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Abstract: The renin–angiotensin system is involved in the development of hypertension and sarcope-
nia. Increased levels of angiotensin II (Ang II) lead to upregulation of Ang II type 1 receptor (AT1R),
which results in increasing reactive oxygen species (ROS) by NAD(P)H oxidase (Nox). Increased ROS
led to increased helper T17 (Th17) and decreased regulatory T (Treg) cells through HIF-1α. Increased
Th17 secretes more IL-17, leading to increased NF-κB and muscle atrophy. We evaluated the effect of
Ecklonia cava extracts (ECE) and dieckol (DK) on attenuating muscle atrophy by decreasing AT1R and
NOX activity in spontaneous hypertensive rats (SHRs). The serum levels of Ang II and expression
of AT1R in the muscle were higher in SHRs than in normotensive animals of Wistar–Kyoto rats
(2.4 and 1.8 times higher than WKY, respectively). The expression of AT1R decreased by ECE or
DK (0.62 and 0.84 times lower than SHR, respectively). In SHRs, the expression of Nox 1, 2, and 4
were increased (1.2–1.15 times higher than WKY) but were decreased by the administration of ECE
(0.8–0.9 times lower than SHR) or DK (0.7–0.9 times lower than SHR). The Nox activity was increased
in SHRs (2.3 times more than WKY) and it was decreased by ECE (0.9 times lower than SHRs) and
DK (0.9 times lower than SHRs). The expression of HIF-1α, a marker of Th17 (RORγt), and cytokine
secreted by Th17 (IL-17) was increased in SHRs and was decreased by ECE or DK. The marker of Treg
(Foxp3) and cytokine secreted from Treg cells (IL-10) was decreased in SHRs and was increased by
ECE or DK. The expression of NF-κB/IL-1β/TNF-α and MuRF-1/MAFbx/atrogin-1 was increased in
SHRs and these were decreased by ECE or DK. The cross-sectional area of muscle fiber was decreased
in SHRs (0.7 times lower than WKY) and was increased by ECE (1.3 times greater than SHR) or DK
(1.5 times greater than SHR). In conclusion, ECE or DK leads to a decreased expression of AT1R and
Nox activity which modulates Th17/Treg balance and consequently, decreased muscle atrophy.

Keywords: muscle atrophy; hypertension; Th17/Treg balance; Ecklonia cava extract; dieckol

1. Introduction

The renin–angiotensin system (RAS) is an essential and dominant regulatory pathway
of blood pressure [1]. It is also involved in muscle atrophy or sarcopenia [2].

It has been revealed that angiotensin II (Ang II) leads to upregulation of NAD(P)H
oxidase (Nox) through Ang II type 1 receptor (AT1R) [3]. Ang II increases the production of
reactive oxygen species (ROS) by activating various Nox, such as Nox1, Nox2, Nox4, and
Nox5, and leads to upregulation of cell adhesion molecules and increases the synthesis of
proinflammatory mediators and growth factors in the vascular system [3,4]. ROS, which is
increased by Ang II, is involved in hypertrophy of cardiac myocytes and vascular smooth
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muscle cells, dysfunction of endothelial cells, and hypertension [5–7]. Nox-induced ROS
production is also involved in skeletal muscle atrophy [8,9]. Additionally, infusion of Ang
II for 4 weeks directly caused muscle atrophy in mice [10].

The progenitor CD4+ helper T cells could differentiate into helper T1 (Th1), Th2,
Th17, and regulatory T (Treg) cells [11]. Differentiation into Th17 cells is induced by
signal transducer and activator of transcription 3 (STAT3) and retinoid acid-related orphan
nuclear receptor t (RORt) [12]. The transcription factor forkhead box P3 (Foxp3) acts as a
negative regulator of RORt and leads to the differentiation of Tregs cells [13]. Th17 cells are
involved in chronic autoinflammatory diseases, such as rheumatoid arthritis, by producing
cytokines such as interleukin (IL)-17A, IL-17F, IL-21, IL-22, and IL-23 [14]. Meanwhile, Treg
cells show anti-inflammatory actions by secreting anti-inflammatory cytokines, such as
IL-10 and transforming growth factor-beta (TGF-β) [14,15].

Both Th17 cells and Tregs are known to be involved in hypertension. Th17 cells are
related to hypertension and vascular dysfunction by secretion of the cytokine IL-17 induced
by Ang II [16]. Meanwhile, Treg cells attenuate endothelial dysfunction in hypertension by
releasing IL-10, which decreases ROS production [17]. They are also involved in skeletal
muscle repair. During muscle repair, the local expansion of Treg cells is essential and
depleting anti-CD 25m Ab targeting CD4+CD25hi Treg leads to increased muscle damage
in dystrophic mice [18,19]. It is also known that Th17 cells are increased in the muscle of a
denervation-induced sarcopenia model [20].

ROS is involved in facilitating differentiation to Th17 cells since Nox-deficient T cells
demonstrated low ROS concentration and enhanced differentiation to nonpathogenic T
cells, which produce IL-10 and TGF-β [21,22].

Under hypoxic conditions, the expression of hypoxia-inducible factor 1 alpha (HIF-1α)
is increased, which is related to Th17 cell differentiation [23]. In addition, proinflammatory
cytokines, such as IL-1β, IL-6, and tumor necrosis factor alpha (TNF-α), are involved in
increased expression of HIF-1α [24]. HIF-1 increases differentiation to Th17 cells by direct
transcriptional activation of RORγt and through the formation of a complex of RORγt
and p300, which increases IL-17 [24]. Moreover, HIF-1α leads to proteasomal degradation
of Foxp3 and blocks differentiation to Treg cells [24]. IL-17 upregulates nuclear factor-
κB (NF-κB) by binding to the IL-17 receptor [25]. The upregulation of NF-κB results in
increasing the proteolytic activity of the ubiquitin–proteasome system (UPS) by increasing
the expressions of muscle atrophy F-box (MAFbx/atrogin-1) and muscle-specific RING-
finger protein 1 (MuRF-1), consequently increasing muscle protein degradation [26–28].
NF-κB also mediates the increase in proinflammatory cytokines, such as TNF-α, IL-1, and
IL-6 in various cells [29]. Furthermore, TNF-α upregulates MAFbx/atrogin-1, MuRF-1,
and atrophy of C2C12 myotubes [30]. Similar to TNF-α, IL-1β leads to a decrease in the size
of myotubes and upregulation of NF-κB signaling, which consequently results in increased
expression of MAFbx/atrogin-1 and MuRF-1 [31].

It has been reported that Ecklonia cava contains various biologic molecules which
shows antioxidant, anti-inflammatory, and antihypertensive effects [32–35].

Dieckol (DK), a phlorotannin in Ecklonia cava, has been especially noticed for its anti-
hypertensive effects, since it involves in inhibiting angiotensin 1-converting enzyme [36].
Moreover, DK is known to attenuate hypertensive nephropathy by decreasing the serum
levels of Ang II and decreasing the expression of (AT1R) in the kidney of spontaneously
hypertensive rat (SHR) [37]. It is also involved in modulating blood pressure by decreasing
Th17 and increasing Treg in the intestine and aorta of SHRs [38]. Although it is well known
that Ang II leads to increased ROS, which might increase Th17 and Th17, consequently
leading to upregulation of NF-κB, which increases muscle atrophy, it has not been fully
revealed whether the changes in the balance between Th17 and Treg cells lead to muscle
atrophy in SHRs, which showed an increased level of Ang II.

In this study, we evaluated whether Ecklonia cava extracts (ECE) and DK could modu-
late the balance of Th17/Treg cells by decreasing Nox activity, which had been enhanced by
Ang II in SHRs. We hypothesized that ECE and DK decreased the expression of AT1R and
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consequently led to a decreased production of ROS by Nox. The decreased Nox activity
leads to downregulation of HIF-1α, thus decreasing the differentiation to Th17, resulting
in decreased NF-κB expression. The decreased NF-κB led to decreased IL-1β and TNF-α,
which attenuated muscle atrophy.

2. Materials and Methods
2.1. Preparation of ECE and Isolation of DK

Ecklonia cava was provided by Aqua Green Technology Co., Ltd. (Jeju, Korea). For
extraction, Ecklonia cava was washed and naturally dried for 48 h, then the leaf blades were
homogenized by grinder, 50% ethanol was added, and incubated at 85 ◦C for 12 h. The
extracts of Ecklonia cava were filtered, concentrated, sterilized by heating to ≥85 ◦C for
40–60 min, and then spray-dried. DK, one of the representative phlorotannins present in
ECE, was isolated using centrifugal partition chromatography. We finally confirmed that
the purity of the DK used in the study was 93.58% [39].

2.2. Experiment Animals

Wistar–Kyoto (WKY) rats (male, 8 weeks old, 270 ± 4 g) and SHRs (male, 8 weeks
old, 280 ± 3 g) were obtained from the Animal Resource Centre (Murdoch WA, Australia)
and cared at a constant temperature of approximately 23 ◦C, relative humidity of 50%,
and a dark/light cycle of 12 h/12 h. After one week of acclimatization, the rats were then
randomly divided into four groups of 5 rats per group as follows: (1) WKY/water group
were orally administered with 5 mL/kg of drinking water; (2) SHR/water group were
orally administered with 5 mL/kg of drinking water; (3) in SHR/ECE group, 100 mg/kg
of ECE dissolved in drinking water was orally administered in an amount of 5 mL/kg; (4)
in SHR/DK group, 2.5 mg/kg of DK dissolved in drinking water was orally administered
in an amount of 5 mL/kg. [35,38]. All rats were orally administered the substance using an
oral zonde for each rat at 9 a.m. every morning for 4 weeks. When rats were sacrificed,
whole blood was collected and serum was separated using serum-separating tube (SST; BD
Vacutainer, cat. 365967, Franklin Kakes, NJ, USA). All animal experiments were performed
with approval according to the ethical principles of the Institutional Animal Care and Use
Committee of Gachon University (approval number: LCDI-2019-0121). All experiments
were repeated thrice per animal.

2.3. Sample Preparation
2.3.1. RNA Extraction and cDNA Synthesis

According to the manufacturer’s instructions, total RNA was isolated using RNAiso
Plus (Takara, cat. 9108, Kyoto, Japan). The extracted RNA pellet was washed with a
high-quality wash of 70% ethanol. Then, the pellet was air-dried and dissolved in 30 µL of
diethyl pyrocarbonate-treated water. The extracted RNA samples were quantified using a
Nanodrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA) and was synthesized using
a cDNA synthesis kit (Takara, cat. 6110A) according to the manufacturer’s instructions.

2.3.2. Protein Isolation

The gastrocnemius muscle protein of rats was isolated using the EzRIPA lysis kit
(ATTO Corporation, cat. WSE-7420, Tokyo, Japan). First, muscle tissues were homogenized
with lysis buffer containing protease and phosphatase inhibitor. Then, protein samples
were briefly sonicated and centrifuged at 14,000× g for 20 min at 4 ◦C. After collecting the
supernatants and transferring it to a new tube, the protein quantification was determined
using a bicinchoninic acid assay kit (BCA kit; Thermo Fisher Scientific, cat. 23225, Waltham,
MA, USA).

2.3.3. Paraffin-Embedded Tissue Section

The gastrocnemius muscle tissues of rats were stored in 4% paraformaldehyde (Sigma-
Aldrich, cat.16005, St Louis, MO, USA) in phosphate buffered saline (PBS) at 4 ◦C for 12 h.
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The fixed tissue was washed for 1 h, and a paraffin block was processed using a tissue
processor (Thermo Fisher Scientific, Waltham, MA, USA). The paraffin blocks were cut
into sections (7 µm thick) using a microtome (Leica, Wetzlar, Germany) and dried at 45 ◦C
overnight. The paraffin blocks were passed through xylene and four concentrations of
ethanol (100, 95, 80, and 70%) to prepare them for staining.

2.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

The synthesized cDNA was used for qRT-PCR. The qRT-PCR mixtures contained
5 µL SYBR Green reagent (Takara, cat. RR430A), 1 µg cDNA template in 2 µL, and a
10 pmol primer in 0.8 µL and were dispensed in each well of a 384-well multiplate and
then analyzed using CFX386 Touch (Bio-Rad, Hercules, CA, USA). Validated genes are
listed in Supplementary Table S1.

2.5. Enzyme-Linked Immunosorbent Assay (ELISA)

AngII (MybioSource, cat. MBS705139, San Diego, CA, USA) in the serum, NADP/
NADPH+ ratio (Abcam, cat. ab65349, Waltham, MA, USA) and superoxide dismutase
activity (Abcam, cat. Ab65354) in the gastrocnemius muscle of each group were determined
using the appropriate kit, following the manufacturer’s instructions.

2.6. Immunoblot Analysis

Equal amounts (30 µg) of muscle proteins were separated on 10% polyacrylamide
gels and transferred to a polyvinylidene fluoride membrane (Millipore, cat. IPVH00100,
Burlington, MA, USA). The membranes were incubated with NOX1 antibodies (1:3000,
Novus Biologicals, cat. NBP1-31546, Abingdon, UK), NOX2 antibodies (1:1000, Novus
Biologicals, cat. NBP1-41291), NOX4 antibodies (1:500, Novus Biologicals, cat. NBP1-
58849), and GAPDH (1:5000, CliniSciences, cat. CSB-MA000184, Nanterre, France) for
12 h at 4 ◦C and then washed three times with tris-buffered saline containing 0.1% tween
20 (TTBS). Then, the membranes were incubated using a secondary antibody (Vector
Laboratories, cat. PI1000, Burlingame, CA, USA). After washing three times with TTBS,
enhanced chemiluminescence (ECL; GE Healthcare, cat. GERPN2232, Chicago, IL, USA)
detection reagent was used to visualize the immunoreactivity proteins on the membrane.

2.7. Immunohistochemistry Using 3,3-Diaminobenzidine

To block endogenous peroxidase activity, deparaffinated gastrocnemius muscle tissue
slides were incubated in 0.3% hydrogen peroxide for 30 min at room temperature. The
slides were rinsed three times with PBS and then incubated with HIF-1α antibodies (1:400,
LSBio, cat. LS-B650, Seattle, WA, USA), IL-17A antibodies (1:50, Santa Cruz Biotechnology
Inc., cat. sc-293132, Dallas, TX, USA), and IL-10 antibodies for 24 h at 4 ◦C in normal
serum. The probed slides were washed thrice with PBS and incubated in a biotinylated
secondary antibody using the ABC kit (Vector Laboratories Inc., cat. 6100) for 2 h at room
temperature, and then washed three times with PBS. The tissue slides were incubated
with 3,3′-diaminobenzidine (DAB; cat. D8001, Sigma-Aldrich, St Louis, MO, USA) for
15 min and washed with running water. For nuclei staining, tissue slides were immersed
in hematoxylin solution for 1 min and then mounted using dibutyl phthalate polystyrene
xylene (DPX; cat. 06522, Sigma-Aldrich) mounting solution. The stained tissues were
photographed under an optical microscope (Olympus Optical Co., Tokyo, Japan) and
analyzed using ImageJ (NIH, Bethesda, MD, USA) software.

2.8. Hematoxylin and Eosin Staining

Hematoxylin and eosin staining was used to determine the cross-sectional area of
the muscle fiber. The muscle tissue slides were incubated with hematoxylin (DAKO, cat.
CS700, Glostrup, Denmark) for 1 min, rinsed in distilled water for 10 min, and placed in
eosin Y solution (Sigma-Aldrich, cat.318906) for 1 min at room temperature. Nuclei were
detected by their blue appearance, and cytoplasm was detected by light-pink coloration,
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and the completed slides were observed under an optical microscope (Olympus Optical
Co., Nagano, Japan). The mean cross-sectional area (CSA) of muscle fiber was measured
using ImageJ (NIH, Bethesda, MD, USA). Histological analyses were conducted blindly,
and three operators conducted at least three replicates of each analysis.

2.9. Statistical Analysis

Nonparametric tests were performed in this study. First, a Kruskal–Wallis test was
used to determine the significance of differences among four groups. If a significant
difference was confirmed using the Kruskal–Wallis test, then multiple comparisons were
performed using the Mann–Whitney U-test. Results were presented as mean ± SD, and
statistical significance was set as follows: *, versus WKY/water; $, versus SHR/water; and
#, versus SHR/ECE. Statistical analysis was performed using SPSS v.22 (IBM Corporation,
Armonk, NY, USA).

3. Results
3.1. ECE and DK Decreased Serum Ang II and the Expression of AT1R in the Muscle

The serum level of Ang II was significantly 2.4 times higher in the SHRs than in
the control animals of the WKY rats, and it was more significantly decreased by 0.62
and 0.84 times, respectively, than SHRs after administering ECE and DK. The decreasing
effect was significantly more prominent in the ECE than in the DK administration group
(Figure 1A).

Figure 1. Regulatory effect of ECE and DK on serum Ang II, AT1R, and ROS production in the muscle of SHRs. (A) The Ang
II level in serum increased following SHR/water and decreased following ECE or DK treatment; (B) the expression levels
of AT1R mRNA in muscle increased following SHR/water and decreased following ECE or DK treatment. The mRNA
levels were measured by qRT-PCR, normalized versus actb, and expressed relative to the WKY/water group levels. (C) The
NADP+/NADPH ratio in muscle was increased following SHR/water and decreased following ECE or DK treatment.
(D) The expression levels of protein in ROS production (Nox1, NoxX2, and Nox4) in muscle were increased in SHR/water
groups and decreased in ECE- or DK-treated groups via immunoblotting. (E) The SOD activity in the muscle decreased
following SHR/water and increased following ECE or DK treatment. Data are presented as mean ± SD. For each of the
4 groups. n = 5. **, p < 0.01, vs. WKY/water; $, p < 0.05 and $$, p < 0.01, vs. SHR/water; #, p < 0.05 and ##, p < 0.01, vs.
SHR/ECE (Mann–Whitney U test). AT1R, angiotensin II type 1 receptor; DK, dieckol; ECE, Ecklonia cava extract; NADP,
nicotinamide-adenin-dinucleotide phosphate; NADPH, NADP hydrogen; Nox, NADPH oxidase; SHR, spontaneously
hyper-tensive rat; SOD, superoxide dismutase; WKY, Wistar Kyoto rat.

The expression of AT1R was significantly (1.83 times) higher in SHRs than WKY and
was significantly decreased by ECE and DK administration (0.83 and 0.88-fold lower than
SHR, respectively). However, the decreasing effect was more prominent in ECE than in the
DK administration group (Figure 1B).
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3.2. ECE and DK Decreased NADP+/NADPH Levels and the Expression of Noxs and Increased
Activity of SOD in the Muscle

NADP+/NADPH levels were measured to evaluate the activity of NADPH oxidase
during ROS generation [40]. NADP+/NADPH level was significantly (2.31-fold) higher
in the SHRs than in the WKY rats. It was significantly decreased by 0.9 and 0.91 times by
ECE or DK administration; however, the decreasing effect was not significantly different
between ECE and DK (Figure 1C). The expression of Nox1 was significantly (1.46 times)
higher in the muscle of the SHRs than in that of the WKY rats and was significantly
decreased by ECE and DK administration (0.83 and 0.74-fold lower than SHR, respectively).
The decreasing effect was more prominent in the DK than in the ECE. The expression of
Nox2 and Nox4 was significantly 1.15 and 1.25 times higher in the SHRs than in the WKY
rats, respectively, and those were significantly decreased by ECE and DK administration
(Nox2: 0.86 and 0.83 times lower than SHR, respectively; Nox4: 0.94 and 0.9 times lower
than SHR, respectively). The decreasing effect was not significantly different between ECE
and DK (Figure 1D).

The SOD activity of SHRs was significantly (0.55 times) lower than that of WKY rats.
It was significantly increased by ECE or DK administration (1.24 and 1.11-fold higher than
SHR, respectively). The increasing effect was not significantly different between ECE and
DK (Figure 1E).

3.3. ECE and DK Decreased the Expression of HIF-1α, p300, and STAT3 in the Muscle

The expression of HIF-1α was significantly (2.25 times) higher in the muscle of the SHRs
than in that of the WKY rats, and those were significantly decreased 0.66 and 0.61 times
than SHRs, respectively, by ECE or DK administration. The decreasing effect was more
prominent in the DK than in the ECE (Figure 2A). The expression of p300 (1.63 times) and
STAT3 (2.6 times) were significantly higher in the muscle of the SHRs than in that of the WKY
rats, and those were significantly decreased by ECE or DK administration (p300: 0.91 and
0.87-fold lower than SHR, respectively; Stat3: 0.93 and 0.93-fold lower than SHR, respectively).
The decreasing effect was not significantly different between DK and ECE (Figure 2B,C).

Figure 2. Reduction effects of ECE and DK on the expressions of HIF-1α, P300, and STAT3 in the
muscle of the SHRs. (A) The positive cell number of HIF-1a in muscle increased following SHR/water
and decreased following ECE or DK treatment by immunohistochemistry. The quantitative graph
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was measured signals of HIF-1α expressed in the nucleus. (B,C) The P300 and STAT3 mRNA
expression levels in muscle increased following SHR/water and decreased following ECE or DK
treatment. The mRNA levels were measured using qRT-PCR, normalized versus actb, and expressed
relative to the WKY/water group levels. Data are presented as mean ± SD. For each of the 4
groups. n = 5. **, p < 0.01, vs. WKY/water; $, p < 0.05 and $$, p < 0.01, vs. SHR/water; #, p < 0.05, vs.
SHR/ECE (Mann–Whitney U test). DK, dieckol; ECE, Ecklonia cava extract; HIF-1α, hypoxia inducible
factor 1 alpha; SHR, spontaneously hyper-tensive rat; STAT3, signal transducer and activator of
transcription 3; WKY, Wistar Kyoto rat.

3.4. ECE and DK Decreased Th17, Increased Treg, and Decreased the Expression of
NF-κB/IL-1β/TNF-α

The expression of RORγt was 2.21-fold higher in the muscle of the SHRs than in that
of the WKY rats. It was decreased 0.74 and 0.82-fold by ECE and DK administration, respec-
tively. The decreasing effect was more prominent in the ECE than in the DK (Figure 3A).
The expression of FOXP3 was 0.54 times lower in the muscle of the SHRs than in that of the
WKY rats. It was increased 1.19 and 1.07 times by ECE and DK administration, respectively.
The increasing effect was more prominent in the ECE than in the DK (Figure 3B).

Figure 3. Regulatory effects of ECE and DK on decreasing factors related with Th17 differentiation and inflammatory
cytokines in the muscle of SHRs. (A) The expression levels of RORγt in muscle were increased following SHR/water
and decreased following ECE or DK treatment. (B) The expression levels of FOXP3 in muscle were decreased following
SHR/water and increased following ECE or DK treatment. (C) The intensity of IL-17A in muscle was increased following
SHR/water and decreased following ECE or DK treatment via immunohistochemistry. However, the intensity of IL-10 in
muscle was decreased following SHR/water and increased following ECE or DK treatment. (D–F) The expression of NF-κB
(D), IL-1β (E), and TNF-α (F) mRNA levels in muscle was increased following SHR/water and decreased following ECE or
DK treatment. The mRNA levels were measured using qRT-PCR, normalized versus actb, and expressed relative to the
WKY/water group levels. Data are presented as mean ± SD. For each of the 4 groups. n = 5. **, p < 0.01, vs. WKY/water;
$$, p < 0.01, vs. SHR/water; #, p < 0.05, vs. SHR/ECE (Mann–Whitney U test). DK, dieckol; ECE, Ecklonia cava extract;
FOXP3, forkhead box P3; IL-1β, interleukin-1beta; IL-10, interleukin-10; IL-17A, interleukin-17A; NF-κB, nuclear factor
kappa-light-chain-enhancer of activated B cells; RORγt, retinoic-acid-receptor-related orphan nuclear receptor gamma t;
SHR, spontaneously hypertensive rat; TNF-α, tumor necrosis factor-alpha; WKY, Wistar Kyoto rat.
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The expression of IL-17A was 2.43-fold higher in the muscle of the SHRs than in that
of the WKY rats. It was decreased by ECE and DK administration (0.81 and 0.93 times
lower than SHR, respectively). The decreasing effect was more prominent in the ECE than
in the DK. The expression of IL-10 was 0.62 times lower in the muscle of the SHRs than in
that of the WKY rats. It was increased 1.15 and 1.08 times by ECE and DK administration.
The increasing effect was not significantly different between ECE and DK (Figure 3C).

The expressions of NF-κB, IL-1β, and TNF-α were 2.42, 1.83, and 1.63 times higher
in the muscle of the SHRs than in that of the WKY rats, respectively. These expressions
were decreased by ECE and DK administration (NF-κB: 0.79 and 0.87 times lower than
SHR, respectively; IL-1β: 0.77 and 0.84 times lower than SHR, respectively; TNF-α: 0.81
and 0.9 times lower than SHR, respectively). The decreasing effect was more prominent in
the ECE than in the DK (Figure 3D–F).

3.5. ECE and DK Decreased the Expression of MURF-1 and MAFbx/atrogin-1 and Increased the
Cross-Sectional Area of Muscle Fibers

The expression of MURF-1 and MAFbx/atrogin-1 was significantly 2.43 and 1.82-folds
higher in the SHRs than the WKY, respectively, and those were significantly decreased by
ECE and DK administration (MURF-1: 0.91 and 0.86-folds lower than SHR, respectively;
MAFbx/atrogin-1: 0.77 and 0.86-folds lower than SHR, respectively; Figure 4A,B). The
expression of myoblast determination protein 1 (MyoD) was significantly 0.52-folds lower
in the SHRs than WKY, and it was significantly increased 1.34 and 1.48 times by ECE or DK
administration, respectively (Figure 4C). The mean cross-sectional area of muscle fibers
was significantly 0.69 times lower in the SHRs than in the WKY rats and was significantly
increased 1.34 and 1.48 times, respectively, by ECE or DK administration (Figure 4D). The
increasing effect was higher in the DK than in the ECE. The muscle weight of gastrocnemius
which divided by body weight was significantly 0.73-fold lower in the SHRs than WKY. It
was significantly increased 1.07 and 1.13-fold by ECE or DK, respectively (Figure 4E). The
increasing effect was more prominent in the DK in the ECE.

Figure 4. Regulatory effects of ECE and DK on muscle degradation and muscle atrophy of SHRs. (A,B) The expression
levels of MURF-1 and MAFbx/atrogin-1 in muscle were increased following SHR/water and decreased following ECE
or DK treatment. (C) The expression levels of MyoD in muscle decreased following SHR/water and increased following
ECE or DK treatment. The mRNA levels were measured by qRT-PCR, normalized versus actb, and expressed relative to the
WKY/water group levels. (D) The cross -sectional area of the muscle fiber was decreased following SHR/water and increased
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following ECE or DK treatment via hematoxylin and eosin staining. (E) The muscle weight/body weight was decreased by SHR/water
and increased by administrating ECE or DK. Data are presented as mean± SD. For each of the 4 groups. n = 5. *, p < 0.05 and **, p < 0.01,
vs. WKY/water; $, p < 0.05, and $$, p < 0.01, vs. SHR/water; #, p < 0.05, vs. SHR/ECE (Mann–Whitney U test). CSA, corss sectional
area; DK, dieckol; ECE, Ecklonia cava extract; MURF-1, muscle-specific RING-finger protein 1; MyoD, myoblast determination protein
1; SHR, spontaneously hypertensive rat; WKY, Wistar Kyoto rat.

4. Discussion

Sarcopenia is defined by the loss of muscle mass and strength and decreased phys-
ical activity [41]; thus, sarcopenia leads to poor outcomes and decreased quality of life
[42–44]. The muscle mass decreases by aging, and decreasing is accelerated by physical
inactivity, malnutrition, and chronic diseases such as degenerative neurological disorders,
malignancies, and cardiovascular diseases.

The prevalence of sarcopenia is higher in heart failure patients than in age-matched
general populations [45].

Sarcopenia is more frequently presented in hypertensive patients than in normotensive
adults (32.2 vs. 7.8%) [2]. Additionally, hypertension independently increases the risk
of sarcopenia more than 6.5 times more than normal blood pressure [2]. Many studies
have shown that RAS is possibly the main commonality between the pathophysiology of
sarcopenia and hypertension.

Ang II induces an increased expression of Nox and ROS generation [3], and conse-
quently, increased ROS involves developing both hypertension and sarcopenia [5–9]. In
addition, increased ROS increases differentiation to Th17 and decreases the differentiation
to Treg cells.

Increased mitochondrial ROS production is related to increased differentiation of
inflammatory Th17 cells in vitro and in vivo of high glucose conditions [46]. Nox deletion
in T cells demonstrated enhanced differentiation to nonpathogenic Th17 cells, secreting
IL-10 [21,22]. Increasing inflammatory Th17 cells and decreasing Treg cells were known to
be related to hypertension and sarcopenia [20,47].

Here, we evaluated whether ECE and DK could attenuate muscle atrophy in hyper-
tensive animal models of SHRs by decreasing the AT1R signal pathway and Nox activity.
Our study results showed that an increased serum level of Ang II in SHRs was signifi-
cantly decreased by ECE or DK administration. The expression of AT1R also increased in
the SHRs, but it was significantly decreased by ECE or DK administration (Figure 1A,B).
The Nox activity evaluated using NADP+/NADPH significantly increased in the SHRs
in comparison with that in normotensive animals, and it was decreased by ECE or DK
administration. The expression of NOX1, NOX2, and Nox4 was significantly increased
in the SHRs in comparison with that in normotensive animals, but it was significantly
decreased by ECE or DK administration (Figure 1C,D).

SOD enzymes are an essential defense mechanism against superoxide radicals and
catalyze the dismutation of superoxide radicals into H2O2 and O2 [48].

Our study showed that SOD activity of SHRs was significantly decreased and partially
restored by ECE or DK administration (Figure 1E). It seemed that ECE and DK decreased
ROS production induced by Ang II through decreasing Nox and increasing SOD. The
decreasing Nox activity and SOD activity were accompanied with decreasing HIF-1α in
our study. Expression of HIF-1α was increased in the SHRs, and it was decreased by ECE
or DK administration (Figure 2A).

Th17 cell differentiation is induced by the STAT3 signaling pathway, which is regulated
by IL-6 and eventually increases the transcriptional regulator RORγt [49]. Additionally,
increased HIF-1α by increasing ROS production or hypoxic conditions activates RORγt
directly [24]. Furthermore, HIF-1α cooperates with RORγt and p300 to activate the IL-
17A gene and increase Th17 development [24]. HIF-1α leads to Foxp3 degradation, thus
decreasing Treg cell differentiation [24]. HIF-1α-deficient mice showed increased Treg
cells [24].

These reports are evidence that HIF-1α could modulate Th17/Treg cell balance. In
our study, the expression of HIF-1α in the muscle of SHRs was significantly increased
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compared with that in normotensive animals. The expressions of P300 and STAT3 were
also increased in the SHRs. However, these expressions were significantly decreased by
ECE and DK directly (Figure 2B,C). Here, we evaluated Th17/Treg cell balance with the
expressions of RORγt and Foxp3. The marker of Th17, RORγt, was increased in the SHR;
however, Foxp3, a marker of Treg cells, decreased in the SHRs. The expression of RORγt
was decreased by ECE or DK administration. Meanwhile, the expression of FOXP3 was
increased by ECE or DK administration (Figure 3A,B). The cytokine secreting from Th17,
IL-17A, was increased in the muscle of SHR. The IL-10, which was secreted from Treg cells
was decreased in the muscle of SHR. The expression of IL-17A was decreased by ECE or
DK administration. Furthermore, ECE or DK administration increased the expression of
IL-10; however, it seemed to have modulated Th17/Treg balance (Figure 3C).

The skewed balance between Th17/Tregs to Th17 dominant condition led to increased
secretion of IL-17, which upregulates NF-κB [25]. Consequently, NF-κB leads to muscle
atrophy by directly upregulating UPS, such as MuRF-1 and MAFbx/atrogin-1 [26–28], and
increasing the secretion of cytokines, such as TNF-α, IL-1, and IL-6, which eventually lead
to muscle atrophy [29].

In our study, the expressions of NF-κB, IL-1β, and TNF-α were increased in the
muscle of the SHRs, and these expressions were decreased by ECE or DK administration
(Figure 3C–F).

Additionally, the expressions of MURF-1 and MAFbx/atrogin-1 were increased in the
SHRs but were decreased by ECE or DK (Figure 4A,B).

The myogenic regulatory factors are a group of muscle-specific transcription factors,
such as myogenic factor 5 (Myf5), MyoD, myogenin, and myogenic regulatory factor4
(MRF4), which are involved in skeletal muscle growth and development [50,51]. For exam-
ple, it is known that the expression of MyoD is decreased in age-related sarcopenia [52].

In our study, the expression of MyoD was decreased in the SHRs, and it was increased
by ECE or DK administration (Figure 4C). Moreover, the mean cross-sectional area of
muscle fibers and muscle weight/body weight ratio were decreased in the SHRs, and it
was restored via ECE or DK administration (Figure 4D,E).

Due to the increasing old age population, the prevalence of hypertension and sar-
copenia is rapidly increasing. Hypertension is the most common cardiovascular disease,
and its overall prevalence is 45%, and the prevalence in over 60 years old reaches more
than 60% [53,54]. The prevalence of sarcopenia in those over 60 years old is approximately
10% [55].

Hypertension and sarcopenia have a common pathophysiology of increased Ang
II and ROS production; hence, controlling Ang II is a proper approach to managing
sarcopenia in hypertensive patients. In our study, the DK, which has been reported to show
antihypertensive effects, also attenuated muscle atrophy in the SHRs. Both ECE and DK
decreased the expression of AT1R and the activity of Nox and consequently decreased HIF-
1α. Decreased HIF-1αlead to decreasing NF-κB and proinflammatory cytokines related to
muscle atrophy.

5. Conclusions

In conclusion, ECE or DK leads to a decreased expression of AT1R and Nox activity
which mod-ulates Th17/Treg balance and consequently, decreased muscle atrophy.
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