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Aza-heterocyclic Receptors 
for Direct Electron Transfer 
Hemoglobin Biosensor
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Direct Electron Transfer biosensors, facilitating direct communication between the biomolecule of 
interest and electrode surface, are preferable compared to enzymatic and mediator based sensors. 
Although hemoglobin (Hb) contains four redox active iron centres, direct detection is not possible 
due to inaccessibility of iron centres and formation of dimers, blocking electron transfer. Through 
the coordination of iron with aza-heterocyclic receptors - pyridine and imidazole - we report a cost 
effective, highly sensitive and simple electrochemical Hb sensor using cyclic voltammetry and 
chronoamperometry. The receptor can be either in the form of liquid micro-droplet mixed with blood 
or dry chemistry embedded in paper membrane on top of screen printed carbon electrodes. We 
demonstrate excellent linearity and robustness against interference using clinical samples. A truly point 
of care technology is demonstrated by integrating disposable test strips with handheld reader, enabling 
finger prick to result in less than a minute.

The point-of-care (POC) glucometer is an excellent example of how a simple and elegant idea can impact millions 
of lives. Clark and Lyons, through their seminal publication on glucose oxidase electrodes, laid the foundation for 
modern POC glucose sensors1. While most of the commercial glucose sensors are second generation, mediator 
assisted sensors, there has been substantial research in the recent past to enable third generation glucose sensors, 
by facilitating direct electron transfer between glucose oxidase enzyme and the working electrode2–4. Although 
the research publications in the field of biosensors have grown exponentially, in the last five decades, the com-
mercialization has alarmingly lagged behind5–9. Many critical reviews and editorials have stressed the need for 
new strategies for biomolecule recognition, with an emphasis on novel receptor design for robust and reliable 
sensing5–9.

The receptor in the biosensor should be specific to the biomolecule of interest in the pool of bio-fluid and 
should be capable of giving a signal through an appropriate transduction mechanism. Antibodies and enzymes 
have become the first choice as a receptor molecule in POC biosensors10,11. While these biological receptors are 
highly sensitive and selective, when used with biochemistry analyzers in a pathology laboratory, their use in POC 
biosensors has significant limitations. By definition, a biosensor is a self-contained device12 that can be used in 
POC settings without any special storage and handling requirements. The stability of antibodies and enzymes, 
after functionalization on disposable strips and cartridges, is still a serious problem in POC biosensors. Moreover, 
the accuracy is also affected by ambient temperature, humidity and pH variations10,13.

A low cost and robust POC Hb biosensor can have a big impact on public health for the diagnosis of anemia, 
especially in underdeveloped countries of the world. There can be different reasons for anemia which include 
iron deficiency, B12 deficiency, nutritional conditions or other chronic conditions such as chronic kidney disease. 
According to WHO guidelines, Hb as a single biomarker, can be used for the diagnosis of anemia14. Hb testing is 
also very important during pregnancy, since it has been associated with an increased risk of preterm delivery15. 
The WHO Global database on anaemia for 1993–2005, covering almost half the world’s population, estimated 
the prevalence of anaemia at 25% worldwide while the prevalence is 43% in underdevelopment countries16,17. 
Anaemia affects 1.62 billion people globally with about 293 million children of preschool age, 56 million pregnant 
women and 468 million non-pregnant women estimated to be anaemic. Africa and Asia account for more than 
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85% of the absolute anaemia burden in high-risk groups. In India, almost 58% of pregnant women are anaemic 
and it is estimated that anaemia is the underlying cause for 20–40% of maternal deaths. India contributes to about 
80% of the maternal deaths due to anaemia in South Asia18.

Hb testing was one of the oldest test done in pathology labs, and has evolved in the last several decades. Sahli’s 
acid hematin technique, Hoppe-Seyler’s carbon monoxide hemoglobin technique, Lovibond-Drabkin’s cyan-
methemoglobin technique, Cyanide free SLS technique used in most of the hematology analyzers, are all based 
on colorimetric principle19–22. Hb has attracted biosensor research community, for the past several years23,24. 
Due to the presence of iron redox centre in the heme prosthetic group, electrochemical transduction seems to 
be a natural choice. Although Hb contains four iron (Fe+2) atoms in its structure, the iron center is embedded 
deep inside the globin chains and it is very difficult for the iron centre to communicate with the electrode sur-
face for any practical sensing applications. Mediators such as ferricyanide, methylene blue, methylene green25–27, 
have also been employed for Hb biosensor. Ferricyanide, a redox active molecule, is an oxidizing agent for Hb 
and converts hemoglobin into methemoglobin. Hb is electrochemically assayed using ferricyanide as a mediator 
between hemoglobin molecule and electrode surface. The current at the electrode resulting from the oxidation 
of ferrocyanide to ferricyanide would be proportional to the concentration of Hb. Saithip Pakapongpan et al. 
described the electrochemical Hb biosensor based on methylene blue and carbon nanotube. Methylene blue is 
used as a mediator for Hb detection, where redox current of methylene blue depends on Hb concentration26. 
Christopher et al. proposed electrochemical Hb biosensor based on Poly (methylene blue) as a redox mediator22. 
Optical techniques such as surface plasmon resonance (SPR) have also been used for the detection of hemoglobin 
concentration in human blood28. The direct electron transfer of Hb embedded in novel electrode materials such 
as silver nanoparticles, dendrimers, graphene has been used to sense H2O2 and NO29–31. However, mediator free 
Hb biosensor, utilizing the direct electron transfer with heme centre has still been elusive.

Results and Discussions
Herein, we demonstrate a novel analytical method for POC electrochemical detection of metalloproteins such 
as Hb. We propose new receptors based on aza heterocyclic compounds - pyridine and imidazole – to facili-
tate direct electron transfer between iron centres of Hb and working electrode. Figure 1 illustrates the over-
all sensing scheme using pyridine based liquid chemistry (a though i) and imidazole based dry chemistry  
(j through n). Figure 1(c,f) show the cyclic voltamograms (CVs) on carbon screen printed electrodes obtained 
using lysed blood sample and alkaline hematin respectively from the same blood sample (see Paragraph-1 in 
Supporting Information for experimental details). It is evident from the Fig. 1(c) that the lysed blood (Hb) does 
not show any electrochemical activity on a carbon printed electrode but alkaline hematin shows an irrevers-
ible CV as shown in Fig. 1(f). Although the reduction current of alkaline hematin appears to be a potential 
candidate for Hb sensing, it is not so in practice. The reduction current peak of alkaline hematin saturates at 
very low Hb concentration (micro-molar) range which is well below clinically relevant value (see Paragraph-1 in 

Figure 1.  Pyridine and imidazole based concept for electrochemical detection of Hb. (a) Hb after lysing.  
(b) 300 uL lysed blood on carbon printed electrode. (c) CV of lysed blood. (d) Structure of Alkaline hematin.  
(e) 300 uL of alkaline hematin on carbon printed electrode. (f) CV of alkaline hematin. (g) Pyridine 
hemichrome. (h) 300 uL of pyridine hemichrome on carbon printed electrode. (i) CV of pyridine hemichrome. 
(j) dispersion of imidazole based chemistry on membrane laminated electrode. (k) Ready to use electrode with 
dried chemistry. (l) Imidazole-metHb hemichrome. (m) CV of imidazole hemichrome.
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Supporting Information). The reason for this non-linear response is the formation of dimers of hematin in aque-
ous solution32,33. The dimerization of hematin hinders the diffusion controlled electrochemical reaction, which is 
highly desirable for biosensing.

The coordination chemistry of iron porphyrins has attracted considerable interest because of the wide-
spread occurrence of the hemeproteins34. The origin of hemichromes was studied and classified in the late 60s. 
Hemichromes, with relatively high solubility in aqueous solutions, are low spin ferric compounds. They are 
formed when the 5th, 6th coordination positions of iron covalently attach with a ligand. Reversible hemichrome 
can be formed with the coordination of internal ligands such as distal histidine with 6th position of metal iron. 
Reversible hemichrome can convert back to the normal Hb biomolecule. The other types of hemichromes, called 
irreversible hemichromes, cannot be converted back to normal Hb. Irreversible hemichrome is characterized by 
the nitrogenous linkage at the 5th and 6th position of iron(III). Hemichromes have been shown to possess good 
diffusion controlled electrochemical activity without any complicated surface modifications35. This unique prop-
erty of hemichrome is used here to develop Hb biosensor. We propose to convert Hb, into hemichrome by coor-
dinating with nitrogenous ligands such as pyridine and imidazole. Then we obtain a well behaved reversible CV as 
opposed to the irreversible CV of alkaline hematin [Fig. 1(i,n)]. Further, nitrogenous ligands enable unhindered 
electron transfer with electrodes, as will be illustrated later.

Pyridine liquid sensing chemistry based Hb detection.  In pyridine based Hb detection, whole blood 
is lysed using DI water and is converted into alkaline hematin [Fig. 1(d)]. Alkaline hematin is then converted 
into pyridine hemichrome (pH =​ 12.9) after adding high concentration of pyridine in alkaline hematin solu-
tion [Fig. 1(g,i)]. The addition of DI water and pyridine solution dilutes the Hb concentration in original blood 
sample. This dilution is compensated after adding an extra Sigma Bovine hemin in the final solution, so that the 
final Hb concentration of the solution is 25 g/dL (see Paragraph-2 in Supporting Information for experimental 
details). 300 uL drop of different concentrations of Hb is applied at the carbon printed electrode and CVs are 
recorded for a wide range of Hb concentrations varying from 0.5 g/dl to 20.8 g/dl. Each concentration of Hb is 
tested three times on three different electrodes to analyze the repeatability of the assay. As seen in Fig. 2(a,b), the 
peak oxidation current is linearly proportional to the Hb concentration with R2 =​ 0.97. Instead of peak oxidation 
current, if we monitor the oxidation current at a fixed oxidation voltage of −​0.06 V, the repeatability and linearity 
is equally good with R2 =​ 0.96 (see Fig. S11 in Supporting Information). Typically, Chronoamperometry (CA) is 
a preferred technique in POC devices. Hence we analyze the efficacy of CA in Hb sensing. As shown in Fig. 2(c), 
we get an excellent response with R2 =​ 0.98. (see Fig. S12 in Supporting Information for CA graphs). The forma-
tion of pyridine hemichrome, which enables this sensing scheme, is verified using the UV-VIS spectroscopy 
[see Paragraph-3 in Supporting Information for details]. In pyridine hemichrome experiment, chemicals such 
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Figure 2.  (a) CV of Pyridine hemichrome for different Hb conc. (b) Error bar plot of peak oxidation current 
Vs. Hb conc. (c) CA plot for Oxidation current Vs. Hb conc. (d) Standard deviations and Coefficients of 
Variation.
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as NaOH and pyridine are used to convert Hb from lysed blood into pyridine hemichrome. In addition blood 
plasma may also contain many redox active molecules. Hence it is necessary to evaluate possible interference. 
The absence of redox peaks in CVs obtained in pure plasma solution, pyridine, NaOH confirmed the absence 
of any interference from the constituents of plasma, and other chemicals. The synthetic pyridine hemichrome 
samples prepared after adding pyridine into alkaline solution of Sigma Bovine hemin, produced redox peaks 
identical to human blood samples. This further confirmed that the proposed hemichrome conversion of Hb is 
solely responsible for the fully reversible redox activity [see Paragraph-3 and Fig. S3 in Supporting Information 
for details]. Figure 2(d) demonstrates that the standard deviation and coefficient of variations are well within the 
requirements for POC Hb biosensor. Thus the pyridine receptor chemistry is highly accurate and cost effective 
method for Hb sensing. But it would need some sample preparation protocol, due to its liquid nature.

Imidazole dry sensing chemistry based Hb detection.  For a robust POC biosensor, it is desirable 
to have stable, dry sensing chemistry on disposable carbon printed electrode. In imidazole based dry chem-
istry, Sodium dodecyl sulphate (SDS) and imidazole are functionalized on a paper membrane. SDS lyses 

Figure 3.  (a) SEM image of paper membrane dispensed with SDS-Imidazole chemistry (Inset EDX spectra of 
the membrane). (b) XPS wide band spectra of blank paper membrane and SDS-Imidazole paper membrane.

Figure 4.  (a) CV of Imidazole hemichrome for different Hb conc. (b) Error bar plot of oxidation current Vs. 
Hb. (c) CA plot for Oxidation current Vs. Hb conc. (d) Standard deviation and Coefficients of Variation.
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the red blood cells (RBC) and also converts Hb into metHb by denaturation of protein (see Paragraph-4 in 
Supporting Information for details). Imidazole coordinates with iron (III) in porphyrin structure [Fig. 1(m)] and 
forms imidazole-metHb hemichrome complex, which gives the reversible CV [Fig. 1(n)]. A paper membrane, 
dispensed with SDS and imidazole based sensing chemistry, is laminated on the carbon printed electrodes. (see 
Paragraph-5 in Supporting Information for details).

The paper membrane, functionalized with SDS-Imidazole sensing chemistry, is characterized by Scanning 
Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX) and X-ray Photoelectron Spectroscopy 
(XPS). Figure 3(a,b) show SEM, EDX and XPS spectra of the membrane after drying. The presence of sodium 
(Na) and nitrogen (N) in EDX spectra, clearly indicates signatures of SDS and imidazole. The XPS spectra shows 
the presence of sulphur (S), sodium (Na) and imidazole (see Paragraph-5 in Supporting Information for details).

300 uL drop of whole blood sample is applied on the membrane laminated printed carbon electrodes and 
CVs are recorded for four different Hb concentrations. Each concentration of Hb is repeated three times on 
three different test strips to estimate intra-assay variation. As seen in the Fig. 4(a,b), the oxidation current is 
proportional to Hb concentration in actual blood samples with R2 =​ 0.92. Figure 4(d) shows the standard devi-
ation and coefficient of variation. The efficacy of SDS-imidazole dry chemistry has also been analyzed by CA 
(Fig. 4(c)). (see Fig. S13 in Supporting Information for CA graphs). From this data an algorithm is developed 
to map the oxidation current to the actual Hb concentration in blood sample. This algorithm is used to create a 
novel handheld POC Hb sensor (Fig. 5(a)). (see Paragraph-6 in Supporting Information for details on handheld 
reader and disposable test strips). We demonstrate excellent sensing capability of proposed POC sensor, through 
tests performed on 101 clinical samples (Fig. 5(b)). The POC tests on disposable test strips are performed using 
70 uL of whole blood, with a testing time of about 30 seconds. The pathology lab tests are done using photometric 
method on Sysmex auto-analyzer using SLS-Hb complex. An excellent correlation with R2 =​ 0.917 is demon-
strated between POC device and Sysmex results. The statistical bias was analyzed using Bland-Altman plot (see 
Fig. S14 in Supporting Information) and the POC device results are within 95% CI interval. (Figure 5(c,d) show 
the intra assay variability plot and statistics. For this analysis, each blood sample is tested using 3 different test 
strips. Further the intra-assay variability analysis indicates that the coefficient of variation is in the range of 0.5% 
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Figure 5.  (a) Multi analyte electrochemical POC reader. (b) Correlation between Hb values of Laboratory Gold 
standard and SDS-Imidazole Dry chemistry using POC device. (c) Error bar plot for Intraassay variability.  
(d) Statistics for Intraassay variability.
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to 7.1% In summary, this study represents a major step forward in realizing robust and scalable, direct electron 
transfer POC Hb sensor utilizing aza-heterocyclic receptors.

Methods
Reagents and chemicals.  Sodium dodecyl sulfate (SDS) and bovine hemin (>​90%) were procured from 
Sigma-Aldrich. Imidazole, Pyridine and Sodium Hydroxide were procured from Merck. Saline solution was 
purchased from Baxter (India) Pvt. Limited. All the above chemicals were commercially available and used as 
received without further purification.

Apparatus and Measurements.  Electrochemical experiments were performed on CHI Electrochemical 
Workstation 660E. SEM images and EDS spectra were captured on Carl Zeiss Ultra 55 FESEM. XPS measure-
ments were done on AXIS ULTRA X-ray Photoelectron Spectroscopy UV-Spectroscopic measurements were 
performed on Shimadzu UV-Vis-IR Spectrophotometer. Carbon screen printed electrodes were used from PINE 
Instruments USA and GSI Technologies, USA with carbon material as working and counter and Ag/AgCl (PINE) 
or carbon (GSI) as reference.

Pyridine hemichrome based sensing.  In pyridine based Hb detection, 1.5 ml of whole blood (pH =​ 7.2) 
is lysed using 4 ml of cold DI water and is converted into alkaline hematin after adding 1.5 ml of 1 N NaOH. 
The pH of alkaline hematin solution is 12.6. Alkaline hematin is then converted into pyridine hemichrome 
(pH =​ 12.9) after adding 1.5 ml (12 M) of pyridine solution in alkaline hematin solution. The addition of DI water 
and pyridine solution dilutes the Hb concentration in original blood sample. This dilution is compensated after 
adding an extra 77 mg of Sigma Bovine hemin in the final solution, so that the final Hb concentration of the 
solution is 25 g/dL

Imidazole hemichrome based sensing.  The stock solution of 69 mM SDS and 7.4 M imidazole is pre-
pared in DI water and the final pH of the solution was 10.9. Blank paper membrane is laminated on the carbon 
printed electrodes. A micro droplet of 100 uL of SDS-imidazole based sensing chemistry is dispersed on paper 
membrane and dried at 30 °C for 90 minutes with a forced airflow at a velocity of 1.5 m/sec.
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