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Cancer cells undergo metabolic adaptations to sustain their growth and

proliferation under several stress conditions thereby displaying metabolic

plasticity. Epigenetic modification is known to occur at the DNA, histone,

and RNA level, which can alter chromatin state. For almost a century, our

focus in cancer biology is dominated by oncogenic mutations. Until recently,

the connection between metabolism and epigenetics in a reciprocal manner

was spotlighted. Explicitly, several metabolites serve as substrates and co-

factors of epigenetic enzymes to carry out post-translational modifications

of DNA and histone. Genetic mutations in metabolic enzymes facilitate the

production of oncometabolites that ultimately impact epigenetics. Numerous

evidences also indicate epigenome is sensitive to cancer metabolism.

Conversely, epigenetic dysfunction is certified to alter metabolic enzymes

leading to tumorigenesis. Further, the bidirectional relationship between

epigenetics and metabolism can impact directly and indirectly on immune

microenvironment, which might create a new avenue for drug discovery. Here

we summarize the effects of metabolism reprogramming on epigenetic

modification, and vice versa; and the latest advances in targeting

metabolism-epigenetic crosstalk. We also discuss the principles linking

cancer metabolism, epigenetics and immunity, and seek optimal

immunotherapy-based combinations.
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1 Introduction

Cancer metabolism is based on the principle that cancer cells undergo metabolic

adaptations to sustain their uncontrolled proliferation. Such adaptations render malignant

cells to exhibit altered metabolism compared to the normal cells. In 1920s, Warburg firstly

proposed (Kaye, 1998; Chinnaiyan et al., 2012) that cancer cells display enhanced glycolysis and

increased secretion of lactate even with abundant oxygen supply. This phenomenon is termed

as “Warburg effect” or aerobic glycolysis. Moreover, an emerging class of metabolic alterations

enables tumor cells to take up available ample nutrients and utilize them to produce ATP,

generate biosynthetic precursors for cell anabolism, and tolerate stresses related to malignancy,

OPEN ACCESS

EDITED BY

Na Li,
University of California, San Diego,
United States

REVIEWED BY

Xiawei Cheng,
East China University of Science and
Technology, China
Vera Miranda-Gonçalves,
Portuguese Oncology Institute,
Portugal

*CORRESPONDENCE

Yanru Qin,
yanruqin@163.com

†These authors have contributed equally
to this work and share first authorship

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Pharmacology

RECEIVED 04 May 2022
ACCEPTED 29 June 2022
PUBLISHED 22 July 2022

CITATION

Chen C, Wang Z and Qin Y (2022),
Connections between metabolism and
epigenetics: mechanisms and novel
anti-cancer strategy.
Front. Pharmacol. 13:935536.
doi: 10.3389/fphar.2022.935536

COPYRIGHT

© 2022 Chen, Wang and Qin. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Review
PUBLISHED 22 July 2022
DOI 10.3389/fphar.2022.935536

https://www.frontiersin.org/articles/10.3389/fphar.2022.935536/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.935536/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.935536/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.935536/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.935536&domain=pdf&date_stamp=2022-07-22
mailto:yanruqin@163.com
https://doi.org/10.3389/fphar.2022.935536
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.935536


such as hypoxia and nutrient starvation (Owen et al., 2002; Koppenol

et al., 2011; Lunt and Vander Heiden, 2011; Metallo et al., 2011;

Mullen et al., 2011; Wise et al., 2011; Cantor and Sabatini, 2012; Ahn

and Metallo, 2015). In this context, cancer metabolism provides a

selective advantage during tumorigenesis. Metabolic reprogramming

(Figure 1) is now recognized as a hallmark of cancer (Hanahan and

Weinberg, 2011; Pavlova and Thompson, 2016), which could be

intrinsically regulated by genotype and epigenotype, or extrinsically

affected by tumor microenvironment (TME).

Epigenetics was firstly established by Conrad Waddington in

1942 (Cairns et al., 2011), which refers to the study of modification

in gene expression or cellular phenotype that occurs without

changes in DNA nucleotide sequences (Possemato et al., 2011).

The basic unit of chromatin organization is nucleosome, which is

composed of DNA and histone octamer. Chromatin state is a

dynamic event that controls gene transcription. Epigenetic

modification of gene expression occurs at the DNA, histone,

and RNA level. The most well-characterized examples are DNA

methylation, histone methylation, acetylation, phosphorylation,

ubiquitination, and microRNA-dependent gene silencing

(Margueron and Reinberg, 2010). It is widely recognized that

epigenetic dysfunction is a common feature of many cancers

(Ribich et al., 2017). Numerous excellent reviews have

summarized the biology fundamentals of chromatin-modified

proteins (CMPs) (Tessarz and Kouzarides, 2014; Piunti and

Shilatifard, 2016; Soshnev et al., 2016) and the therapeutic

potentials to target CMPs in tumor (Pfister and Ashworth, 2017).

For almost a century, our focus in cancer is dominated by

oncogenic mutations. Until recently, the connection between

metabolism and epigenetics was emphasized in cancer biology.

Metabolism reprogramming is known to affect epigenetic

landscapes through different mechanisms. Conversely,

epigenetic regulation contributes to altered metabolic

activities. Hence, cancer metabolism and epigenetics are

highly interwoven in a reciprocal manner. This great

breakthrough has gained wide interest in targeting both

altered metabolism and modified epigenetics. However,

whether these two hallmarks synergistically attack tumor

remains unknown. Noteworthy, such a complex relationship

has the potential to affect immune system, such as trained

immunity, T cell activation, macrophage activation. A novel

strategy is to target epigenetics-metabolism axis in

combination with immunotherapy, potentially boosting more

potent antitumor responses.

FIGURE 1
Metabolism reprogramming in cancer cells. Metabolism reprogramming is characterized by a class of altered pathway, including enhanced
glycolysis with increased lactate production, and enhanced pentose phosphate pathway, fatty acid synthesis, and glutamine metabolism. These
metabolic pathways support energy supply and macromolecule biosynthesis, such as nucleotides, amino acids, and lipids. Metabolites that are
produced by altered metabolism have the potential to control signaling or epigenetic pathways by regulating reactive oxygen species,
acetylation, and methylation. Upregulated genes or proteins are labels red, whereas downregulated genes or proteins are labeled blue. GLUT,
glucose transporter; MCT, monocarboxylate transporter; SLC1A5, solute carrier family 1 member 5; TCA, Tricarboxylic acid cycle; G6PD, glucose-6-
phosphate dehydrogenase; HK, hexokinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PKM, pyruvate kinase M 2; LDH, lactate
dehydrogenase; ACSS2, Acyl-CoA short-chain synthetase-2; ACSS1: Acyl-CoA short-chain synthetase-1; ACLY: ATP citrate lyase; GLS, glutaminase;
GDH, glutamate dehydrogenase; PDC: pyruvate dehydrogenase complex; FH, fumarate hydratase; SDH, succinate dehydrogenase; IDH1/2,
isocitrate dehydrogenase 1/2; HCY, homocysteine; PPP, pentose phosphate pathway; ATP, adenosine triphosphate; ADP, adenosine diphosphate;
AMP, adenosine monophosphate; AMPK, AMP-activated protein kinase; OGT, O-GlcNAc transferase; OGA, O-GlcNAcase.
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In this review article, we firstly summarize the metabolic

alterations that drive epigenetic changes in cancer, and vice versa.

We next describe the therapeutic opportunities by targeting

metabolism-epigenetic crosstalk. Further, we discuss the

principles linking metabolism, epigenetics to immunity and

introduce the rationale for novel immunotherapy-based

combinations. Our aim is to introduce the fundamentals of

connection between metabolism and epigenetics in cancer

biology and discuss potential pharmacological strategies that

can exploit the metabolism and epigenetics in malignancy.

2 Metabolism shapes the epigenetic
state of cancer cells

Tumors are likely to harbor epigenetic changes driven by

their cellular metabolism. There are several different mechanisms

explaining the influx from metabolism to chromatin.

2.1Metabolites are either substrates or co-
factors for epigenetic enzymes

Epigenetic enzymes employ several metabolic intermediates

as substrates or co-factors to carry out post-translational

modifications of DNA and histone (Katada et al., 2012),

which in turn influence metabolic gene expression. Examples

of such metabolites include: SAM, α-KG, and FAD that

participate in DNA and histone methylation; acetate, acetyl-

CoA and NAD+ that mediate histone acetylation (Thakur and

Chen, 2019). These key metabolites are produced in multiple

pathways mediated by metabolic enzymes: SAM from one-

carbon metabolism, α-KG and FAD+ from the TCA cycle,

acetyl-CoA from glycolysis and glutamine metabolism, and

NAD+ from the conjunction of glycolysis and oxidative

phosphorylation (Wang and Lei, 2018). The fundamental

interface between metabolism and epigenetics has been

summarized in Table 1.

2.2 SAM/SAH ratio affects DNA and
histone methylation

2.2.1 SAM/SAH
DNA and histone methylation are respectively mediated by

DNA methyltransferase (DNMT) enzymes and histone

methyltransferase (HMT) enzymes (Varier and Timmers,

2011), both of which utilize S-Adenosyl-methionine (SAM) as

a major methyl donor. Methylation is to transfer a methyl group

from SAM to the receptor, and the remaining residue is

S-adenosyl-homocysteine (SAH) that is inhibitory to

methyltransferase. SAM is derived from one-carbon

metabolism that plays integral roles in DNA synthesis and

methylation reaction. The most studied metabolites, like

glucose and glutamine, feed into the one-carbon cycle and

increase the availability of SAM. Both global DNA

hypomethylation and site-specific CpG hypermethylation are

frequent epigenetic abnormities observed in cancer (Sandoval

and Esteller, 2012), while histone methylation may activate or

repress gene transcription (Vakoc et al., 2005; Berger, 2007;

Bernstein et al., 2007). Therefore, SAM/SAH ratio directly

affect the methylation status of chromatin.

2.3 TCA cycle metabolites regulate DNA
and histone demethylation

2.3.1 TCA cycle metabolites
Reversal of DNA and histone methylation is catalyzed by

DNA and histone demethylase. Histone demethylation is

regulated by two classes of enzymes: lysine-specific

demethylase family (LSD1 and LSD2) (Fang et al., 2010) and

TABLE 1 Fundamental interface of metabolism and epigenetics.

Metabolism pathway Metabolic enzyme Metabolites Epigenetic enzyme Epigenetic regulation

One-carbon cycle MAT SAM/SAH KMT, PRMT DNA and histone methylation

TCA cycle FADS FAD/FADH2 LSD Histone demethylation

TCA cycle IDH, GLUD α-KG TET and JmjC demethylase DNA and histone demethylation

TCA cycle ACSS1, ACSS2, ACLY Acetyl-CoA/CoA HAT Histone acetylation

Glycolysis/TCA cycle NMNAT NAD+/NADH SIRT, PARP Histone deacetylation

TCA cycle NA AMP/ATP AMPK Phospharylation

Hexosamine NA GlcNac OGT GlcNacylation

MAT, methionine adenosyltransferase; SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; KMT, Lysine methyltransferase; PRMT, protein arginine methyltransferase; TCA,

Tricarboxylic acid; ACSS, acetyl-CoA synthetase short-chain family member; ACLY, ATP citrate lyase; HAT, histone acetyltransferase; NMNAT, nicotinamide mononucleotide

adenylytransferase; PARP, poly-ADP ribose polymerase; FADS, flavin adenine dinucleotides; LSD, lysine specific demethylase; IDH, isocitrate dehydrogenase; GLUD, glutamate

dehydrogenase; TET, ten-eleven translocation methylcytosine dioxygenase; JmjC, Jumonji N/C-terminal domains; ATP, adenosine triphosphate; ADP, adenosine diphosphate; AMP,

adenosine monophosphate; AMPK, AMP-activated protein kinase; GlcNac, O-linked N-acetylglucosamine; OGT, O-linked N-acetylglucosamine transferase; NA, Not Applicable
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JmjC-containing family, both of which are dependent on ferrous

adenine dinucleotide (FAD). Also, JmjC family is ferrous ion-

dependent oxygenase requiring α-KG for the enzymatic

activation (Shi et al., 2005; Klose et al., 2006). Likewise, DNA

demethylation is modulated by TET-family proteins (TET1,

TET2, and TET3), which are also FAD- and α-KG-dependent

dioxygenase (Bhutani et al., 2011; He et al., 2011; Ito et al., 2011).

Both FAD and α-KG are intermediary metabolites produced in

TCA cycle. Other TCA metabolites, such as succinate and

fumarate, are identified as antagonists for JmjC-containing

family demethylase (Xiao et al., 2012). Therefore, TCA cycle

metabolites regulate epigenetic marks on DNA and histone.

2.4 Acetyl-CoA, NAD+ and acetate
influence histone acetylation

2.4.1 Acetyl-CoA
Histone acetylation is another important epigenetic

modification that depends on histone acetyltransferase (HAT)

and histone deacetylase (HDAC) (Shahbazian and Grunstein,

2007). Acetyl-CoA is a pivotal metabolite for energy production

and anabolic process (Wellen and Thompson, 2012; Pietrocola

et al., 2015). HAT transfers the acetyl moiety of acetyl-CoA to

lysine residues of histone, while HDAC is responsible for

removing the acetyl group to reverse histone acetylation. It is

well-known histone acetylation can increase nucleosome

mobility and activate transcription elongation (Racey and

Byvoet, 1971; Cai et al., 2011). Previous study figured out, in

yeast and mammalian cells, the glycolysis dynamically governs

the acetyl-CoA quantity and correspondingly regulates HAT-

dependent histone acetylation (Friis et al., 2009; Cai et al., 2011;

Lee et al., 2014).

2.4.2 NAD+

Histone deacetylation is catalyzed by two kinds of

deacetylases: zinc-dependent and NAD+-dependent proteins.

Deacetylation results in the tight wrapping of DNA by histone

and hence promotes gene repression and silence (Imai et al.,

2000; Finkel et al., 2009). Similarly, some metabolites function as

antagonists that inhibit the activities of HDAC. For example,

butyrate can robustly antagonize HDACs I, II and IV (Candido

et al., 1978). Also, NAD+ is regarded as a catalytic co-factor for

HDAC III to mediate histone deacetylation (Thakur and Chen,

2019). Further, evidence illustrated higher histone deacetylation

levels are associated with poorer prognosis (Kurdistani, 2011).

2.4.3 Acetate
Acetate has been implicated in driving histone acetylation

and deacetylation. Recently, the role of acetate in the interaction

between metabolism and epigenetics has been emphasized

during tumorigenesis. Under hypoxia, cancer cells decrease

the reliance on glucose and glutamate and inversely increase

the demand of acetate as a substitute carbon source for lipid

synthesis (Kamphorst et al., 2014). Consequently, acetate must be

converted to acetyl-CoA either by ACSS1 in mitochondria or by

ACSS2 in the cytoplasm or nucleus (Figure 1). There is already

evidence that both acetate and acetyl-CoA facilitate tumor

growth by histone acetylation in yeast (Cai et al., 2011).

ACSS2, as the only known enzyme utilizing free acetate in

nucleus (Moffett et al., 2020), could shape the epigenetic

landscape via selective histone acetylation. More specifically,

ACSS2 is translocated from cytoplasm to the nucleus

supplying a local of acetyl-CoA (Chen et al., 2017), which

contributes to all kinds of acetylation reactions in cell nuclei.

One study indicated (Gao et al., 2016), under hypoxia condition,

ACSS2 catalyzes the conversion of acetate to acetyl-CoA in the

hepatoma carcinoma cells, facilitating the hyper-acetylation of

histone K3K9, H3K27, and H3K56 and thereby upregulating the

expression of lipogenic enzymes. This explains how acetate links

metabolite levels to epigenetic regulation and gene transcription.

Otherwise, ACSS2 acts to recycle acetate generated from HDAC-

mediated deacetylation reactions under metabolic stresses,

replenishing the cytoplasmic and nuclear storage and thus

supporting chromatin remodeling events (Moffett et al., 2020).

2.5 ATP/AMP ratio controls histone
phosphorylation

2.5.1 ATP/AMP
Some kinase could be translocated to nucleus and straightly

phosphorylate histone (Baek, 2011). For example, AMP-

activated protein kinase (AMPK) acts as sensory signal of

ATP/AMP ratio (Hardie, 2011). Conversion of ATP to AMP

aids in anabolic process via AMPK-mediated pathway, whereas

catabolism relies on the opposite switch from AMP to ATP.

Owing to metabolic stress and low ATP/AMP ratio, AMPK is

activated to phosphorylate histone H2B on serine 36 that triggers

gene expression in favor of tumor survival (Bungard et al., 2010).

2.6 Hexosamine biosynthetic pathway
mediates protein glycosylation

2.6.1 O-GlcNAc
Protein glycosylation is carried by opposite actions of

O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA),

respectively responsible for the addition and removal of

O-GlcNAc from proteins. One of the most common features

that cancer cells demonstrate is OGT overexpression leading to

protein hyper-glycosylation (Pinho and Reis, 2015). Typically,

O-GlcNAc is produced in Hexosamine biosynthetic pathway

(HBP). In this pathway, glucose is firstly converted into glucose-

6-P and then fructose-6-P. A series of metabolites, such as acetyl-

CoA, UTP, glutamine, subsequently participate in the production
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of UDP-GlcNAc, the activated substrate for O-GlcNAcylation.

Therefore, HBP integrated various metabolism pathways.

Upregulation of HBP is associated with abnormal

O-GlcNAcylation and more invasive behavior (Caldwell et al.,

2010; Wellen et al., 2010; Itkonen et al., 2013; Onodera et al.,

2014; Lucena et al., 2016). Recently, studies confirm that

enhanced glycolysis aids in protein glycosylation (Wong et al.,

2017). Moreover, OGT is associated with TETs to control

O-GlcNAcylation of histone H2B for activation of gene

transcription (Chen et al., 2013; Ito et al., 2014), while OGT is

coordinated with EZH2 to modulate H3K27me3 for silence of

tumor suppressor genes (Chu et al., 2014).

Taken together, either methylation or acetylation controls

the activation and repression of gene transcription. This event is

balanced by various epigenetic enzymes. The cellular metabolites,

such as SAM/SAH, acetyl-CoA/CoA, NAD+/NADH, ATP/AMP

ratio, commonly act as substrate or co-factors for these

epigenetic-based enzymes (Table 2, Figure 2). Their

fluctuating concentrations could regulate the epigenetic profile

and affect gene transcription.

2.7 Genetic mutations of metabolic
enzyme that modify epigenome

Mutations in metabolic enzymes subject the cells to

tumorigenesis. Such changes facilitate the accumulation of

metabolites that ultimately lead to epigenetic dysfunction

(DeBerardinis and Chandel, 2016) and immunosuppression

(Table 3).

One example is to generate oncometabolite. Oncometabolite

refers to metabolites whose great quantity increases markedly in

tumors compared with normal cells (Nowicki and Gottlieb,

2015). This new term is used to describe metabolites for

which 1) there is a well-characterized mechanism connecting

mutations in metabolic enzymes to accumulation of a certain

TABLE 2 Metabolites are either substrates or co-factors for epigenetic enzymes in cancer biology.

Epigenetic
enzymes

Examples Substrates or Co-factors Mechanisms

DNA methylation and demethylation

DNA
methyltransferase

DNMTs SAM/SAH (methionine cycle) Methyl donors for methyltransferases

DNA demethylase TETs α-KG, 2HG, succinate, fumarate, vitamin C,
FAD/FADH2

Co-factors for α-KG-utilizing dioxygenases; Inhibition of α-KG-
utilizing dioxygenases

Histone acetylation and deacetylation

Histone
acetyltransferase

HATs Acetyl-CoA (TCA cycle/acetate) Acetyl donors for acetyltransferases

Histone deacetylases HDAC, SIRT NAD+, nicotinamide, β-Hydroxybutyrate,
succinyl-CoA, butyrate

Activation or inhibition of histone deacetylase; Histone succinylation

Histone methylation and demethylation

Histone
methyltransferase

Lysine: PKMTs,
Arginine: PRMTs

SAM/SAH (methionine cycle) Methyl donors for methyltransferases

Histone
demethylases

KDMs: LSD, JmjC α-KG, 2HG, succinate, fumarate, vitamin C,
FADH2

Co-factors for α-KG-utilizing dioxygenases; Positive regulators of LSD;
Inhibition of α-KG-utilizing dioxygenases

Histone phosphorylation

Histone kinase AMPK ATP/AMP Phosphate donors for protein kinase

Protein glycosylation

Protein glycosylase OGT, OGA O-GlcNAc O-GlcNAc donors for protein glycosylation
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metabolite; 2) there is convincing evidence for some metabolites

as a predisposition to tumorigenesis. Oncometabolites are

frequently associated with aberrant DNA damage and enable

the tumor microenvironment (TME) more invasive. Currently,

D-2-hydroxyglutarate (D2HG), L-2-hydroxyglutarate (L2HG),

succinate, fumarate, and lactate are recognized oncometabolites.

2.7.1 D2HG and L2HG
The first emphasized oncometabolite is D2HG, a reduced

form of the TCA cycle intermediate α-ketoglutarate, which is

scarce in normal tissues but rises to a higher concentration in

tumors (Xu et al., 2011). This oncometabolite is caused by

NADP+-dependent isocitrate dehydrogenase (IDH1 or IDH2)

mutation. High levels of D2HG inhibit the activity of TET-family

DNA and JmjC family histone demethylase. Overall, cancer cells

harboring IDH1/IDH2 mutations display hypermethylation of

DNA and histone (Figueroa et al., 2010; Losman et al., 2013).

Mutant-IDH1/IDH2 and their relationship to D2HG have been

reviewed extensively elsewhere (Losman and Kaelin, 2013).

These mutations frequently occur in gliomas, blood cancer,

glioblastoma multiforme, and cholangiocarcinoma (Yan et al.,

2009; Vatrinet et al., 2017). Another reduced form of

α-ketoglutarate is L2HG that is accumulated due to loss-of-

function mutations of L-2-hydroxyglutarate dehydrogenase

(L2HGDH) (Aghili et al., 2009; Rogers et al., 2010). The

increased levels of L2HG have been observed in renal cell

carcinoma and brain tumors (Shim et al., 2014).

2.7.2 Succinate and fumarate
This principle also applies to another two oncometabolites:

succinate and fumarate (Yang et al., 2013).Mutational inactivation

of succinate dehydrase (SDH) and fumarate hydratase (FH)

FIGURE 2
Cellular metabolites serve as co-factors or substrates for epigenetic enzymes. Addition or removal of epigenetic marks is catalyzed by
epigenetic enzymes, of which process relies on several critical metabolites. SAH/SAM, NAD+/NADH, Acetyl-CoA/Co-A, ATP/ADP ratio act as
important molecules or signals governing epigenetic modifications. In addition, Metabolites such as succinate, fumarate, 2-HG, and lactate could
inhibit the activity of epigenetic enzymes. HMT, histone methyltransferase; LSD, lysine-specific histone demethylase; JHDM, Jumonji domain-
containing histone demethylase; HAT, histone acetyltransferase; HDAC, histone deacetylase; SIRT, sirtuins; DNMT, DNAmethyltransferase; TET, ten-
eleven translocation methylcytosine dioxygenase; SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; α− KG, α-ketoglutarate; NAM,
nicotinamide; NAD+, nicotinamide adenine dinucleotide (oxidized); FAD, flavin adenine dinucleotide (oxidized); FADH2, flavin adenine dinucleotide
(reduced); FH, fumarate hydratase; SDH, succinate dehydrogenase; IDH1/2, isocitrate dehydrogenase 1/2; EZH2, enhancer of zeste 2 polycomb
repressive complex 2 subunit; KMT2D, histone-lysine N-methyltransferase 2D. AMPK, AMP-activated protein kinase; Pi, phosphate group; OGT,
O-GlcNAc transferase; OGA, O-GlcNAcase.

Frontiers in Pharmacology frontiersin.org06

Chen et al. 10.3389/fphar.2022.935536

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.935536


respectively contributes to the stacking up of succinate and

fumarate (Baysal et al., 2000; Tomlinson et al., 2002; Gottlieb

and Tomlinson, 2005), both of which interfere with α KG-

dependent dioxygenases, namely DNA and histone demethylase

(Nowicki and Gottlieb, 2015). Consequently, deficiency of SDH

and FH activity results in DNA and histone hypermethylation,

supporting the notion that oncometabolites are potentmodifiers of

the epigenome. Other studies provided additional layers of

metabolic control of epigenome. FH is observed to be

O-GlycNAcylated and consequently bring changes in histone

methylation (Wang et al., 2017). Another research proposed

that the enrichment of fumarate facilitates epithelial-to-

mesenchymal-transition (EMT) through inhibiting TET

methylase (Sciacovelli et al., 2016). Therefore, oncometabolites

perform their biological functions outside of conventional

pathways and play quantitative roles leading to aberrant

epigenome. Additionally, emerging evidence supports that both

succinate and fumarate contribute to immunosuppressive

polarization and T cell exhaustion, thereby making the tumor

microenvironment more suitable for cell migration. Explicitly,

succinate can upregulate tumor-associated macrophages (TAM)

marker gene expression, such as Arg1, Fizz1, Mhl1, andMgl2. The

expression of succinate receptor 1 is also associated with immune

inhibitory proteins, such as PD-L1, PD-1, and CTLA-4. Moreover,

fumarate could downregulate neutrophils, T-cell, and B-cell

responses, inhibit dendritic cell (DC) maturation, and motivate

CTLA-4 and PD-L1 expression.

2.7.3 Lactate
To ensure adequate ATP supply, the malignant

transformation is associated with an upregulated glycolysis (de

Groof et al., 2009). Cancer cells upregulate glycolytic enzymes

and metabolic transporters, which is connected with lactate

overproduction. A new discovery considered lactate might

have an effect on lysine residues of histone, acting in a similar

way to acetylation and gene activation (Hou et al., 2019; Zhang

et al., 2019). This phenomenon is based on the conversion of

lactate to acetyl residues and thereby stimulates tumor

angiogenesis. The accumulation of lactate also exerts an

immunosuppressive effect on TME through inhibiting the

differentiation and maturation of DC and T cell (Gottfried

et al., 2006).

2.7.4 PHGDH, PRODH, and NNMT
Cancer-specific mutations of metabolic enzymes with

implications in epigenetic regulation have been reported.

Phosphoglycerate dehydrogenase (PHGDH) is overexpressed

in breast cancer and melanoma (Locasale et al., 2011;

TABLE 3 The effect of oncometabolites on epigenetic dysfunction and immunosuppression.

Oncometabolite Metabolic
enzymes

Epigenetic
dysfunction

Immunosuppressive
effect

Malignancies References

D-2-
hydroxyglutarate

IDH1/2 DNA and histone
hypermethylation

NA Glioblastoma multiforme,
ALL, Chondrosarcoma,
Cholangiocarcinoma

Dang et al. (2009); Amary et al.
(2011); Borger et al. (2014); Shim
et al. (2014); Waterfall et al. (2014);
Colvin et al. (2016)

L-2-hydroxyglutarate L2HGDH DNA and histone
hypermethylation

NA Brain tumors, Renal cell
carcinoma

Aghili et al. (2009); Rogers et al.
(2010)

Succinate SDH DNA and histone
hypermethylation

TAM marker gene expression ↑ Pheochromocytomas,
Paragangliomas

Hao et al. (2009); Bardella et al.
(2011); Zhang et al. (2011); Yang
et al. (2013); Williamson et al.
(2015); Jiang and Yan, (2017); Mu
et al. (2017)

IL-6 secretion ↑

Fumarate FH DNA and histone
hypermethylation

Neutrophils, T-cell, B-cell
response ↓

Pheochromocytomas,
Paragangliomas

Kinch et al. (2011); Fieuw et al.
(2012); Sullivan et al. (2013); Zheng
et al. (2013b); Castro-Vega et al.
(2014); Shanmugasundaram et al.
(2014); Yang et al. (2014); Jin et al.
(2015); Zheng et al. (2015)

Inhibiting DC maturation

CD150, CD40, CD86 expression ↓
CTLA-4, PD-L1 expression ↑
IL-6, IL-1β, TNF-α secretion ↓

Lactate MCT/LDH Histone acetylation PD-1, PD-L1, CTLA-4
expression ↑

Lung carcinoma, Melanoma,
Prostate cancer

(Colegio et al., 2014; El-Kenawi
et al., 2019)

Inhibiting the differentiation of
monocytes to DCs

Inhibiting the differentiation of
progenitor cells to CD4+ and CD8+

T-cell

IDH1/2, isocitrate dehydrogenase; L2HGDH, L-2-hydroxyglutarate dehydrogenase; SDH, succinate dehydrogenase; FH, fumarate hydratase; MCT, monocarboxylate transporter; LDH,

lactate dehydrogenase; TAM, tumor-associated macrophages; ALL, acute lymphoblastic leukemia; NA, not applicable.
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Possemato et al., 2011), directing the metabolism toward the

serine biosynthesis pathway. Serine provides methyl donors to

one-carbon metabolism, thereby affecting cellular epigenetics

(Locasale, 2013). Conversely, PHGDH silence can

downregulate serine synthesis leading to tumor growth

suppression (Locasale et al., 2011; Possemato et al., 2011).

Another example is proline dehydrogenase (PRODH) that

catalyzes proline to produce pyrroline-5-carbonxylate (P5C),

which is sequentially converted into glutamate and α-KG to

affect epigenome (Phang et al., 2013). Studies showed

amplification of PRODH in immunodeficient mice displayed

tumor-suppressive characters (Liu et al., 2010). Nicotinamide

N-methyltransferase (NNMT) also modulates epigenetic events

in cancer cells. NNMT catalyzes the transfer of methyl group

from SAM to nicotinamide. Overexpression of NNMT hampers

SAM-dependent methylation of DNA and histone, along with

the procurement of more invasive phenotype (Ulanovskaya et al.,

2013).

As summarized, mutations in genes encoding metabolic

enzymes have been recognized in caner, but they are rare.

These lesions in genes related to metabolism constitute a new

class of cancer-associated mutations that is able to subvert

normal epigenetic regulation. It is tempting to speculate

that these mutations provide the hope of identifying novel

targets.

3 Epigenetic events contribute to
altered metabolism in cancer

3.1 DNA methylation

A number of metabolic enzymes are altered attributing to

DNA methylation. Examples of such enzymes involve Fructose-

1,6-bisphosphastase (FBP-1), fructose-1,6-bisphosphatase (FBP-

2), glucose transporter 1 (GLUT-1), Hexokinase (HK2), and

pyruvate kinase isozyme 2 (PKM-2).

As reported, promoter hypermethylation leads to the silence

of FBP-1 and FBP-2 in gastric, colon, liver, and breast cancers

(Kamphorst et al., 2014; Gao et al., 2016). Both FBP-1 and FBP-2

are rate-limiting enzymes for gluconeogenesis that antagonize

glycolysis. Theoretically, the silence of FBP-1 or FBP-2

contributes to glycolytic phenotype, supporting

macromolecular biosynthesis and energy production. DNA

methylation also mediates the gene overexpression of GLUT-1

that transports glucose from tumor microenvironment to

cytoplasm (Lopez-Serra et al., 2014). Oppositely, promoter

hypomethylation results in the upregulation of HK2 in

glioblastoma and hepatic carcinoma (Chen et al., 2011; Wolf

et al., 2011) and the overexpression of PKM2 in multiple cancer

types (Desai et al., 2014).

In brief, increased HK2 and PKM-2 levels promote enhanced

glycolysis, while the silence of FBP-1 and FBP-2 limit

gluconeogenesis. DNA methylation contributes to a higher

glycolytic influx, which is beneficial to the proliferation of

tumor cells.

3.2 Histone modifications

Sirtuins (SIRTs), an enzyme catalyzing histone deacetylation,

has been shown to function in cancer metabolism. Examples of

epigenetic enzymes are SIRT6, SIRT7, and SIRT2.

3.2.1 SIRT6
NAD+-dependent SIRT6 optimizes energy homeostasis by

regulating histone acetylation (Xiao et al., 2010). SIRT6 could

directly repress glycolysis in the HIF1 α-dependent way, thereby

it acts as a tumor suppressor by inhibiting the Warburg effect

(Zhong et al., 2010; Sebastián et al., 2012). Instead,

SIRT6 knockdown shifts the cell metabolism towards a

“glycolytic phenotype” inducing malignancy aggressiveness.

Specific deletions in SIRT6 have been observed in colon,

pancreatic, and hepatocellular cells (Zhang and Qin, 2014).

Also, a growing body of evidence demonstrates that

SIRT6 upregulates hepatic gluconeogenic gene expression and

increases glycerol release from adipose tissue. These findings

underline the potential to target SIRT6 for modulating cancer

metabolism (Roichman et al., 2021).

3.2.2 SIRT7
SIRT7 could directly interacts with MYC that mediates the

transcription of almost all the genes involved in glycolysis and

glutaminolysis (Barber et al., 2012; Shin et al., 2013).

SIRT7 selectively catalyzes H3K18 deacetylation that is a

repressive mark (Wong et al., 2017). Hence, SIRT7 plays an

opposite role in MYC-mediated metabolic reprogramming.

3.2.3 SIRT2
Compared to SIRT6/7, SIRT2 promotes cancer metabolism

through stabilizing MYC (Liu et al., 2013). SIRT2 specifically

deacetylases H4K16, resulting in decreased expression of

ubiquitin-protein ligase NEDD4. NEDD4 serves as a negative

regulator of MYC through ubiquitination and degradation

(Wong et al., 2017). Consequently, SIRT2 facilitates MYC-

dependent transcription and oncogenesis.

4 Novel cancer therapy targeting
metabolism-epigenetic crosstalk

4.1 Novel targets for cancer metabolism

Targeting metabolic enzymes might be novel strategy for

cancer therapy. LDH-A, a metabolic enzyme responsible for

the conversion of pyruvate to lactate, was recognized as the
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first metabolic target of the oncogene MYC (Shim et al., 1997).

Appealing evidence manifested genetic or pharmacologic

ablation of LDH-A is able to dwindle MYC-driven tumors

in the xenograft models (Fantin et al., 2006; Le et al., 2010).

Inhibition of LDH-A could delay the progression of myeloid

leukemia (Wang et al., 2014) and diminish NSCLC without

systemic toxicity in genetically engineered mouse models (Xie

et al., 2014). Hence, LDH-A is a promising target in MYC-

mutant tumors. Another attractive target is the glycolytic

protein Hexokinase (HK2). Many tumors express high

levels of HK2. Specific inhibition of HK2 delays tumor

progression in mouse models of NSCLC and breast cancer

(Patra et al., 2013). Targeting HK2 might be efficacious in

highly glycolytic tumors. Besides, PHGDH, an enzyme that

functions in the de novo serine synthesis, is found to

overexpress in human melanoma and breast cancers

(Locasale et al., 2011; Possemato et al., 2011). Targeting

PHGDH in the one-carbon metabolism has been shown to

delay tumor progression, though more studies are needed to

confirm it. Additionally, the concept of oncometabolite

opened a new window for targeted therapy. Small

molecules targeting IDH1/IDH2 demonstrate positive

outcomes in ongoing clinical trials (Yen et al., 2017). Taken

together, targeting metabolic enzyme holds great promise in

the treatment of malignancy (Olivares et al., 2015).

Targeting metabolism pathways, such as glycolysis,

glutamine metabolism, mitochondrial metabolism, and

autophagy, provides new opportunities for drug discovery

scheme. In the certain context, metabolites produced from

these metabolic pathways are able to affect epigenome. For

example, metformin, an anti-diabetic drug, has been

spotlighted on mitochondrial-mediated metabolic activity

emerging as a key target for cancer therapy (Weinberg and

Chandel, 2015). Because diabetic patients treated with

metformin not only control their blood glucose level but

also improve survival rate if cancer was diagnosed already

(Evans et al., 2005). Biguanide phenformin also displayed

anti-tumor effect by inhibiting mitochondrial complex I

(Birsoy et al., 2014). Another example is BPTES [bis-2-(5-

phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide], one

inhibitor of glutaminase activity, is being explored for anti-

cancer characteristics (Xiang et al., 2015). Autography offers

amino acids that fuel TCA cycle. Autography inhibition is

confirmed to decrease tumor progression without significant

toxicity in the mouse models of NSCLC and pancreatic

cancers (Son et al., 2013; Karsli-Uzunbas et al., 2014). An

alternative approach is to target acetate metabolism. As

discussed above, mitochondria conventionally provide

acetyl-CoA to the normal cells, whereas cancer cells also

utilize acetate to support cell survival under hypoxia or

nutrient deprivation (Schug et al., 2015). ACCS2, a

cytosolic enzyme that converts acetate to acetyl-CoA, is

dispensable for acetate metabolism and holds great

promise for cancer therapy. In models of hepatocellular

carcinoma, genetic loss of ACSS2 is likely to reduce

tumor burden (Comerford et al., 2014). Human

glioblastoma is sensitive to inhibitors of ACSS2 as well

(Mashimo et al., 2014).

4.2 Reversal of epigenetic dysfunction by
targeting metabolism

Over the past decades, a few studies represent how advances

of metabolic effects on epigenetics can be translated into

potential therapies. One strategy is to reverse epigenetic

dysfunction by targeting cancer metabolism (Table 4).

Glycolysis inhibitors could reverse global histone

hyperacetylation. 2-Deoxyglucose (2-DG), a glucose

analog, is a rate-limiting enzyme for glycolysis. The use of

2-DG inhibits acetyl-CoA levels, which rationally promotes

histone deacetylation in multiple cancer cell lines. Hence,

glycolysis inhibition represents a candidate target for

regulating histone acetylation. Glutaminolysis produces α−
KG and acetyl-CoA. Glutaminase (GLS) is an extensively

investigated target. Relevant inhibitors include CB-839,

compound 968, and BPTEs. For example, compound-968

suppresses histone H3K4me3 in breast cancer and Zaprinast

decreases H3K9Me3 in IDH-mutant cancer cells. The utility

of GLS inhibitors could restore epigenetic dysfunction,

particularly in IDH 1/2-mutant tumors. In addition, IDH

1/2 inhibitors specifically reduce the production of 2-HG

that is an oncometabolite in IDH 1/2-mutant cells. For

instance, AG-221 and AGI-6780 treatment result in

demethylation status of DNA and histone in IDH 2-

mutant tumors; AGI-5198 prompts demethylation of

H3K9me3 and H3K27me3 in chondrosarcoma cells; GSK-

321 causes DNA hypomethylation in AML cells. NNMT

inhibitors lead to reduced SAM levels, which in turn

downregulate histone methylation. The summarized

concepts are illustrated in Table 4.

4.3 Reversal of metabolism rewiring by
targeting epigenetics

Instead, using epigenetic drugs could modulate metabolism

rewiring as well (Table 5).

There are two kinds of DNMT inhibitors therapeutically

targeting DNA methylation, respectively named 5-azacytidine

and 5-aza-2′-deoxycytidine. Both of them have been approved by

FDA to treat myelodysplastic syndrome (MDS). IDH 1/2-mutant

tumors carrying DNA hypermethylation show a high sensitivity

to DNMT inhibitor. In IDH 1-mutant glioma models, both of 5-

azacytidine and 5-aza-2′-deoxycytidine induced tumor

regression. When inducing the differentiation of IDH-mutant
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glioma cells, 5-aza-2′-deoxycytidine displayed a more potent

efficacy than IDH inhibitors. Therefore, targeting epigenetics

is a complementary approach to modulate the effect of

oncometabolites in tumor. HDAC inhibitors could induce

histone acetylation and reverse gene silence caused by

HDACs. Growing evidence suggests HDAC inhibitors

significantly suppressed glycolysis in various cancer types,

such as lung cancer, breast cancer, and multiple myeloma.

These findings manifest that inhibition of HDAC might

reverse glycolytic phenotype. The modulation of SIRT

activator and inhibitor holds promise as their regulatory roles

inmetabolism reprogramming. MiRNA-based therapeutics, such

as miRNA-143, also inhibit glycolysis by targeting hexokinase-II

3′-UTR. More examples are summarized in Table 5.

4.4 Combination therapy of metabolism
and epigenetics

Advancements in the area of cancer drug discovery have

spotlighted on the inhibitors of metabolic pathways and cancer

epigenetics. However, the efficacy of epigenetic inhibitors alone is

not satisfactory, and this approach is usually prone to drug

resistance (Zhang et al., 2020). Also, cancer cell could be

drug-resistant to suppression of a particular metabolic

pathway by upregulating compensatory pathways or

expressing alternative isoforms. Further, inhibitions of

metabolic enzymes might produce systemic toxicity owing to

their physiological role in normal cells (Pearce et al., 2013; Ito and

Suda, 2014; Erez and DeBerardinis, 2015). To achieve the

TABLE 4 Reversal of epigenetic dysfunction by targeting metabolism.

Target
pathway

Metabolic
enzyme

Pharmacological
agents

Mechanism Indications References

Glycolysis Hexokinases 2-DG (phase-I/II) 2-DG suppresses hexokinase that
is a rate-limiting enzyme for
glycolysis; 2-DG reduces acetyl-
CoA level, which inhibits the
acetylation of histones in various
cancer cell lines

lung cancer, breast
cancer, pancreatic
cancer, prostate cancer,
lymphoma

Chen and Guéron, (1992); Liu
et al. (2015)

Glutaminolysis Glutaminase (GLS) CB-839 (phase-I);
Compound-968; Zaprinast

GLS inhibitors reduce acetyl-
CoA and 2-HG level;
Compound-968 decreases
histone H3K4me3 in breast
cancer and Zaprinast reduces
H3K9me3 in IDH1-mutant
cancer cells

AML, ALL, MM, NHL,
pancreatic carcinoma

Robinson et al. (2007); Wang
et al. (2010a); Simpson et al.
(2012a); Simpson et al.
(2012b); Elhammali et al.
(2014)

Serine/glycine
metabolism

PHGDH shRNA to PHGDH Inhibiting the process of de novo
serine synthesis

NA Locasale et al. (2011);
Possemato et al. (2011)

One-carbon
cycle

SAH hydrolase DZNep; Adenosine
Dialdehyde

Both agents could increase the
SAH/SAM ratio and decrease
DNA and histone methylation

NA Jiang et al. (2008); Miranda
et al. (2009); Momparler et al.
(2012); Schäfer and
Balleyguier, (2013);
Momparler and Côté, (2015)

IDH1 inhibitor IDH1-mutant AG-120, IDH305, AG-881,
BAY1436032, FT-2102, AGI-
5198, GSK-321

IDH1 inhibitors suppress the
production of 2-HG that is a kind
of oncometabolite in IDH1-
mutant cells; AGI-5198 prompts
demethylation of H3K9me3 and
H3K27me3 in IDH1-mutant
chondrosarcoma cells; GSK-321
induces DNA hypomethylation
in IDH1-mutant AML cells

AML, solid tumors,
gliomas, hematologic
malignancies

Rohle et al. (2013); Zheng et al.
(2013a); Davis et al. (2014);
Deng et al. (2015); Kim et al.
(2015); Li et al. (2015);
Okoye-Okafor et al. (2015)

IDH2 inhibitor IDH2-mutant AG-221, AG-881, AGI-6780 IDH2 inhibitors suppress the
production of 2-HG that is a kind
of oncometabolite in IDH2-
mutant cells; AG-221 and AGI-
6780 prompt demethylation of
DNA and histone in IDH2-
mutant cancer cells

AML, solid tumors,
gliomas, hematologic
malignancies

Wang et al. (2013); Kernytsky
et al. (2015)

NNMT inhibitor N-Methylnicotinamide Nicotinamide
N-methyltransferase
(NNMT)

NNMT inhibitors reduce SAM
level and histone methylation in
NNMT-overexpressed cells

NA Kraus et al. (2014)

2-DG, 2-Deoxyglucose; GLS, glutaminase; AML, acute myeloid leukemia; ALL, acute lymphocytic leukemia; MM, multiple myeloma; NHL, Non-Hodgkin Lymphoma; NA, not applicable.
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purpose of less toxicity and potent efficiency, a rational strategy is

to develop multiple drug combinations.

As an epigenetic regulator, enhancer of zeste homology

(EZH2) inhibits gene transcription by trimethylation of

histone H3K27 in cancer cells. Mounting evidence has

suggested that EZH2 participated in the alteration of

metabolic profiles in cancer through diverse pathways,

covering glucose, lipid, amino acid metabolism. Meanwhile,

metabolic activities also affect the stability and

methyltransferase activity of EZH2, as some metabolites offer

the donors for EZH2 post-translational modifications (Zhang

et al., 2020). As a promising target, EZH2 inhibitors have been

investigated in preclinical trials, but the effectiveness of

EZH2 inhibitors alone is not satisfactory (De Raedt et al.,

2011; Baude et al., 2014; Huang X. et al., 2018). Recently,

researchers have found EZH2 inhibitor is able to weaken drug

resistance caused by metabolic activities in tumor. Solid tumor is

subject to hypoxia and glutamine deficiency because of the

underdeveloped vascular system. Hypoxia induces a metabolic

switch from oxidative to glycolytic metabolism, promoting the

dedifferentiation of tumor cells and inducing resistance to radio-

and chemotherapy. However, EZH2 inhibitors could directly

block H3K27 methylation and consequently activate the

transcription of pro-differentiation genes. Also, metabolic

pathway is likely to downregulate EZH2 activity and thereby

acts synergistically with EZH2 inhibitors (Zhang et al., 2020).

More specifically, AMPK is activated in response to energy stress

(glucose deficiency) and phosphorylates EZH2 (Cha et al., 2005).

AKT-mediated phosphorylation of EZH2 suppresses

trimethylation of lysine 27 in histone H3, facilitating the

transcription of target genes to suppress tumor growth (Cha

et al., 2005; Priebe et al., 2011; Gao et al., 2014; Kim and Yeom,

2018). Therefore, a combination of EZH2 inhibitors with

metabolic regulators is a novel strategy to rescue the poor

effectiveness of EZH2 inhibitor alone (Zhang et al., 2020).

Briefly, epigenetic and metabolic alterations mediated by

EZH2 are highly interlaced, demonstrating a synergistic effect

in treating malignancy.

A model whereby linked metabolic-epigenetic programs

reflects a new idea to target such an integrated axis. A study

(McDonald et al., 2017) on the evolution of pancreatic ductal

adenocarcinoma (PDAC) introduced an epigenetic mechanism

that links glucose metabolism to distant metastasis. Remarkably,

oxidative branch of the Pentose Phosphate Pathway (ox-PPP)

TABLE 5 Reversal of metabolism reprogramming by targeting epigenetics.

Inhibitors Target enzyme Pharmacological
agents

Mechanism Indication References

DNMT inhibitor DNA
methyltransferases

Azacitidine (approved) Non-selective inactivating DNMT1,
DNMT3A, and DNMT3B; Reversing the
hypermethylation status in IDH1-mutant
glioma cells

MDS, AML Borodovsky et al. (2013); Turcan
et al. (2013)Decitabine (approved)

Guadecitabine
(phase-III)

KDM inhibitor LSD1 (Lysine
demethylase)

ORY-1001 (phase-I) Inhibiting histone demethylation AML,
SCLC, MDS

NCT02913443

GSK2879552 (phase-I) NCT02177812

NCT02034123

HDAC inhibitor Histone deacetylases Romidepsin (approved) Prompting histone acetylation; Reducing
glucose uptake, glycolytic flux, and lactate
metabolism

T-cell
Lymphoma,
MM

Wardell et al. (2009);
Alcarraz-Vizán et al. (2010);
Amoêdo et al. (2011); Rodrigues
et al. (2015)

Vorinostat (approved)

Panobinstat (approved)

Belinostat (approved)

SIRT activator
and inhibitor

SIRT6 (Histone
deacetylases)

Linoleic acid Activating or inhibiting histone
deacetylation; Free fatty acid activates
SIRT6 that inhibits glycolysis

Unknown Feldman et al. (2013)

Myristic acid

Oleic acid

miRNA
modulator

miRNAs miRNA mimics miRNA reversed silenced miRNA function;
miRNA-143 could inhibit glycolysis by
targeting hexokinase-II 3′-UTR; Anti-
miRNA-21 could restore PTEN expression

Unknown Meng et al. (2007); Gregersen et al.
(2012)miRNA sponges

antisense
oligonucleotides

DNMT, DNA, methyltransferase; KDM, lysine demethylase; HDAC, histone deacetylase; SIRT, sirtuin; miRNA, microRNA; MDS, myelodysplastic syndrome; AML, acute myeloid

leukemia; SCLC, small cell lung cancer; MM, multiple myeloma; 3′-UTR, 3′-untranslated region.
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was a driving force for epigenetic programming (histone

H3K9 and DNA methylation) that enhanced tumorigenic

fitness during the distant metastasis. Hence, targeting ox-PPP

to reverse malignant epigenetic programs could be effective in

metastatic PDAC. Another best-studied example is the use of

AMPK activator metformin, which decreased EZHIP protein

concentrations, elevated H3K27me3, inhibited TCA cycle, and

suppressed tumor growth. Consequently, targeting integrated

epigenetic-metabolic pathway shows hopeful therapeutic

efficacy in mice models transplanted with PFA ependymomas

(Panwalkar et al., 2021).

Oncogenic signal pathways also play important roles in novel

combination therapy. A distinct work on melanoma demonstrated

that reduced α-KG levels result in histone hypermethylation and

develop the resistance toBRAF inhibitors. The combination of histone

methyltransferase and BRAF inhibitors was sufficient to overcome

resistance (Pan et al., 2016). Also, liver kinase B1 (LKB1)-deficiency

tumors carrying KRAS activation would accompany with SAM

production, leading to more potent methyltransferase activity and

increased DNA methylation levels (Kottakis et al., 2016). Combined

inhibition of DNA methyltransferase and serine metabolism could

attack LKB-loss tumors with KRAS-positive more aggressively.

Taken together, our understanding in targeting both altered

metabolism and epigenetics remains at a very early stage.

Whether these two hallmarks exert synergistic functions in

tumor is less explored, though there are a few well-elaborated

agents in ongoing clinical trials (Table 6).

5 Epigenetic, metabolic, and immune
crosstalk

5.1 Principles linking cancer metabolism,
epigenetics, and immunity

In the traditional viewpoint, immunological memory is a unique

feature of the adaptive immune system (Netea et al., 2020a).

However, “Trained immunity” is a relatively new term that refers

to myeloid cells from the innate immune system also display

memory capacity after pathogen exposure (Dominguez-Andres

and Netea, 2019; Netea et al., 2020b; O’Neill and Netea, 2020).

After the first stimuli, innate immune cells, such as macrophage and

monocyte, are epigenetically programmed (Fanucchi et al., 2021).

These epigenetic modifications unfold chromatin and expose

promoter and enhancer regions controlling immune-associated

genes, enabling them accessible to transcription factors (Klemm

et al., 2019) and permitting cells to maintain a “trained” state after

rechallenge (Saeed et al., 2014). Specifically, H3K4me3 frequently

occurs on gene promoters; H3K4me1 and H3K27Ac accumulates

on enhancers (Quintin et al., 2012; Novakovic et al., 2016). As such,

upon the secondary stimulus, immune genes are more robustly

transcribed (Fanucchi et al., 2021).

In addition, some metabolites act as substrates or co-

factors for epigenetic enzymes, which alter chromatin state

to cause transcriptional changes that are causal to trained

immunity (Fanucchi et al., 2021). For example, acetyl-CoA

mediates histone acetylation following immune stimuli

(Wellen et al., 2009; Christ and Latz, 2019), while SAM

level regulates DNA and histone methylation to control

trained immunity (Mentch et al., 2015; Ji et al., 2019). On

the contrary, NAD+ assist histone deacetylation to block

trained immunity (Yeung et al., 2004; Zhong et al., 2010;

Lo Sasso et al., 2014; Jia et al., 2018). α-KG-derived

metabolites reduce histone demethylation by competing

with α-KG-dependent KDM5 histone demethylase (Sowter

et al., 2003; Cheng et al., 2014). Explicitly, human monocytes

exposed to β-glucan will have higher concentrations of

α-KG-derived metabolites and lower activity of

KDM5 demethylases, which is associated with less

H3K4me3 demethylation and higher gene expression

(Fanucchi et al., 2021). Overall, the induction,

maintenance, and regulation of “trained immunity” is

based on the complex interplay between epigenetics and

metabolism.

TABLE 6 Ongoing clinical trials of combined anti-epigenetic drugs and anti-metabolism drugs.

Identifier Start year Combination therapy Conditions Phase Enrollment

Anti-epigenetics
drug

Anti-metabolism drug

NCT02719574 2016 Azacitidine FT-2102 AML/MDS I/II 336

NCT02677922 2016 Azacitidine AG-120 AML I/II 131

NCT03173248 2017 Azacitidine AG-120 AML III 148

NCT03471260 2018 Azacitidine AG-120 Hematologic malignancies I/II 30

NCT03683433 2018 Azacitidine AG-221 AML II 50

NCT03684811 2018 Azacitidine FT-2102 Solid tumors and gliomas I/II 200

NCT04774393 2021 Decitabine AG-120/AG-221 AML I/II 84

AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; DNMT, inhibitors: Azacitidine; Decitabine. IDH, inhibitors: AG-120 (Ivosidenib); AG-221 (Enasidenib); FT-2102.
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Apart from trained immunity, the crosstalk of metabolism and

epigenetics has been reported in T cell (Bailis et al., 2019) and

macrophage activation (Liu et al., 2017). A recent study has shown

that both mitochondrial citrate export and malate-aspartate shuttle

favor histone acetylation and influence the expression of specific

genes involved in T cell activation (Bailis et al., 2019). Also, a

research figured out α-KG produced from glutamine metabolism

orchestrates M2 macrophage activation by Jmjd3-dependent

epigenetic remodeling (Liu et al., 2017). Specifically,

H3K27me3 is a repressive epigenetic marker that downregulates

the expression ofM2macrophagemarker genes (Ishii et al., 2009). It

is notable Jmjd3 is a crucial enzyme for demethylation of H3K27

(Satoh et al., 2010). α-KG derived from glutamine metabolism could

facilitate epigenetic changes in a Jmjd3-dependent demethylation of

H3K27 on the promoters of M2-specific marker genes (Bailis et al.,

2019). This result indicates α-KG and Jmjd3 synergistically

TABLE 7 Ongoing clinical trials of combined anti-epigenetic drugs and immune checkpoint inhibitors.

Identifier Start year Combination therapy Conditions Phase Enrollment

DNMT inhibitors Checkpoint inhibitor

NCT02608437 2015 Guadecitabine Ipilimumab Metastatic melanoma I 19

NCT02530463 2015 Azacitidine Ipilimumab/Nivolumab MDS/Leukemia II 160

NCT02957968 2016 Decitabine Pembrolizumab Breast cancer II 32

NCT02890329 2016 Decitabine Ipilimumab MDS/AML I 48

NCT02664181 2017 Decitabine Nivolumab NSCLC II 13

NCT03094637 2017 Azacitidine Pembrolizumab High-risk MDS II 37

NCT03264404 2017 Azacitidine Pembrolizumab Pancreas cancer II 31

NCT03019003 2017 Azacitidine Durvalumab Head and neck cancer I/II 13

NCT03308396 2017 Guadecitabine Durvalumab Kidney cancer Ib/II 57

NCT04510610 2019 Decitabine Camrelizumab Hodgkin lymphoma II/III 100

NCT04353479 2020 Decitabine Camrelizumab AML II 29

Identifier Start Year Combination Therapy Conditions Phase Enrollment

HDAC Inhibitors Checkpoint Inhibitor

NCT02616965 2015 Romidepsin Brentuximab vedotin T-cell lymphoma I 27

NCT03024437 2017 Entinostat Atezolizumab Renal cancer I/II 72

NCT03848754 2019 Pracinostat Gemtuzumab ozogamicin AML I 14

NCT03903458 2019 Tinostamustine Nivolumab Advanced melanoma IB 21

NCT03820596 2019 Chidamide Sintilimab NK/T-cell lymphoma I/II 50

NCT04651127 2020 Chidamide Toripalimab Cervical cancer I/II 40

NCT04562311 2020 Chidamide Tislelizumab Bladder cancer II 43

Identifier Start Year Combination Therapy Conditions Phase Enrollment

KMT6A Inhibitor Checkpoint Inhibitor

NCT03525795 2018 CPI-1205 Ipilimumab Advanced solid tumor I 24

NCT03854474 2019 Tazemetostat Pembrolizumab Bladder cancer I/II 30

Identifier Start Year Combination Therapy Conditions Phase Enrollment

KDM1A inhibitor Checkpoint Inhibitor

NCT02712905 2016 INCB059872 Nivolumab Hematologic tumor I/II 116

NCT02959437 2017 INCB059872 Pembrolizumab Hematologic tumor I/II 70

MDS, myelodysplastic syndrome; AML, acute myeloid leukemia; NSCLC, non-small cell lung cancer.

Frontiers in Pharmacology frontiersin.org13

Chen et al. 10.3389/fphar.2022.935536

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.935536


promotes macrophage activation. Consequently, an attractive

strategy is to modulate glutamine metabolism to harness

macrophage-mediated immune responses.

5.2 Rational for novel immunotherapy-
based combinations

Cancer immunotherapy is rapidly developing in various

research settings, including CAR-T cell therapy, immune

checkpoint inhibitors, and adoptive transfer of tumor

infiltrating lymphocytes (Rosenberg et al., 1988; Zhao et al.,

2005; Robbins et al., 2011; Rosenberg et al., 2011; Rosenberg,

2012; Topalian et al., 2012; Maude et al., 2014). An innovative

strategy is the combination of immunotherapy with either

epigenetic inhibitors or metabolic inhibitors, or a triple

combination of them.

Epigenetics and immunology are both fast-developing fields

in cancer biology. Recent evidence provides unique

opportunities to combine epigenetics-based drugs with

immunotherapy (Zhang et al., 2020). Epigenetic-based drugs

include four pan-HDAC inhibitors and two DNMT inhibitors

approved by FDA before 2020 (Knutson et al., 2012; Yu et al.,

2017). These agents are able to change the immunosuppressive

tumor microenvironment and increased tumor-infiltrating

lymphocytes (Yanagida et al., 2001; Wang L. et al., 2010; Li

et al., 2013; Anwar et al., 2018), leading to enhanced tumor-

associated antigen presentation, activation of DC cells,

suppression of T cell exhaustion. Similar changes in TME

are also observed in tumor tissues treated with other agents,

such as inhibitors of KMT6A (EZH2), KDM1A (LSD1),

PRMT5, and BET proteins (Hemmings and Restuccia, 2012;

Kikuchi et al., 2015; Garcia and Shaw, 2017; Herzig and Shaw,

2018; Hoxhaj and Manning, 2020). Consequently, given that

epigenetic drugs boosting antitumor immune response,

immune checkpoint blockade therapies (ICBTs) and

epigenetic-based inhibitors exert synergistic functions to

sensitize less-immunogenic tumors and prevent both

primary and acquired resistance (Zhang et al., 2020).

There are numerous ongoing clinical trials summarized in

Table 7.

Metabolism can be modulated in vivo to govern anti-tumor

T cell longevity and functionality, which determines the efficacy

of immunotherapy (Chang and Pearce, 2016; O’Neill et al., 2016).

The modulation of T cell metabolism is a promising strategy to

enhance or suppress immune response (O’Sullivan and Pearce,

2015), as the characteristics of T cells are critical to determine

clinical outcomes (Klebanoff et al., 2012). Several advances have

been made in preclinical models. For example, when treating

vascularized melanoma, limiting the ability of T cells engaged in

glycolysis through suppression of hexokinase by 2-DG could

ultimately leads to enhanced anti-tumor efficacy (Sukumar et al.,

2013). Additionally, metabolic reprogramming occurs in other

immune cells within tumor microenvironment, such as

FIGURE 3
The crosstalk between metabolism and epigenetics in tumorigenesis.
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macrophages and dendritic cells (DCs). One research (Yan et al.,

2021) put forward strategies to enhance cancer immunotherapy

by manipulating metabolism reprogramming. For example, CB-

839 is a glutaminase inhibitor that has been explored in

numerous clinical trials with or without the combinations of

immunotherapy (Cerezo and Rocchi, 2020). Acetyl-CoA

acetyltransferase 1 (ACAT1) inhibitors could enhance the

activity of CD8+ T cells and reduce the inflammatory

response. Hence, ACAT1 might be a potential target to

optimize immunotherapy (Yang et al., 2016; Huang L. H.

et al., 2018; Bi et al., 2019). Indoleamine 2,3-dioxygenase

(IDO) is responsible for the conversion of tryptophan to

kynurenine in tumors. Blocking IDO can decrease Treg cells

and preserve the functionality of T cells. Combination of IDO

inhibitors (epacadostat) and immune checkpoint inhibitor

(pembrolizumab) has been shown safe enough in clinical

trials, though its efficacy needs further investigation

(Prendergast et al., 2017; Komiya and Huang, 2018; Long

et al., 2019). In summary, glutamine, acetyl-CoA

acetyltransferase 1 (ATAC1), indoleamine 2,3-dioxygenase

(IDO), lactate, and Toll-like receptors (TLRs) are likely to be

considered as novel “metabolic checkpoints”, targeting of which

could assist immune cells to achieve better anti-tumor effect.

Noteworthily, epigenetic, metabolism, and immune crosslink in

germinal-cancer-derived B-cell lymphomas (GCB) uncover a

rational triple combination therapy (Serganova et al., 2021). GCB

lymphoma is significantly heterogenous based on genetic, epigenetic,

and clinical characteristics. Epigenetic dysfunction, such as gain-of-

function mutations of EZH2 and loss-of-function mutations of

CREBP and EP300, disrupts the normal biological link between

lymphoma cells and immune TME, and motivates immune evasion

in GCB lymphoma. Also, lymphoma metabolism adaptions might

aggravate immunosuppression, leading to poorly infiltrated effector

T-cell. Considering the impacts of cancer metabolism on epigenetic

modifier and immune microenvironment, triple combination

therapy is a logic and feasible strategy for future treatment.

6 Perspectives

As reviewed, epigenetics and metabolism are highly

interconnected in a reciprocal manner (Figure 3). Such a

relationship is accentuated by the reversibility of both

processes (Henikoff and Matzke, 1997). A major goal in

exploring metabolism-dependent epigenetic modifications is

the hope of identifying novel targets for cancer therapy.

However, some aspects pertaining to metabolic-epigenetic axis

in cancers remain poorly understood.

Firstly, tumor heterogeneity is a major challenge that limits our

understanding (Hensley et al., 2016). Inconsistent metabolic

phenotypes were observed in various tumor tissues. Hence, tumor

heterogeneity allows cancer cells to escape the deleterious attacks of

inhibitors (Thakur and Chen, 2019). Secondly, the downstream

factors mediating the tumorigenic activity of oncometabolites

remains largely unknown. Thirdly, enzymatic parameters, such as

Km, Vmax, and allosteric and inhibitory binding constants, constitute

the basic element of the biochemistry (Reid et al., 2017). It is difficult

to define physiological conditions in which the concentration

dynamics of substrates and co-factors causally underlie an

alteration of chromatin status. Discrepancies exist between artificial

culture in vitro and physiological environment in vivo (Davidson et al.,

2016). Another complexity is the precise input of metabolism into

chromatin modifications, as both activation and suppression of

histone marks need metabolites. For instance, how to predict the

changes of SAM level establish the overall chromatin state and

epigenetic phenotype. Additionally, though a bunch of metabolic

enzymes function in nucleus have been identified, their individual

contribution to epigenetic alterations was less defined. Robust

experimental methods are needed to obtain accurate

measurements of metabolites in specific cellular domain. Despite

much interest in targeting both metabolism and epigenetics, poorly

understood layers that whether these two hallmarks confer

dependencies in tumors synergistically still exist.

In-depth connection between oncogenic signaling,

metabolism, epigenetics, and immunity in cancer would

facilitates effective designing of novel targeted drugs, which is

the premise of precision medicine. It is anticipated that multiple

combination therapies hold opportunities to improve care of

cancer patients. Nevertheless, several outstanding challenges will

be the major goal of future study.
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