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Abstract 

Humanized mice model human disease and as such are used commonly for research studies of infectious, degenera-
tive and cancer disorders. Recent models also reflect hematopoiesis, natural immunity, neurobiology, and molecular 
pathways that influence disease pathobiology. A spectrum of immunodeficient mouse strains permit long-lived 
human progenitor cell engraftments. The presence of both innate and adaptive immunity enables high levels of 
human hematolymphoid reconstitution with cell susceptibility to a broad range of microbial infections. These mice 
also facilitate investigations of human pathobiology, natural disease processes and therapeutic efficacy in a broad 
spectrum of human disorders. However, a bridge between humans and mice requires a complete understanding of 
pathogen dose, co-morbidities, disease progression, environment, and genetics which can be mirrored in these mice. 
These must be considered for understanding of microbial susceptibility, prevention, and disease progression. With 
known common limitations for access to human tissues, evaluation of metabolic and physiological changes and limi-
tations in large animal numbers, studies in mice prove important in planning human clinical trials. To these ends, this 
review serves to outline how humanized mice can be used in viral and pharmacologic research emphasizing both 
current and future studies of viral and neurodegenerative diseases. In all, humanized mouse provides cost-effective, 
high throughput studies of infection or degeneration in natural pathogen host cells, and the ability to test transmis-
sion and eradication of disease.
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Introduction
Rodents are the most common animal used in biomedi-
cal research laboratories. This is driven largely by low 
cost, small size, ease of housing, maintenance, large lit-
ter sizes and availability of inbred strains. For infectious 
diseases these animals can be used to study pathogen cell 
and tissue tropisms, replication, and virulence. Moreo-
ver, advances in disease pathogenesis, pharmacologic and 
vaccine research serves to mitigate the health burden of 
not simply infectious disease but also metabolic, cancer-
ous, and degenerative disorders [1, 2]. Animal models 

used to study each disease independent of etiology must 
accurately reflect the clinical and pathological features of 
the human condition. When those features align, models 
become indispensable partners in research efforts aimed 
to better understand pathobiological mechanisms, and 
hence therapies deployed for translational preclinical 
investigations. Thus, the needs to better model human 
disease is essential to accelerate relevant pathogenic 
and treatment findings or strategies that can be trans-
lated to the clinic. The most applicable animal model of 
human disease closely recapitulates clinical symptoms 
and disease pathogenesis seen during the disease course. 
For infectious diseases in particular, the animal model 
should meet permissibility to the inciting pathogens 
with a clearly defined route of infection that parallels a 
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susceptible human host. Such criteria are imperative for 
any United States Food and Drug Administration approv-
als, when and where vaccines and therapeutics cannot 
ethically be tested on humans. These enable final approv-
als which can only be made after preclinical tests are 
completed. The most relevant models’ rests in the field of 
infectious diseases, as many of the studied pathogens are 
human specific. To such ends, several studies of infec-
tious pathogens can only be completed using humanized 
mice. Examples include studies of Neisseria meningitides, 
and when conducted in humanized mice display specific-
ity to human microvessels and induce vascular leakage 
and tissue necrosis [3]. Leishmania major provides yet 
another example as infection can proceed in human mac-
rophages with secondary adaptive T cell responses [4]. 
Human T cell leukemia virus (HTLV) demonstrate pro-
ductive infection and expansion of virus specific CD4 + T 
cells [5]. Virus-specific immune responses have also 
been observed in these humanized mice. Dengue virus 
infection occurs in the spleen, bone marrow, and liver 
of humanized mice and these animals develop human 
disease-like signs and symptoms that include fever, apa-
thy, rash, and weight loss [6, 7]. Likewise, Epstein Barr 
virus (EBV) or human herpes simplex virus type 4 (HHV-
4) and its associated lymphoproliferative disorders and 
tumor development are reflected in humanized mice 
[8]. Kaposi’s sarcoma-associated herpesvirus, or HHV-
8, leads to persistent latent infection of B cells and mac-
rophages within spleen of humanized mice with viral 
dissemination to the skin [9]. HHV-2 infections show T 
and natural killer (NK) cell responses, antibody responses 
and ongoing viral replication in humanized mice [10]. 
Human cytomegalovirus (CMV) or HHV-5 can read-
ily be detected in the liver, spleen, and bone marrow of 
humanized mice [11]. John Cunningham (JC) virus is 
well studied in humanized mice demonstrating periph-
eral and central nervous system infection [12, 13]. Sal-
monella enterica, the causative agent of typhoid fever in 
humans, can also be investigated in humanized mice [14]. 
Tuberculosis infections were mirrored in these mice and 
demonstrate CD4 + T cell and macrophage-dependent 
granuloma-like structure formation after infection [15]. 
Further treatment with cytokines like, granulocyte mac-
rophage colony stimulating factor (GM-CSF) in these 
animals demonstrate infection control [15]. Other human 
diseases such as influenza, Ebola, Hanta virus pulmonary 
syndrome (HPS), malaria, and sepsis, have been studied 
using different models of humanized mice, and insights 
have been gained regarding their severity, transmission 
and therapeutic efficacy [16].

Other examples of viral and non-viral diseases stud-
ied in humanized mice include the human immuno-
deficiency virus type one (HIV-1) [17], severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) [18], 
influenza [19], Zika (ZIKV) [20], hepatitis C (HCV) [21], 
dengue viruses [19] and malaria [22, 23]. These studies 
were possible after the research community overcame 
the limitations imposed by grafting human tissues. Mice 
lacking a functional adaptive immune system such as the 
severe combined immunodeficient (SCID) or recom-
bination activating gene 1 (RAG-1) knock-out become 
permissive to engraftment of human immune cells from 
human solid organ tissues or cord blood [24]. At the 
same time, removal of mouse genes like common gamma 
chain of the interleukin-2 receptor enabled the models to 
reflect multiple aspects of the human innate and adap-
tive immune response [16, 17, 25]. In the early 2000s, the 
development of immunodeficient mice bearing muta-
tions in the IL-2 receptor gamma chain (IL2rgnull) proved 
to be a breakthrough in humanized mouse develop-
ment [26]. The common gamma chain (γC) represents an 
important component of receptors for IL-2, IL-4, IL-7, 
IL-9, IL-15, and IL-21, and is crucial for the signaling of 
human cytokines. The attenuation of cell cytokine sign-
aling pathways by γC which are involved in the survival, 
differentiation, and function of lymphocytes impairs the 
development of the mouse lymphoid system. In combi-
nation with either protein kinase DNA activated catalytic 
polypeptide mutation (Prkdcscid or scid), or with Rag 1 or 
2 (Rag1null or Rag2 null) mutations, adaptive immunity is 
depleted. These mice also exhibit deficiencies of innate 
immunity and lack murine NK cells [26].

New therapeutic agents and preventive strategies 
require in-depth understanding of disease pathobiology. 
Appropriate model systems are also required for testing 
the safety and efficacy of disease preventative measures 
[27, 28]. Selection of a model to mimic disease is driven 
by physiologic linkages to humans, ease of use, repro-
ducibility, safety, and cost [27]. Due to limitations asso-
ciated with non-human primates (NHPs) that include 
expense, availability, time, and genetic limitations, there 
is a need for small animal models as human surrogates 
[29, 30]. Rodent experiments can assess study repro-
ducibility while controlling host genetics in response to 
the pathogen or to the disease [28]. Although medically 
relevant pathogens can cause disease in inbred mouse 
strains, pathogens such as ZIKA virus, measles virus, 
Middle East respiratory syndrome coronavirus (MERS-
CoV), human norovirus, and Crimean-Congo hemor-
rhagic fever viruses do not produce disease in mouse 
strains [20, 31, 32]. Notably, the genetic differences 
between mice and humans interfere with a pathogen’s 
ability to elicit human-like disease outcomes in rodents 
[33–35]. To overcome these limitations, humanized mice 
were developed to study host–pathogen interactions. 
Herein, we focus first on new models of humanized mice 
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then evaluate their use to study infectious, neurodegen-
erative, and inflammatory diseases and therapeutics. We 
also propose new models and extend the utility ranges of 
existing ones.

Human cell‑grafted mice
In cases where mice are not permissive to microbial 
infection an alternative is “genetically-modified” mice 
that can be made by the introduction of human-specific 
genes or engrafting human organs or cells [16, 25, 36, 
37]. Mice cannot be used to study hepatitis B and C virus 
(HBV and HCV), herpes viruses and/or HIV-1 where 
several genes regulate host range, and thus preclude 
expression of factors that fully recapitulate and promote 
disease [38]. Another factor that limits the use of rodent 
models to recapitulate human disease is in differences 
between host immune responses [16]. This leads to limi-
tations in engraftment efficiency with high rates of tis-
sue rejection. Both reflect common deficiencies to fully 
recapitulate antigen-specific immune responses [16]. 
Despite such limitations, human intestinal xenografted 
mice have been used successfully to support Entamoeba 
histolytica infections [25, 39]. These model systems can 
facilitate studies of pathogen interactions with human 
cells and tissues [40] serving as important pre-clinical 
tools for biomedical research [24, 29, 30, 41]. As of today, 
the three most widely used immunodeficient strains are 
NOD.Cg-PrkdcscidIl2rgtm1Wjl (NSG), NODShi.Cg-Prkdc-
scidIl2rgtm1Sug (NOG), and C;129S4- Rag2tm1FlvIl2rgtm1Flv 
(commonly referred to as BALB/c-Rag2null IL2rgnull mice 
or BRG) mice [29, 30, 41].

NSG and BRG mice lack the γC, whereas NOG mice 
have a truncated cytoplasmic domain of the gamma 
chain that binds to cytokines but lacks the signaling 
domain. These can be deployed for study using four gen-
eral approaches to engraft a human immune system. 
The first model is the human peripheral blood leukocyte 
(PBL) severe immune deficiency (Hu-PBL-SCID) model 
which is generated by injection of human PBLs, where 
rapid engraftment of human CD3 + T cells occurs within 
one week. The model allows transient studies of human 
T cell function limited by the development of xenoge-
neic graft-versus-host disease (GVHD) [24]. The second 
model is the bone marrow/liver/thymus “BLT” model. 
This is generated by transplantation of human fetal liver 
and thymus under the kidney capsule and concurrent 
intravenous injection of autologous fetal liver hemat-
opoietic stem cells (HSCs) [42, 43]. All lineages of human 
hematopoietic cells are developed, and the model sup-
ports a robust mucosal immune system. Human T-cells 
are educated in an autologous human thymus and are 
HLA-restricted. Despite these advantages, there are two 
major drawbacks including GVHD-like reactions [29, 

30, 44] and limitations in obtaining fetal cells to gener-
ate the model. The third model is through the injection 
of human CD34 + HSCs derived from bone marrow 
(BM), umbilical cord blood, fetal liver, or granulocyte 
colony-stimulating factor (G-CSF)-mobilized periph-
eral blood. This model possesses BM-generated T cells, 
B cells, antigen-presenting cells (APCs), and myeloid 
cells, but are found at low levels. The human T cells are 
educated in mouse thymus and are H2 type, not HLA-
restricted [45]. The fourth model is generated by intrahe-
patic injection of human CD34 + HSCs from human cord 
blood [26]. This model supports engraftment of a com-
plete human immune system which lasts for more than 
one year with limited GVHD and is the most widely used 
due to reduced manipulation of the mice during their 
generation. The only disadvantage of this model is that 
the human T cells are educated in murine thymus and 
have functionally underdeveloped lymphatic tissues [46]. 
Despite these limitations humanized mice are commonly 
utilized as translational models in regenerative medicine, 
transplantation immunity, infectious disease research 
and for cancer biology and therapeutics.

HIV‑1 infection, pathogenesis, prevention, 
and antiretroviral testing
Species specificity of HIV initially precluded the use of 
mouse models for HIV infection; however, mice trans-
planted with functional human immune system (HIS) 
became a highly versatile and cost-effective model to 
study HIV-1 disease. Employment of humanized mice for 
HIV infection started when SCID mice were discovered 
[47]. Improvements in SCID mice strains have been made 
by refining the compatibility of mouse innate immune 
environment to allow human grafts. This has made it 
possible to have long-term reconstitution of the human 
immune system that supports chronic HIV infection. 
Humanized mice can induce adaptive immune responses 
and have been used, in measure, for vaccine testing [47, 
48]. However, the human IgG responses are limited. This 
has been overcome by employing immunodeficient mice 
of different backgrounds with HSCs with thymus/liver 
tissue implants to generate BLT mice [49, 50]. Different 
human immune cell subset distribution in blood and lym-
phoid tissues allows BLT mice to be susceptible to HIV-1 
infection. These mice can be infected through natural 
vaginal, rectal, or intravenous routes and used to study 
HIV-1 biology (viral entry, replication and spread), virus-
induced immunopathology (CD4+  T-cell depletion and 
immune activation), mucosal inflammation, and cellular 
viral tropism [51–54]. HIV-1 reservoirs can also be estab-
lished in infected humanized mice after treatment with 
combinations of antiretroviral drugs (ARVs), thereby pro-
viding a model to test new therapies for viral treatment 
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and prevention. These mice can also be used to test how 
best to interrupt viral integration, activation, and replica-
tion [55, 56]. Recently our group employed humanized 
mice to examine tissue viral reservoirs and to recapitulate 
latent HIV-1 in vivo [57, 58]. These works demonstrated 
that mature macrophages are a cell reservoir in antiret-
roviral therapy (ART)-suppressed HIV-infected human-
ized mice [59]. Mice infected with HIV and treated with 
combination ART achieved complete viral suppression 
in the peripheral blood, and immune cells were sorted 
into T lymphocyte subsets and macrophages to quantify 
HIV RNA and DNA. While CD4 + memory cells were 
the principal T cell reservoir, integrated HIV-1 DNA was 
detected in the bone marrow and spleen macrophages. 
These findings were affirmed in humanized myeloid only 
mice (MoM) [60].

Existing antiviral medicines are designed to block 
essential steps of the virus life cycle. To gain access into 
the host cell, virus particles adsorb and bind to the CD4 
and CCR5 or CXCR4 receptor and co-receptor proteins 
present on the host cell surface. Agents that block these 
interactions have been developed into effective drugs 
against HIV-1 [61]. Other antiviral drug targets include 
ion channel blockers or inhibitors of structural and non-
structural viral proteins, reverse transcriptase enzyme, 
integrase, protease, and neuraminidase enzymes that cat-
alyze polyprotein cleavage and release of mature virions. 
However, notable limitations include the narrow spec-
trum nature of the compounds, suboptimal adherence 
to daily regimens, poor bioavailability, drug resistance, 
and associated toxicities. The available antiviral agents 
are also virus-specific with only a few exhibiting broad-
spectrum antiviral activities [62]. While development 
of broad-spectrum antivirals may seem to offer attrac-
tive alternatives to conventional target-specific antiviral 
drugs, their development into drug candidates has been 
hampered by either poor efficacy or toxicity concerns 
[63]. Limitations in delivery and failure to maintain 
therapeutic drug concentrations at sites of viral replica-
tion have also negatively impacted therapeutic outcomes. 
The absence of vaccines for chronic viral infections such 
as HIV and HCV has led to growing interest in long-act-
ing (LA) formulations and devices aimed at improving 
patient adherence to therapy to minimize emergence of 
drug resistance [64, 65].

Humanized mice have been used to test newly devel-
oped and LA ART, neutralizing antibody, immuno-
therapeutic, latency re-activating agents, and viral 
gene editing strategies [17, 66, 67]. An example is the 
drug 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA), a 
nucleoside reverse transcriptase inhibitor (NRTI) that 
was developed in BLT mice. Works demonstrated that 

EFdA monotherapy was able to suppress viral replica-
tion [68]. Pre-exposure prophylaxis (PrEP) studies with 
EFdA prevented HIV-1 vaginal and oral transmission 
in BLT mice. Other LA ART studies were developed 
of medicines administered once a month. LA nano-
formulated integrase inhibitor raltegravir protected 
humanized mice from repeated high-dose vaginal HIV 
challenges in a PrEP study [69]. Our own laboratories 
created LA nanoformulated protease inhibitors then 
tested them in humanized mice [70]. Nanoformulated 
atazanavir and ritonavir (nanoATV/r) combination 
suppressed plasma viral load below the detection level 
after six weekly doses, and ART cessation resulted 
in immediate viral rebound [71]. We also decorated 
nanoATV/r with folic acid for cell-specific targeting 
and uptake, and three doses given once every other 
week significantly improved viral suppression in chron-
ically infected humanized mice compared to untar-
geted nanoATV/r [72, 73]. Next, we developed state of 
the art LA slow effective release (LASER) ART using 
prodrug technology with the ability to prevent or sup-
press HIV infection for a prolonged period after a sin-
gle dose administration. New generation LASER ART 
formulations of cabotegravir and dolutegravir (CAB 
and DTG) could prevent and suppress HIV infection. 
Nanoformulated myristoylated CAB (NMCAB) after a 
single 45  mg/kg intramuscular injection, had pharma-
cokinetic (PK) profiles that were 4 times greater than 
that recorded for parenteral CAB. In mice, NMCAB 
showed significantly higher drug concentration up to 
one year after one IM injection as compared to cur-
rent parenteral CAB formulations [74]. A hydropho-
bic and lipophilic modified DTG prodrug encapsulated 
into poloxamer nanoformulations protected human-
ized mice from the parenteral challenge of HIV-1 for 
two weeks [75]. Newer formulations of CAB prodrug 
nanoformulations have increased the apparent half-
life of the drug to one year [76]. Humanized mouse 
models also demonstrate the antiviral effectiveness 
of broadly neutralizing HIV-1 antibodies [46]. It has 
been shown that a combination of antibodies can sup-
press viremia below the limit of detection and target 
the HIV-1 reservoir. Moreover, passively administered 
antibodies and vector-mediated expression of broadly 
neutralizing antibodies protect humanized mice from 
HIV-1 infection [77]. The mouse models also provide a 
potential bridge to predict immunotherapeutic-related 
cytokine release syndrome and development of HIV-1 
cure strategies. PBLs from patients can be engrafted in 
adult immunosuppressed mice to study the response to 
immunotherapies, like anti-CD3, anti-CD28, Keytruda, 
anti-thymocyte globulin, and a TGN1412 analog.
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NeuroHIV and humanized mice
Soon after the discovery of HIV, it was found that mon-
onuclear phagocytes (MP; monocytes, macrophages, 
microglia, and dendritic cells) are the principal viral tar-
gets within the central nervous system (CNS) [78]. HIV 
enters the brain during early stages of HIV infection, and 
the infected monocyte-macrophage act as Trojan horses 
in viral spread within the CNS [79]. For HIV-1 disease 
in the brain, MPs serve as viral reservoirs and inducers 
of end-organ disease and are the drivers of HIV-1 asso-
ciated neurocognitive disorders (HAND), a clinical dis-
ease complex prevalent in  up to 50% of infected people 
[80]. Introduction of ART has been effective in suppress-
ing viral replication and reducing the severity of cogni-
tive, motor, and behavioral impairments [81]. The virus 
persists in a latent form, and neither ART nor the host 
antiviral cellular and humoral immunity could eliminate 
infection leading to milder forms of memory impair-
ments [82, 83]. Virus-induced MP functions lead to the 
production of cell and viral toxins that reflect an aber-
rant secretory immune response and persistent low-level 
infection [84]. Neuroinflammation through persistent 
glial infection and activation has emerged as a signature 
phenotype of HAND. Understanding the underlying 
molecular and cellular mechanisms in HAND pathology 
and viral persistence is essential to develop therapeu-
tic strategies for HAND and for HIV elimination from 
CNS. While studies of the simian Immunodeficiency 
virus (SIV) have contributed to the current knowledge of 
HAND, the need for more scalable and affordable mod-
els lead to the initial development of a mouse model of 
neuroHIV in the 1990s [85]. Since HIV-infected MPs 
are the major drivers of HAND-associated pathology, 
human virus-infected monocyte-derived macrophages 
were injected intracerebrally into the caudate-putamen 
of immunodeficient mice [52, 86, 87]. Several important 
aspects of HIV-1 encephalitis (HIVE, the pathological 
equivalent of advanced virus-associated cognitive dys-
function) such as multinucleated giant cell pathology, 
activated microglia and astrocytes, myelin pallor, and 
dendritic loss were observed. Moreover, behavioral, and 
cognitive abnormalities in the HIVE  mice  were associ-
ated with neuronal dysfunction and decreased synaptic 
density.  The HIVE mouse model has been used to test 
anti-inflammatory, antiretroviral, or neuroprotective 
therapeutic approaches [86]. Initial studies in this model 
provided a direction in understanding efficient ART regi-
mens to suppress viral load in the HIV infected brain.

Further improvements to include the adaptive immune 
component of HIV infection in neuroHIV was achieved 
by the reconstitution of immunodeficient animals with 
syngeneic human peripheral blood lymphocytes followed 
by intracranial injection of HIV-1-infected macrophages 

resulted in cytotoxic antivirus T lymphocyte (CTL) 
response [88]. CD8-positive T cells migrated to the sites 
of human macrophages leading to the cell-mediated 
destruction of  HIV-1 infected cells. Development of 
HIVE mice reconstituted with a human immune system 
enabled testing of immunomodulators that included 
indoleamine 2,3-dioxygenase (IDO) inhibitors, peroxi-
some proliferator-activated receptor (PPAR) gamma, 
and cannabinoid 2 (CB2) receptor agonists [88]. The 
major limitations of the HIVE mouse models are asso-
ciated with traumatic injury caused by the cell injec-
tions into the brain, focal neuropathology around the 
injected area and an imperfect relationship between the 
brain neuropathology and progressive systemic infec-
tion. Moreover, the HIVE and AIDS dementia complex 
was prevalent during pre-ART era and modeling milder 
forms of HAND requires mice that can be chronically 
infected with HIV and with suppressive ART.

Mice reconstituted with human immune system 
allowed to study chronic HIV infection, however, a limi-
tation in humanized mouse models involves the dis-
tribution of human cells in the brain. Human cells are 
located mainly in the meninges; with very few in perivas-
cular areas and brain parenchyma. Moreover, human 
microglial-like cells are rarely found in the mouse brain. 
HIV-infected human macrophages and lymphocytes are 
mainly found in meninges and perivascular areas [87, 
89, 90]. Longitudinal non-invasive imaging studies using 
diffusion tensor imaging (DTI) and magnetic resonance 
spectroscopy (MRS) revealed progressive loss of neu-
ronal integrity, which correlated with gliosis and loss of 
neuronal dendritic and synaptic proteins and myelin 
[91]. Behavioral abnormalities such as memory loss and 
anxiety were also observed in HIV-1 infected humanized 
mice [91]. HIV related behavioral deficits were mostly 
studied in non-humanized rodent models, including HIV 
transgenic rodents [92–97] and EcoHIV infected mice 
[98–100].

Humanized MoM reconstituted with human myeloid 
and B cells, but no T cells, showed productive infection 
of HIV-1 in MPs and led to the viral seeding in CNS by 
infected MPs [60]. Presence of both classical and inter-
mediate macrophages were observed in the brains of 
MoM, but the lack of human microglia limited produc-
tive brain infection. In a humanized T cell only mouse, T 
cells could also establish and maintain HIV infection in 
the CNS [101]. Nonetheless, in all the humanized mouse 
models, HIV brain infection is minimal due to the limited 
number of human cells [102].

As noted, MPs are the major cellular targets for HIV-1 
in brain, human astrocytes can be infected but at very low 
levels [103, 104]. Both microglia and astrocytes contrib-
ute to the CNS viral reservoir and neuroinflammation. 



Page 6 of 17Dash et al. Retrovirology           (2021) 18:13 

To utilize the humanized mice for neuroHIV studies, the 
presence of human glia in the mouse brain along with 
the human immune system are necessary. The ability to 
reconstitute the murine brain with functional human 
glial cells would provide an opportunity to study HIV 
induced inflammation, neuronal dysfunction, and viral 
reservoirs in one system. Our laboratories generated 
a humanized mouse model dually reconstituted with 
human astrocytes and human leukocytes [105]. By trans-
planting human neuroprogenitor cells in the brain and 
HSC in the liver simultaneously in a new-born mouse, led 
to the development of human astrocytes and leukocytes. 
In these mice human glial-specific anti-viral response 
was observed following systemic HIV infection, and the 
neuropathogenesis was observed as downregulation of 
mouse genes crucial for oligodendrocyte differentiation 
and myelination, suggesting alterations in structure and 
function of white matter. HIV brain infection was mini-
mal in this model, again restricted to macrophages and 
lymphocytes in meninges, and very few perivascular 
and parenchymal human leuokocytes, due to the lack 
of human microglial reconstitution. To facilitate human 
microglial differentiation in HSC-transplanted human-
ized mice, IL-34, a tissue specific ligand for colony stim-
ulating factor-1 receptor (CSF-1R), was transgenically 
introduced into immunodeficient mouse strain (Fig.  1). 
IL-34 is important for human microglial and tissue mac-
rophage development. Human HSC reconstitution in 
human IL-34 transgenic immune deficient mice lead to 
the engraftment of a mouse brain with human microglia 
that expressed canonical markers such as CD14, CD68, 
CD163, CD11b, ITGB2, CX3CR1, CSFR1, TREM2, and 
P2RY12 [106]. Peripheral HIV infection led to productive 
infection of human microglia with a significant number 
of HIV-1 antigen positive cells distributed in all mouse 
brain regions. Human-specific molecular signatures rep-
resentative of antiviral and neuroinflammatory responses 
were detected. Transcripts for all viral proteins were 
readily identified with the highest expression of HIV env, 
pol and nef. Further, neuropathological assessments dur-
ing HIV infection are under investigation. Our recent 
studies using human microglia mouse model demon-
strated significant levels of HIV-1 DNA in the brain and 
other lymphoid tissues even under combination ART 
controlled viral infection supporting the establishment of 
CNS viral reservoirs in mice. These improved humanized 
glial mouse models permit investigations of neuroHIV 
in presence of suppressive ART. Further studies of HIV 
induced neuropathology and behavioral deficits in HIV 
infected and ARV treated humanized microglial mice 
will provide a better understanding of the human disease 
and the underlying molecular mechanisms for successful 
therapeutic development. This new model to study HIV 

brain infection also aid in the development and testing of 
new generation ART delivery with improved CNS bio-
availability and will be useful for future viral eradication 
studies. Further, the model now allows studies of newly 
emerging ART-induced neurotoxicity such as reported 
for efavirenz [107, 108]. However, many laboratory and 
animal studies have shown a number of direct effects 
on neuronal and glial function along with pathological 
outcomes that are linked to amyloid deposition, small 
vessel damage and aberrations in chemical neurotrans-
mission [109–114]. Studies of macrophage function as 
part of depot for sustained release agents are now possi-
ble with these newer humanized mouse models [59, 105, 
115–118]. Perhaps ever more important rests in the need 
of vigorous behavioral testing which have been initiated 
in the earlier models but remain underdeveloped in these 
humanized microglial brain test systems [106, 119].

Fig. 1  Development and characterization of humanized microglial 
mice. Humanized microglia mice serve as tool to elucidate 
neuroHIV pathobiology and to develop therapeutic and elimination 
antiretroviral strategies for HIV infections. IL-34 was transgenically 
introduced and at the same time CD34 + HSCs were injected into 
the liver of immunodeficient newborn mice. These mice developed 
a functional human lymphoid system comprised of B cells, T cells 
and macrophages and brain enriched with human microglial 
cells. Blue and red colored cells are human and mouse cells, 
respectively. In regards to the timing, human cells are introduced 
after birth to reconstitute lymphoid and solid organ tissues devoid of 
endogenous murine immunocytes. The human immunocytes show 
limited number reductions with time after injection as new cells are 
produced from progenitors. These exist, over time, less frequently in 
brain and periphery compared to mouse cells
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Hepatitis B
It is estimated that approximately two billion people 
worldwide have evidence of past or present infection 
with hepatitis B virus (HBV), and 257 million individuals 
are chronic carriers (i.e., positive for hepatitis B surface 
antigen [HBsAg]). The rate of progression from acute 
to chronic HBV infection (CHB) is approximately 90% 
for perinatally-acquired infection, however vaccination 
has reduced the progression by 90% [120]. A significant 
proportion of people living with HIV-1 are also infected 
with HBV [121, 122]. However, the number of exist-
ing CHB patients exceed number of people living with 
HIV-1 [64]. The progression of CHB leads to the devel-
opment of cirrhosis and hepatocellular cancer [123]. 
CHB remains a significant burden on health care system 
around the world and requires effective treatment to pre-
vent progression [21]. The goal for CHB patients is to 
achieve a cure, however the complexity of the viral life 
cycle and multiple mechanisms of avoidance of immune 
responses cause complications. The formation of stable 
covalently closed circular DNA (cccDNA) as a replica-
tion template of HBV also represents a significant chal-
lenge for elimination. The elimination of hepatocytes 
with integrated HBV genome is immune mediated and 
required for clearance of HBsAg. All steps in HBV life-
cycle are present in human hepatocytes, and humanized 
mice are an instrumental tool to evaluate the efficacy 
and safety of available therapeutics. Several models are 
reported to humanize the mouse liver and establish HBV 
infection [124]. Human liver chimeric mice are often 
generated using the urokinase-type plasminogen activa-
tor transgene (uPA) and RAG-2 gene knockout (uPA/
RAG2−/−) mice[125]; uPA/SCID [126], mice deficient 
in the tyrosine catabolic enzyme fumarylacetoacetate 
hydrolase (Fah−/−) on Rag2−/− interleukin 2 receptor 
gamma chain knockout (Il2rg−/−) mice (FRG) [127], and 
herpes simplex virus type-1 thymidine kinase- NOD/
Shi-scid IL2r-gamma(null) NOG (TK-NOG) mice [128]. 
Different levels of liver humanization can be achieved in 
these models and different strains of HBV (and hepatitis 
delta virus) that can naturally infect human hepatocytes. 
The established chronic HBV viremia (105–1010  IU/mL 
HBV DNA) and HBsAg stable expression presence in 
circulation, are used to monitor treatment efficacy and 
liver tissues for evaluation of cccDNA copies. The use of 
chimeric mice for anti-HBV therapeutics are described in 
detail [129].

Existing treatment of CHB is based on inhibition of 
viral RNA reverse transcription to prevent replenish-
ment of cccDNA by nucleot(s)ides (NAs), which requires 
a life-long administration of oral drugs with strong 
adherence. Entecavir remains the most used oral thera-
peutic in humanized mice experimental combinatorial 

treatments [130]. LA lamivudine nanoformulation was 
developed by our laboratories and tested on human-
ized mice. A single intramuscular injection of 75  mg/
kg reduced HBV DNA in peripheral blood for up to 2.5 
log for 4 weeks [115]. The differences of HBV genotypes 
and drug-resistant mutants (to entecavir and lamivu-
dine) susceptibility to 90 mg/kg body weight/day of TDF 
for 3  weeks were tested on uPA/scid mice [131]. The 
effects of NAs to inhibit reverse transcription and HBV 
DNA synthesis and antiviral properties of IFN-α showing 
enhanced cccDNA degradation were fully reproduced in 
humanized liver mice [132]. IFN-α-mediated suppression 
of HBsAg concentration and silencing of cccDNA was 
extensively studied on uPA/scid and uPA/scid/IL2Rgc-/- 
(USG) liver humanized mice [133, 134]. The effective new 
approaches targeting HBsAg that tolerates the immune 
system and support viral persistence were assessed in 
humanized liver mice. ARB-1740 is a clinical stage RNA 
interference agent composed of three siRNAs delivered 
using lipid nanoparticle technology (LNP). A combina-
tion of ARB-1740 with a capsid inhibitor and pegylated 
interferon-alpha led to greater liver HBsAg reduction 
which correlated with more robust induction of innate 
immune responses in cDNA-uPA/scid human chimeric 
mouse model of HBV [135, 136].

The lipid nanoparticles (LNPs) containing HBsAg 
silencing RNA were modified with a hepatocyte-specific 
ligand, N-acetyl-d-galactosamine (GalNAc) and tested 
on chimeric uPA/scid mice [137]. Modification of the 
GalNAc-LNPs with polyethyleneglycol negated the 
LNP-associated toxicity without any detectable loss of 
gene silencing activity in hepatocytes. A single injection 
of the modified LNPs resulted in a significant reduction 
of HBV genomic DNA and their antigens [137]. Multi-
ple approaches targeting capsid proteins were tested on 
chimeric humanized mice. For example, ciclopirox, a 
synthetic antifungal agent, inhibits HBV capsid assem-
bly and secretion of HBV DNA in infected liver chimeric 
uPA/scid mice alone or synergized by Tenofovir diso-
proxil fumarate (TDF) (six weeks orally) [138]. GLP-26, a 
novel glyoxamide derivative that alters HBV nucleocapsid 
assembly and prevents viral DNA replication, in combi-
natorial treatment with entecavir in a humanized mouse 
model showed reduction in viral load and viral antigens, 
which was sustained for up to 12 weeks after treatment 
cessation [139]. Humanized uPA/scid mice were also 
used to evaluate NVR3-778, a capsid assembly modula-
tor, in combination with PEG-IFN, and showed positive 
effect as compared with entecavir [140]. The adeno-asso-
ciated virus (AAV) vectors and CRISPR-Staphylococcus 
aureus (Sa)Cas9 were used to edit the HBV genome in 
liver-humanized FRG mice chronically infected with 
HBV and treated with entecavir, which showed reduction 
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in total liver HBV DNA and cccDNA [141]. Similar stud-
ies of anti-HBV effects of the AAV2-/WJ11-Cas9 system 
in a uPA/scid humanized chimeric mouse model also 
showed reduced HBV infection [142].

Humanized liver mice were also used to assess the effi-
cacy of cellular immune-mediated elimination of HBV 
infected human hepatocytes. For example, transplanta-
tion of USG mice with human HLA-A2-positive hepato-
cytes enables testing of cytotoxic T lymphocyte-mediated 
activity. The engineered T cell receptors recognize HBV 
core and HBsAg-derived peptides and then eliminate 
HBV infected cells reducing viremia [143]. This approach 
was tested in combination with Myrcludex B, which pre-
vents HBV entry.  The adoptive transfer of PreS1 anti-
bodies prevented, or modulated, HBV infection after 
a subsequent challenge of the virus in humanized uPA/
scid mice for 3 to 8  weeks [144]. In addition to listed 
complex approaches, long-acting formulations of exist-
ing NAs with activities against HBV have great potential 
to end the HBV epidemic, and humanized mouse models 
are better suited for the advancement in studying such 
formulations.

Viral cure strategies and humanized mice
Viral infections constitute a major public health threat 
that underscore the need for innovative approaches and 
preparedness to combat pandemics. Treatments with 
antiviral drugs are used to limit the severity of illness 
without eliminating the virus from the host cells. While 
vaccines would be ideal in combating infections, rapid 
viral mutations and heterogeneity have posed significant 
challenges with only a few effective vaccines available for 
a limited number of viruses [61]. For instance, the high 
genetic variability and immune escape exhibited by HIV 
and other RNA viruses such as HCV have impeded the 
development of safe and effective vaccines against all 
types and subtypes of the pathogen. These limitations 
highlight the need for development of effective inter-
ventions that target multiple replication pathways to be 
tested in appropriate animal model systems.

CRISPR-Cas based genome editing represent a novel 
tool that has wide-ranging applications in the treat-
ment of various infectious and neurodegenerative dis-
eases [145, 146] and can be used to insert, delete or 
modify target genes with very high precision and accu-
racy [147, 148]. CRISPR Cas allows for precisely edited 
mouse models and opens doors of unlimited possi-
bilities. CRISPR-Cas can be used in humanized mouse 
models to advance the treatment of diseases like cancer, 
diabetes, viral and nonviral infectious diseases. Hemo-
philia A patient-derived pluripotent stem cells were 
edited ex-vivo using CRISPR and then transplanted into 
the hind limb of hemophilia mice, increased survival of 

the mice was observed [149]. Similar approaches have 
been employed for other hematological abnormalities. 
The ability of CRISPR to make edits ranging from a sin-
gle base to the insertion of long sections of DNA opens 
the door for humanized mouse models where mouse 
genes are replaced with human genes at multiple loci 
[150] and will improve humanized mouse models for 
neurodegenerative diseases [151]. Using a combination 
of LASER ART and CRISPR-Cas9 HIV excision strate-
gies, our group recently achieved HIV eradication in 
a subset of HIV infected humanized mice [152]. This is 
the first study of its kind demonstrating HIV elimination 
from infected animals (Fig.  2). CRISPR-Cas9 has been 
proposed as a means of mimicking the CCR5 delta 32 
mutations that provides a small percentage of the human 
population resistance against HIV infection. Human pri-
mary CD4+ T cells were expanded then transduced with 
lentivirus delivering CRISPR-Cas9 against CCR5. After 
the CCR5 modification was confirmed, these cells were 
transplanted in a NOD-Prkdcem26Cd52Il2rgem26Cd22/Nju 
mice and reconstituted mice challenged with HIV-1. 
These animals displayed some degree of resistance but 
failed to provide complete protection against HIV [153]. 
Use of preclinical mouse models and proper screening 
can provide a better solution to study infectious diseases 
and to find cure.

Neurodegenerative diseases and future 
employments of humanized mice
Alzheimer’s disease
Alzheimer’s disease (AD) is the most common neurode-
generative disease affecting the elderly population and is 
the sixth leading cause of death in the United States [154, 
155]. Promising outcomes in preclinical studies have not 
always yielded positive clinical outcomes [156]. Recent 
advancements have revealed that current animal mod-
els lack important biological features and therefore are 
unable to mimic human disease pathology precisely. AD 
researchers have commonly used first-generation trans-
genic mouse models that overexpress proteins linked to 
familial AD, mutant amyloid precursor protein (APP), 
or APP and presenilin. While these mice can demon-
strate AD pathology the animal models lack important 
biological features and therefore are unable to mimic 
human disease pathology precisely. This has given rise to 
second-generation mouse models which contain human-
ized sequences and clinical mutations in the endogenous 
mouse  App  gene. Thus, limitations of first-generation 
animal models are now successfully overcome by the 
development of humanized knock-in mice as second-
generation models [157]. Human and mouse immune 
and neuronal cells are different at the transcriptional 
levels, therefore, offer differential responses against AD 
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pathological proteins, which can affect the efficacy of 
therapeutic candidates in clinical testing [158, 159]. With 
field advancement, human-induced pluripotent stem 
cells have been transplanted into the mouse brain, allow-
ing for study on how amyloid pathology affects human 
neurons in the context of a multicellular brain environ-
ment [160]. Additionally, transplantation of human-
induced pluripotent stem cells into immunodeficient 
mice allowed development of human microglia cells, 
which interact with Aβ differently compared to the other 
humanized mouse counterpart [161]. Our laboratory 
recently developed human IL-34 transgenic mice under 
immunodeficient genetic background, where upon trans-
plantation of human hematopoietic stem cells resulted 
in human-like microglia cells development in the brain 
[106]. The human adaptive immune response is differ-
ent from those mice [162, 163], which further affects APP 
expression and Aβ accumulation. Therefore, with the 
emerging role of the innate and adaptive immune arm 
in AD pathogenesis and their differential regulation in 
two different species, the urgent development is needed 
for better small animal models with the complete human 
immune system.

Parkinson’s disease 
The defining characteristic of Parkinson’s disease (PD) is 
the progressive loss of dopaminergic neurons originat-
ing in the substantia nigra (SNpc) and innervating to the 

striatum resulting in the concomitant loss of dopamine, 
the principal movement-controlling neurotransmitter 
[164, 165]. This loss leads to the progressive development 
of primary motor dysfunction and deficits, including 
resting tremor, bradykinesia, muscle rigidity, and postural 
instability. PD hallmarks include neuronal Lewy body 
inclusions that are comprised primarily of misfolded, oli-
gomerized α-synuclein (α-syn), and histological evidence 
of neuroinflammation as indicated by reactive microglia 
encompassing regions of α-syn aggregation and neurode-
generation [166–169].

Rodent models of PD have been utilized to evaluate 
immunomodulatory agents that target various inflection 
points along the neuroinflammatory pathway. However, 
whether pro-inflammatory models that do not include 
human components as targets will provide sufficient 
robustness to bring translational therapeutics to comple-
tion has been contentious. To determine the acuity of the 
human immune system in a PD model, NSG mice were 
reconstituted with human CD34 + HSCs, and were con-
sidered engrafted with at least 25% HuCD45 + peripheral 
mononuclear cells (PMNCs) by 12  weeks post-reconsti-
tution [170]. Engrafted mice and age-matched wild type 
mice were treated with three doses of 1-methy-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin known 
to cause PD like symptoms, at 18 mg/kg/dose every two 
hours. One MPTP-treated group from each strain was 
treated with tacrolimus (FK506), a calcineurin/NFAT 

Fig. 2  LASER ART and CRISPR-Cas9 therapies for HIV-1 elimination. Humanized mice developed (a) and HIV-1 infected humanized (b) mice were 
administered with sequential treatment of a combination of long-acting ART followed by CRISPR-Cas9 targeting specific sequences of the HIV-1 
genome (c). Using sequential treatments, complete HIV-1 elimination from a subset of animals. This combinatorial approach is being developed for 
improved delivery of CRISPR-Cas9 to target the latent reservoirs in humanized mouse models (left panel), to improve the rates of viral elimination 
(right panel) (Color explanation: blue color cells are represented as human cells, red color cells are represented HIV-1 infected cells and green color 
represents the cells with complete elimitation of HIV-1)
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inhibitor that suppresses T-lymphocyte  signal transduc-
tion pathways and IL2 transcription and is indicated for 
organ transplantation and ulcerative colitis [171, 172]. 
Previous studies demonstrated that FK506 reduced 
α-syn aggregation and microglial activation with subse-
quent neuroprotection in animal models of PD, including 
MPTP- and α-syn overexpression-induced dopaminergic 
neurodegeneration [173–175]. Utilizing MPTP, this study 
provided the first demonstration of induced PD-like 
lesions and motor deficits in humanized CD34 + mice 
[170]. Of note, treatment of humanized mice with MPTP/
FK506 resulted in enhanced survival of dopaminergic 
neurons in the SN and efferent striatal termini, whereas 
less survival was demonstrated in MPTP/FK506-treated 
wild type mice. As expected, MPTP increased levels 
of human cytokines, and FK506 treatment diminished 
levels of most human cytokines in plasma from MPTP-
treated humanized mice, whereas only levels of human 
IL-4, IL-6, IL-8, and IL-12 were diminished from striatal 
tissues. Interestingly, FK506 treatment did not signifi-
cantly affect levels of mouse cytokines from plasma or 
striatum compared to MPTP-treated wild type animals. 
This suggests that the humanized mouse platform may 
provide a more robust model for evaluation of translat-
able therapeutics in rodent models of PD. However, it 
should be noted that few CNS-infiltrating macrophages/
microglia were of human origin as evidenced by low 
levels of expression of HuCD45, HLA-DR, and human 
CD68 in the CNS compared to the peripheral tissues. 
Additionally, the strains of the mice were of disparate 
backgrounds with humanized mice derived from the 
NOD/ShiLtJ compared to C57Bl/6 mice as wild types. 
Moreover, this study utilized female mice, whereas most 
MPTP studies are performed in male mice to reduce 
known variability observed with females. With the advent 
of ART for HIV-1 treatment, individuals living with HIV 
have longer lives with fewer co-morbidities, yet still can 
exhibit motor deficits like PD [176–180]. Thus, a major, 
yet recurrent question is whether HIV infection affects 
the development of PD-linked neurodegeneration. To 
address that question, we investigated the effect of HIV 
infection on nigrostriatal dopaminergic neurodegenera-
tion [181]. We initially used NSG mice reconstituted with 
CD34 + human HSCs that could engraft for 18 weeks to 
attain humanized mice with high levels of CD45 + cells. 
Humanized mice were infected for three weeks with 
HIV-1 prior to intoxication with four doses of MPTP 
at 14  mg/kg/dose every two hours. This study showed 
that in the MPTP model, acute HIV infection afforded 
no discernable susceptibility to dopaminergic neurode-
generation as demonstrated by insignificant differences 
of tyrosine hydroxylase (TH) + neuronal loss in the SN 

that ranged from 13 to 27% and losses of striatal termini 
of 46% to 53%. Moreover, levels of microglia from HIV/
MPTP were not significantly elevated regardless of HIV 
infection duration. Thus, these findings indicated either 
the lack of a synergistic effect, lack of interaction between 
the reconstituted human lymphocytes and murine 
microglia within the humanized system, or the inability 
of HIV to sufficiently infect mouse microglial cells. The 
limited loss of dopaminergic neurons is most likely due 
to the initial neurotoxicity associated with MPTP, rather 
than the ensuing inflammatory cascade linked to immune 
activation. Therefore, lack of a neurodegenerative pheno-
type associated with MPTP use in humanized, male mice 
may indicate the need for experimentation in a differ-
ent rodent model of PD, such as α-syn overexpression or 
the requirement of better CNS reconstitution of human 
microglial cells. As novel therapeutic strategies are devel-
oped, humanized animal models of neurodegenerative 
diseases (Fig. 3) are strongly needed to accelerate trans-
lation from preclinical to clinical setting [106, 182, 183]. 
There are obvious strengths, restrictions and opportuni-
ties of modeling functional and behavioral deficits associ-
ated with neurodegenerative disorders using humanized 
mice models.  First, when fully developed such models 
would allow investigations of functional neuronal defiicts 
that link to behavioral outcomes in the context of a func-
tional human immune system. Second, neurological dis-
orders may be modeled more exactly as the role of both 
innate and adaptive immunity comes more significant 
in disease pathobiology.  Third, a clear understanding of 
the role human immunity plays at the neurobiochemical 
levels can be uncovered and especially those that predict 
behavioral insufficiencies and vice versa. Especially in the 
case of PD where gait and locomotor abnormalities have 
been well-characterized in prior rodent models these 
can now be fully explored in the context of human T cell 
functions and immune tolerance [170, 184–187].  While 
motor deficits in the humanized CD34 + mice have been 
described behavioral comparisons between established 
rodent models and humanized models await future stud-
ies in these exciting models reflective a broad range of 
human infectious and degenerative diseases [186].

Conclusions
Humanized mice represent the mainstream of avail-
able small animal models used to reflect the patho-
biology and developmental therapeutics for human 
infectious, GVHD, cancerous and degenerative diseases. 
CD34 mouse models are employed in a variety of plat-
forms seeking drug safety and efficiency and especially 
those that can modulate the immune system.  Alto-
gether, exhaustive research performed from multiple 



Page 11 of 17Dash et al. Retrovirology           (2021) 18:13 	

laboratories continues to identify and develop novel 
disease-modifying treatment options for viral, non-viral 
and neurodegenerative disease. The pace of the therapeu-
tic development strongly relies on the quality and opti-
mization of preclinical models. Hence, such models can 
ensure improved translation of various hopeful preclini-
cal results into interventions that will ultimately benefit 
patients. To this end, we are pleased to provide an exam-
ple from our own laboratories in the field of LA ART. 
Herein humanized mice were used to test efficacy, safety, 
and pharmacokinetics that have sped the development of 
our year long NM2CAB nano formulation. From these 
early works in mice, we were able to decipher dose, bio-
compatibility, cell and tissue drug distribution, immune 

responses, dissolution parameters and antiretroviral 
effectiveness. For the NM2CAB we found the prodrug 
nano formulation to be sustained in a muscle depot then 
disseminate to the lymphoid system and solid organs 
with slow-release rates that lead to an extended half-life. 
Phase 1 clinical trials are now being planned because 
of these early mouse experiments that facilitated devel-
opment and safety of these new formulations (Fig.  4). 
However, this is yet one single example of the promise of 
human translation by having the ability to mimic human 
disease processes in a small animal. To that the best is 
still yet to come.

Fig. 3  Immune transformation in neurodegenerative disorders. Pathogenic changes seen in the brains of AD include accumulation of 
intraneuronal neurofibrillary tangles of Tau and extracellular Aβ plaques. These induce activation of CNS resident microglia and astrocytes leading 
to neuroinflammation (top left). In contrast, transformation of an inflammatory microglia by medicines or immune modulation leads to neuronal 
protection and maintenance of CNS homeostasis (top right). Similarly in PD, aggregated self-protein α-synuclein activates microglia leading 
to neuronal damage within the substantia nigra pars compacta along with their connections into the striatum; brain subregions responsible 
for coordinate movement (bottom left). However, brain homeostasis achieved through neuroprotection (bottom right) can affect clinical 
improvements
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