaling routes) will also
require exploring the metabolic signaling pathways of individual malignancies. Nevertheless, there
are some promising results with anti-diabetic drugs in the therapy of malignant disorders [127].
For example, the anti-hyperglycemic drug metformin was found to decrease the risk of diabetic
patients with colorectal cancer [128]. Moreover, metformin administration seems to inhibit both cell
proliferation in vitro and colon carcinoma growth in vivo [129,130]. Another antidiabetic drug called
exenatide, which is “a glucagon-like peptide-1 receptor agonist, counteracts hepatocarcinogenesis
through cAMP-PKA-EGFR-STAT3 axis” [131].

The effect of chronic hyperglycemia on the complex regulation of the immune system is beyond the
scope of our present review, but excellent previous publications covered it in detail [132–134]. Evidence
for an impact of glucose metabolism on the cellular proliferation of immune cells, e.g. neutrophils [135]
or T-cells [136,137], has been also demonstrated. However, we would like to call attention to an
interesting and important consequence of the altered immune regulation under diabetic condition;
cancer development. It became evident in the last several decades that the immune system plays a
crucial role in holding cancer development and progression at bay. In fact, the Nobel prize was awarded
in 2018 for the “discovery of cancer therapy by inhibition of negative immune regulation” [138,139].
According to a recent report by Fainsod-Levi et al. [140], hyperglycemia might decrease neutrophil
number and impair their mobilization, which could contribute to increased metastasis formation.
Further studies will hopefully elaborate more on the issue of whether hyperglycemia-impaired immune
functions are important contributors toward tumor development. Nevertheless, an increasing amount
of evidence suggests that the immune system and inflammation is heavily influenced by metabolism,
e.g. certain cell types known for augmenting anti-tumor immunity (e.g., T helper type 1) could be
suppressed (or favored by specific therapy) based on their metabolic preference [141].
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3.2. Skeletal Growth and Bone Remodeling

Diabetes has been associated with poor bone health. It has been proposed that diabetes affects
bone growth, and children with juvenile diabetes have showed delayed skeletal maturation and
altered craniofacial development [142–145]. Impaired osteoblast function due to insulin insufficiency
increases the risk of low bone turnover, which eventually decreases pubertal bone mass and reduces
bone mineral density during adulthood therefore predisposing to osteopenia and osteoporosis [142].
DeShields and Cunningham found lower bone mineral density at the femoral neck and total femur
in diabetic US adults. Their results also indicated that osteoporosis is more likely (4.7 times higher
risk) to occur in individuals suffering from type 1 than in those of with type 2 diabetes [146]. Weber
et al., in a population-based cohort study by investigating the incidence of bone fractures in 30,394
type 1 diabetic participants and 30,3872 non-diabetic ones, also found that diabetes increases the
risk of incident fractures. Furthermore, lower extremity fractures were more frequent in subjects
with type 1 diabetes [147]. The proposed intracellular mechanisms by which hyperglycemia impacts
osteoblasts and osteoclasts include many of the aforementioned cellular signaling elements such as
mTOR, protein kinase B, or PI3K [145]. Among other effects (such as differentiation toward adipocytes
instead of osteoblasts), diabetes may also disturb osteoblastogenesis by influencing FOXO regulation
and subsequently cell proliferation [148,149].

Similar to skeletal bone health, diabetes has also been linked to oral diseases, including
periodontitis, which is characterized by alveolar bone resorption and supporting tissue destruction
around the teeth [150]. Since 1993, periodontitis has been referred as the “sixth complication of
diabetes” [151]. Poor glycemic control in type 2 diabetes have been found to be positively associated
with increased alveolar bone loss and more severe progression of bone resorption [152]. Furthermore,
studies have suggested that diabetic condition not only induces periodontal problems but can also
alter orthodontic tooth movement within the alveolar bone [153–155]. During orthodontic therapy,
force generates a complex adaptive response in the surrounding tissues and bone which is disturbed in
diabetics. Furthermore, by reversing the diabetic state, both insulin alone and adjuvant metformin as
an add-on to insulin therapy could improve the response of periodontal structures when exposed to
orthodontic forces [154,155]. Included in the proposed mechanisms responsible for the deleterious
effects of diabetes on periodontal conditions is the disturbance of the proliferation capacity of fibroblasts
specific for periodontal ligament, as the results of several studies suggest [156–159].

3.3. Insufficient Tissue Regeneration

Tissue regeneration requires well-coordinated interactions of various cell types, including
fibroblasts, endothelial cells, cells of the immune system, and the damaged tissue itself. Diabetic patients
are at higher risk for developing non-healing wounds and skin ulcerations. For example, a diabetic
foot ulcer is a major complication, and approximately 15–25% of diabetics are affected [160,161].
Several studies have highlighted the combined importance of poor healing capacity and infection
susceptibility. However, the mechanisms underlying this phenomenon are not fully understood.
Diabetic complications such as neuropathy, vascular damage, and an increased systemic inflammatory
state certainly contributes to the development of diabetic foot ulcers [162]. The role of the local effects
of hyperglycemia has to be considered as well (ROS, AGE formation). At the cellular level, a main
contributor of impaired wound healing and dysfunctional epithelization is the altered epigenetic
regulation, which ultimately can impede keratinocyte, fibroblast, and macrophage function [163].
In wound healing processes (matrix deposition, remodeling), fibroblasts play a key role, so any
impediments to their function will result in non-healing wounds, insufficient tissue repair and
regeneration. Studies have confirmed that high glucose concentration initiates a complex downstream
cascade of molecular disturbances of the dermal fibroblasts [164]. Fibroblasts exposed to high glucose
become reactive but not active [12], disrupting the normal cell physiology. Hehenberger and coworkers
found that high glucose concentration inhibited fibroblast proliferation and that cells became resistant
to proliferate when exposed to certain growth factors (IGF-1, EGF) [165]. Goldstein et al. also confirmed
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decreased growth capacity of diabetic cutaneous fibroblasts [166]. Investigators also confirmed
reduced proliferative, collagen synthetic, and secreting capabilities of diabetic skin fibroblasts [167,168].
Interestingly, others found contradicting results, i.e. impaired cellular migration in dermal fibroblasts
harvested from diabetic mice was more prominent while the disturbance in cell proliferation was not a
significant contributor [169].

Hyperglycemia has been shown to affect neovascularization by causing abnormal endothelial cell
function (recruitment, proliferation, migration, collar stabilization, and cooping) [170]. Both micro- and
macrovascular complications have been confirmed to be related to poor glycemic control in patients
with both type 1 and type 2 diabetes [170]. Studies have shown that endothelial progenitor cells (EPCs),
which are the main source of endothelial cell repair and important regulators of angiogenesis, are
significantly decreased in bone marrow and/or dysfunctional under diabetic conditions [171–173].
Loomans et al. found a reduced number (44% less) of EPCs obtained from patients with type 1 diabetes
when compared to control subjects. Furthermore, as confirmed by in vitro angiogenesis assay, their
function was also impaired [172]. Cell proliferation and differentiation is mainly restricted due to
excessive hyperglycemia-induced ROS production, which results in p38 MAPK activation [174]. Via
MAPK pathways, AGEs can increase EPC apoptosis and decrease nitric oxide release. Shen et al.
cultured EPCs with various concentrations of AGEs in the presence or absence of MAPK (ERK/p38/JNK)
inhibitors and found that AGE treatment disrupted EPCs cell physiology, which was accompanied by a
downregulation of eNOS and Bcl-2 expressions as well as an elevation in Cyclooxigenase-2, Bax, NF-κB,
and Caspase-3 in a MAPK-dependent manner [174]. Varma et al. studied the PI3k and Akt signaling
pathway and found that hyperglycemia decreased Akt activity and proliferation in human umbilical
vein endothelial cells (HUVEC) [9]. Others also demonstrated that high glucose concentration affects
endothelial cell cycle, increase DNA damage, and induces cell death [175]. Furthermore, hyperglycemia
decreases dermal microvascular endothelial cell proliferation by 39% and tube formation 42% when
compared to normoglycemia [176].

3.4. Renal Mesangial Cell Growth

Diabetes and hyperglycemia are also two important factors playing a role in the development
of chronic kidney disease [177]. Diabetic nephropathy (DN) has been reported to increase mortality
rate, as it has become the major contributing cause of end-stage renal disease [178]. About 30% of the
patients suffering from diabetes for 20 years will develop DN [179]. Glomerular matrix protein such as
fibronectin accumulation and alteration in mesangial cell proliferation and hypertrophy are the major
contributors of DN [180,181]. In his study, Wolf showed that mesangial cells are arrested in the G1 phase
after some active self-limited proliferation and undergo hypertrophy due to an increase in the synthesis
and deposition of fibronectin [31]. According to this, the increase of mesangial cell mass is a result of a
limited and transient proliferation, followed by growth arrest and hypertrophy [31,179]. In some studies
increased glucose levels expressed antiproliferative effects [179,182,183], but in other studies, it rather
induced mesangial cell proliferation [180,184,185]. Li et al. even found that betain, a zwitterionic
quaternary ammonium salt compound, decreased the proliferation and induced G1-phase arrest
significantly in mesangial cells cultured under high glucose condition [184], indicating that betaine can
be protective against high glucose–induced cell proliferation and extracellular matrix accumulation.

4. O-GlcNAc and Its Effect on Cell Cycle Regulation

O-GlcNAc modification is a dynamic post-translational modification (PTM) affecting serine (Ser)
and threonine (Thr) amino acids of nuclear, cytoplasmic, and mitochondrial proteins. The attachment
and removal of the O-linked β-N-acetylglucosamine moiety is performed by only one pair of enzymes,
the O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA), respectively. Its targets include a wide
variety of proteins involved in the regulation of gene expression, protein translation, degradation,
signal transduction, cell cycle regulation, etc. [186].
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As the modification’s donor substrate, UDP-GlcNAc represents the end-product of the HBP,
integrating nucleotide, glucose, amino acid, and free fatty acid metabolism. O-GlcNAc modification is
highly responsive to the cell’s metabolic state and nutrient availability (Figure 2). Since approximately
2–5% of glucose influx is directed toward this pathway [187], hyperglycemic conditions (e.g., in diabetes
mellitus) result in increased HBP flux together with consequently elevated O-GlcNAc levels.
Additionally, regarding the excessive glucose influx, the augmented superoxide production and
oxidative stress in chronic hyperglycemia also trigger O-GlcNAc modification and HBP by the
inhibition of GAPDH [53]. Blocked GAPDH function next results in a high level of fructose-6-phosphate
production, providing more substrate for the rate-limiting enzyme of the HBP; namely, GFAT. Moreover,
high oxidative stress also strengthens the inhibitory interaction of fatty acid synthase with OGA,
correspondingly resulting in elevated O-GlcNAc [188].
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Figure 2. Metabolites of the hexosamine biosynthesis pathway (HBP) and protein O-Glycosylation
(O-GlcNAc) modification. HBP branches off from glycolysis at fructose-6P. Thus, the amount of
the end-product of HBP; UDP-N-acetyl-glucosamine (UDP-GlcNAc) depends on the rate of glucose
entering the cells, but also on the rate of glycolysis that process the majority of fructose-6P. Increased
glucose uptake or a block in glycolysis (e.g. inhibition of GAPDH by ROS) will increase the flux through
HBP. It has to be noted that lipid (acetylation), protein (transfer of the amino group from glutamine)
and nucleotide (linkage of N-acetyl-glucosamine to UDP) homeostasis may also influence HBP apart
from carbohydrate metabolism [189]. UDP-GlcNAc is a substrate for many complex biomolecules
and post-translational modifications. In particular, protein O-GlcNAc. As O-GlcNAc is recognized to
modify and influence hundreds if not thousands of proteins, piling evidence suggests that it may be a
direct mediator and feed-back mechanism between metabolic challenges and cellular adaptation and
regulatory functions, including cell proliferation.

Elevated HBP flux and O-GlcNAc modification in turn has been shown to contribute to the
development of insulin resistance in adipocytes and myocytes [187,190]. Several studies have shown
that the elevation of HBP flux in different ways (through excessive amount of glucosamine, free
fatty acids, or palmitate) results in a reduced insulin sensitivity in these tissues [190–192], while the
overexpression of GFAT or OGT leads to the same consequences [193,194].

During the cell cycle coordination, swift responses to the changing environment or cellular
damages are essential. Thus, post-translational modifications that allow dynamic, often reversible
regulation have a crucial role in this complex process. The importance of O-glycosylation in cell division
became evident in the last few years [195]. It has been shown that the OGT, OGA, and O-GlcNAc levels
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significantly fluctuate during the cell cycle, thereby nutrient availability—mediated by O-GlcNAc
modification—may influence the progression of cell division [196–199]. Accordingly, in all human
cancer types studied so far, a disturbed O-GlcNAc cycling or altered expression of O-GlcNAc enzymes
has been shown [200].

Numerous cell cycle regulators have been identified as O-GlcNAc substrates. Among the key
regulatory elements, cyclin D1 has been shown to be influenced by O-GlcNAc. Out of the three
types of D cyclins controlling the G1/S transition in mammals, Cyclin D1 is the most frequently
dysregulated, and its abnormal function has been extensively studied in human malignancies [201].
Experiments using serum stimulation, a common method to trigger cell cycle entry, have shown a
significant overexpression of OGT. Conversely, OGT blockade caused by either serum starvation or
siOGT resulted in inhibited cyclin D1 expression together with reduced activity of PI3K, a well-known
cyclin D1 regulator, demonstrating the link between the nutrient sensor modification and cell cycle
progression [198,202]. Furthermore, β-catenin, a major cell cycle factor whose one key target is
cyclin D1, is also influenced by OGT. Namely, O-GlcNAc modification of the protein negatively
regulates its nuclear level. Normal prostate cells have been shown to have remarkably higher levels of
O-GlcNAcylated β-catenin together with its slight nuclear localization compared to prostate cancer
cells [203].

The expression of cyclin-dependent kinase 4 (CDK4), whose activity is regulated by Cyclin D,
is itself also influenced by O-GlcNAc. A higher expression of both cyclin D1 and CDK4 was found in
mouse embryonic stem cells after glucosamine treatment, together with the elevated expression of
other contributors of G1/S transition control, CDK2, and cyclin E [204]. The beginning and progression
of mitosis is highly dependent on the maturation promoting factor consisting of cyclin B1 and CDK1,
two O-GlcNAc-influenced proteins. Cyclin B1 expression decreases in the case of either OGT or OGA
inhibition, revealing the importance of both enzymes in the process [205]. Overproduction of OGT also
led to the diminished expression of Cell Division Cycle-25 (CDC25), a phosphatase protein activating
the CDK1/Cyclin B complex [206].

Because it belongs to another essential group of cell cycle regulating kinases (the Polo-Like
Kinase (PLK) family), the PLK1 protein has a crucial role in the metaphase to anaphase transition.
It phosphorylates and thus activates CDC25B (a CDC25 isoform), and its overexpression promotes
cancer development [207,208]. The mRNA and protein levels of PLK1 were reported to be diminished
after OGT overproduction. Besides, the G2/M-specific expression of PLK1 depends on p53 being
itself an O-GlcNAc target [209]. Overall, this complex regulatory cascade is influenced by O-GlcNAc
modification at various levels.

The third prominent mitotic kinase, the microtubule-associated Aurora B, has been revealed
to be in complex with OGT, OGA, and protein phosphatase 1 (PP1) at the midbody during mitosis.
The complex consisting of the four enzymes has been assumed to regulate the phosphorylation and
O-GlcNAc modification of vimentin and the stability of the midbody during mitosis. In concordance,
OGT overexpression perturbs cytokinesis and promotes aberrant chromosome number [206]. Similarly,
OGA knockdown also promoted spindle defects [210]. Interestingly, Aurora B inhibition led to
abundant OGT and consequent O-GlcNAc levels as well as hindered localization of OGT to the
mitotic spindle, raising the question if OGT or OGA itself may be phosphorylated by Aurora B [211].
At the same time, OGT overproduction lowers Aurora B expression [206]. Further evidences also
suggest that the construction of the mitotic spindle, the microtubule attachment to kinetochores, and
chromosome alignment orchestrated by Aurora B and other mitotic kinases are under strict O-GlcNAc
regulation [212]. At the other end of the mitotic spindle, the expression of centrosome localized Nuclear
Mitotic Apparatus Protein (NuMA) was found at an increased expression level in OGA knockdown
cells [210]. Magescas et al. demonstrated that spindle pole cohesion requires the association of
NuMA and Galectin-3, but the loss of an O-GlcNAc modification site on NuMA (S1844A) disrupts this
association and results in a phenotype similar to NuMA depleted cells (multipolar cells) [213].
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O-GlcNAc modification regulates chromatin dynamics through its effects on the mitotic spindle
and also affects histone proteins. Modifications at Lys-9, Ser-10, Arg-17, and Lys-27 of the most
extensively studied histone H3 have been proven to be influenced by OGT [214]. O-GlcNAc sites on
histones H2A, H2B, and H4 have also been mapped by mass spectrometry. Global histone acetylation
is reduced after OGT overexpression [199]. Another family of chromatin-binding proteins is the
MiniChromosome Maintenance (MCM) group. Several subunits of the MCM2–7 complex, which is
crucial for DNA replication, are O-GlcNAc-modified. It has been reported that a stable interaction exists
between OGT and distinct MCM subunits and that, after OGT silencing, chromatin-binding of MCM2,
MCM6, and MCM7 are decreased [215]. During the anaphase of the mitosis, O-GlcNAc has a pivotal role
in the regulation of the anaphase promoting complex/cyclosome (APC/C) activity via the modification
of its co-activator, Cdc20 homologue 1 (CDH1). APC/C, together with its co-activators (Cdc20 and
CDH1), orchestrates mitosis through ubiquitination of specific proteins, thus designating them for
proteasome degradation. The O-GlcNAc modification of CDH1 antagonizes its phosphorylation and
promotes APC/C-Cdh1 activity [216].

Apart from the numerous specific cell cycle regulators, several transcription factors involved
in cell proliferation control are O-GlcNAc modified, e.g. p53, c-Myc, NF-κB, FoxM1, β-catenin, and
Sp1 [205,217,218], as well as the tumor-suppressor retinoblastoma (Rb) [219] and cell cycle inhibitor
p27 [220]. p21 protein was not demonstrated yet to be directly influenced by O-GlcNAc, however OGT
knock-down was shown to up-regulate p21 while simultaneously down-regulate Cyclin D1 [221].

5. Cell Proliferative Disorders as a Consequence of O-GlcNAc Disturbances

Aberrant O-GlcNAc modification has been implicated in the etiology of human diseases, including
diabetes, cancer, aging, cardiovascular disease, and neurodegenerative disease [222–225]. In these
pathological processes, the metabolic dysregulation is increasingly recognized as a major component.
An increasing amount of evidence shows that O-GlcNAc plays an essential role in mediating the effects
of metabolic events to intracellular regulatory processes.

5.1. Pancreatic Beta Cell Regulation

O-GlcNAc plays an important role in the regulation of pancreatic beta cells; the enzymes OGT
and O-GlcNAcase are in the highest amount relative to other cell types [226]. Hyperglycemia elevates
O-GlcNAc levels in pancreatic beta cells, which seems to modulate insulin production and release,
but the exact site(s) of interference has not been clarified yet; among others, modifying transcriptional
factors and epigenetic regulations have been proposed [227,228]. Glucose levels and responsive
O-GlcNAc modification influences insulin secretion and also has an important and specific role in
beta cell development by activating the transition of positive endocrine progenitors into beta cell
development [229]. Experimental data showed that beta cell specific transcription factors, Pdx-1,
MafA, and NeuroD take part both in insulin gene transcription and in beta cell function by glucose
regulation. Changes in glucose concentration can cause nuclear transport of NeuroD1 via its O GlcNAc
modification. This protein is a direct target of Neurogenin 3, which is a main marker for monitoring
pancreatic endocrine cell differentiation [230]. The expression of MaFA, which is essential in beta
cell survival and insulin gene transcription [231], is also glucose dependent and requires O-GlcNAc
modification, but the mechanism is unknown. Pdx-1, an insulin promoter factor necessary for beta cell
maturation, is also modified by O-GlcNAc modification [227]. Interestingly, long-term elevation of
O-GlcNAc induces beta cells death by apoptosis [232].

5.2. Cancer Development

Elevated glucose or glutamine levels are necessary for tumor cells to maintain their energy,
carbon, and nitrogen generation pathways, which enable the rapid growth and proliferation of tumor
cells. The direct substrate of O-GlcNAc modification, UDP-GlcNAc is in the focal point of many
metabolic pathway, as carbohydrates, amino acids, lipids, and nucleotide metabolisms all affect its
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synthesis [80,233]. Not surprisingly, there is a growing interest to study metabolism fueled O-GlcNAc
modification in malignant cells [224]. Revealing the behavior of O-GlcNAc in malignant tissues would
help to design alternative therapeutic strategies but also improve diagnostic and prognostic tools.
Many studies have revealed an increased level of OGT or protein O-GlcNAc in high-grade breast, colon,
and prostate cancer when compared to low-grade ones [234]. Elevated O-GlcNAc has been described
in other various cancers as well [235]. Tumor cells can elevate the total O-GlcNAc levels by increasing
OGT or decreasing OGA, but for some tumors, O-GlcNAc deregulation is also known. Increasing
O-GlcNAc and OGT may be also involved in tumor invasion and metastasis. Table 1 lists some of
the recently published data about O-GlcNAc involvement in various types of neoplasia. As the data
shows, there is a lot of discrepancies and contradiction between various experiments concerning the
functional effects of O-GlcNAc (which could be certainly attributed to high level of variation among
cancer types), but the majority of the studies demonstrated that overall O-GlcNAc levels are increased
in tumor cells.

Table 1. Altered O-GlcNAc levels found in various types of neoplasia.

Cancer Type Change in
O-GlcNAc Proposed Effects References

Colorectal cc. increase Increased cell migration by up-regulating of
β-catenin and E-cadherin levels. [236]

Ovarian cc. decrease Loss of stability and nuclear translocation of tumor
suppressor p53. [237]

Prostate cc. increase
Increased cell migration by down-regulating
E-cadherin levels (contradicting data found

in [236]).
[238]

Prostate cc. increase Promotes Bmi-1 stability and its oncogenic activity. [239]

Pancreatic cc. increase

Increased oncogenic NF-κB transcriptional activity.
O-GlcNAc modified FOXO3 suppresses p21 thus

cell cycle is accelerated.
Stabilization of oncogenic transcription factor Sox2

by O-GlcNAc modification.

[240]
[241]
[242]

Breast cc. increase Tamoxifen resistance by reducing expression level
of estrogen receptor alpha. [243]

Lung and colon cc. increase Increased invasion and enhanced
anchorage-independent growth [244]

CLL increase
p53, c-myc and Akt were O-GlcNAc modification.
O-GlcNAc levels did not correlate with the clinical

aggressiveness of CLL.
[245]

AML increase Increased cell proliferation and sustained
undifferentiated state. [246]

Lung metastasis of
cervical cc. increase O-GlcNAc modification of NF-κB upregulates

CXCR4 chemokine receptor. [247]

The types of cancer (tissue samples or cell lines of oncogenic origin), the direction of change in protein O-GlcNAc
modification (increase or decrease) and specific targets of O-GlcNAc modification (if available) are listed.

5.3. Embryonal Development

OGT and OGA are abundantly expressed in placenta, and O-GlcNAc modification apparently
plays a significant role in placental function and placental development [248,249]. It was shown in mice
models that OGT gene was also essential for embryonic stem cell viability [250], and the deletion of
OGA has also proved to be fatal [251]. In oocytes, the regulatory role of O-GlcNAc during meiosis was
recognized early, as disruption of O-GlcNAc interactions lead to delayed maturation [252]. This was
further supported by additional studies [253,254], and a recent report also demonstrated that altered
O-GlcNAc levels during oocyte maturation may negatively impact fertilization [255].

O-GlcNAc can affect several stages of pregnancy. In the pre-implantation phase, hyperglycemia
have a negative effect on embryos [256]. Pantaleon et al. demonstrated in mouse zygote cultures that
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dysregulation of HBP and O-GlcNAc is a major contributor to the embryotoxic effects of hyperglycemia
in early stage of pregnancy [257]. O-GlcNAc also plays an important role in pluripotent embryonic
cell differentiation. Andres et al. showed that inhibiting OGT prior to neuronal induction of human
embryonic stem cells caused an immature state of the cells [258,259]. O-GlcNAc is also influential for
the neuronal differentiation at a later stage. Kim et al. demonstrated that in vitro neural stem cells
under hyperglycemic conditions presented a global O-GlcNAc increase by enhanced OGT activity,
which resulted in neural tube defects. They also proved that inhibition of OGT might be beneficial
to protect from birth defects in diabetic pregnancies [260]. Another study also concluded that high
O-GlcNAc levels due to diabetes might be the underlying cause for various neurodevelopmental
disorders. [261]. Taken together, dysregulation of O-GlcNAc seems to be a very important regulatory
mechanism in metabolically compromised pregnancies, contributing to the occurrence of various birth
defects, including neuronal impairments.

5.4. Endothelial Cell Proliferation, Wound Healing

In neoplastic tissues, altered O-GlcNAc modification could not be a significant contributor of
cancer cell proliferation, as we discussed above. However, angiogenesis, and vascularization is also
required for “successful” tumor progression, invasion and metastasis. Lynch et al. studied the role of
OGT in the growth, invasion and angiogenesis of human prostate cancer via regulation of FoxM1 and
its downstream effectors. FoxM1 is an oncogenic transcription factor of invasion and angiogenesis.
They found that reducing O-GlcNAc by shRNA inhibition of OGT in prostate cancer cells led to
increased FoxM1 protein degradation. More importantly, OGT inhibition in prostate cancer cells
decreased angiogenesis when overlaid on HUVEC cells [262]. Interestingly, Zibrova et al. found
opposite results when O-GlcNAc was inhibited directly in HUVEC cells. They found that inhibition
of GFAT, the rate limiting enzyme of HBP decreased O-GlcNAc but improved angiogenesis, and
they reasoned that activation of AMPK targets GFAT for phosphorylation may lead to decreased
O-GlcNAc levels in endothelial cells [263]. Earlier, the findings of Lou et al. also support the theory
that increased O-GlcNAc impairs angiogenesis [264]. According to their data, both in cultured HUVEC
and EA.hy926 endothelial cells and in STZ induced diabetic mouse aortic rings, glucosamine, and/or
high glucose levels increased protein O-GlcNAc modification but inhibited cell migration/wound
closure and capillary-like structure formation. They have also found evidence that O-GlcNAc’s effect
is at least mediated via the Akt signaling pathway.

Increased O-GlcNAc has been also implicated in impaired wound healing [265]. It is well known
that hyperglycemia alone or in combination with venous or arterial diseases, infection, and metabolic
disease may cause delayed healing or non-healing chronic wounds [266]. Although O-GlcNAc’s
impact on cell migration seems to be prominent in wound healing, its other effects on cellular adhesion
or cell proliferation cannot be excluded [267]. Wound healing is a complex process that involves
the mobilization and proliferation of keratinocytes, platelets, macrophages, endothelial cells, and
fibroblasts [268]. Given that O-GlcNAc is a ubiquitous modification present and dynamically changing
in all of these cell types, it is quite likely that its influence will be found in multiple processes of
wound healing.

5.5. Immune Cell Proliferation

The presence of protein O-GlcNAc modification was reported from several cell types of the innate
and adaptive immune system and also reviewed in recent publications [269,270]. Swamy et al. [137]
characterized the O-GlcNAc regulatory enzyme OGT as it “acts as a master regulator that depends
on nutrient levels to control the commitment of T cells to metabolically demanding processes of
clonal expansion, self-renewal and differentiation”. A recent paper by Machacek et al. [271] proposed
O-GlcNAc as a missing link between overnutrition and T cell function, i.e. they found that O-GlcNAc
elevation favored the activation of pro-inflammatory Th17 cells. Although this was mostly attributed
to IL-17 overproduction, a small increase in CD4+IL-17+ cells was also observed. In the case of B cells,
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the presence of OGT is required for B-cell homeostasis and activation, as reported by Wu et al. [272].
So far, O-GlcNAc has been demonstrated to have both anti-inflammatory and pro-inflammatory
potential, depending the cell type and environmental factors. To make things even more complicated,
both pro- and anti-inflammatory effects has been found to be mediated by NF-κB transcriptional
activity [269]. Nevertheless, cellular proliferation is one of the key functions of immune cells that
could be negatively (or positively) influenced by O-GlcNAc, whether it occurs during maturation,
differentiation or activation and expansion [273,274].

The detection and measurement of O-GlcNAc levels in leukocytes has been suggested for the
diagnosis of diabetes and pre-diabetic conditions [275]. Although elevated levels of O-GlcNAc in
leukocytes in diabetic conditions were confirmed by others as well [276], its impact on the immune
system are largely unknown. Similarly, compromised O-GlcNAc regulation in malignant disorders
was also recognized and started to attract more scientific interest recently, including hematopoietic
malignancies. E.g. high levels of O-GlcNAc was found in pre-B acute lymphocytic leukemia, which
was associated with overactivation of the PI3K/Akt/c-Myc pathway and enhanced proliferation [277].
Elevated level of O-GlcNAc and/or increased expression of OGT transcripts was also found in acute
myeloid leukemia (AML) [246] and in chronic lymphocytic leukemia (CLL) [245].

6. Conclusions

According to the frequently repeated phrase, “you are what you eat”. Although laymen often
interpret this expression in a literal sense, the impact of nutrition on health cannot be denied. The lack
or excess of one or more nutritional sources will indeed have a significant impact on the physiology of
cells. In diseases of metabolic origin such as diabetes, metabolic changes may have direct harmful
impacts on cells e.g. osmotic stress, energy depletion, toxic degradation products, etc. However, the
alterations caused in normal cellular metabolic routes and regulatory pathways (which were evolved
in fact to overcome environmental challenges, including metabolic ones) are just as important in the
understanding of the pathophysiological mechanisms.

As we have summarized above, these very complex and interconnected pathways could and
indeed do impact cellular proliferation, cell cycle regulation. Diabetes has been found to increase
cancer incidence [278], renal hypertrophy [31] or vascular cell proliferation [279]. Whether the effect is
pro- or anti-proliferative depends on the cell type, the duration of the changes, the extent of “damage”
and probably numerous additional factors as well. Thus, although advancement in proteomics and
metabolomics did help us to clarify and map many of these interactions, exponentially more data are
still required to resolve contradictory results and clarify which pathway(s) are dominant under various
conditions and how these pathways shift their influence as circumstances change. Focus on research
of protein O-GlcNAc modification will probably be an increasingly important subject in this respect.
Its ability to modulate almost all protein that can be phosphorylated (and probably even more as every
Ser/Thr amino acids are potential targets for O-GlcNAc modification) and its direct dependence on
carbohydrate substrate availability makes it an ideal candidate for making the link between nutrition
and proliferation. Indeed, there is a growing number of studies demonstrating that metabolic changes in
malignant cells come along with altered O-GlcNAc regulation [237,277,280,281]. Assessing O-GlcNAc
levels in tissue samples via biopsies would help to grade the tumor and to give a better prognosis.
Moreover, specific inhibitors of OGT and OGA are currently under development [282–284], offering
promising future options for engaging metabolic regulation of cancer cell during cancer therapy.
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