
Stem Cell Reports

Perspective
Deep learning models will shape the future of stem cell research

John F. Ouyang,1 Sonia Chothani,1 and Owen J.L. Rackham1,2,3,*
1Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Singapore,

Singapore
2School of Biological Sciences, University of Southampton, Southampton, UK
3The Alan Turing Institute, The British Library, London, UK

*Correspondence: o.j.l.rackham@soton.ac.uk

https://doi.org/10.1016/j.stemcr.2022.11.007
SUMMARY

Our ability to understand and control stem cell biology is being

augmented by developments on two fronts, our ability to collect

more data describing cell state and our capability to comprehend

these data using deep learning models. Here we consider the

impact deep learning will have in the future of stem cell research.

We explore the importance of generating data suitable for these

methods, the requirement for close collaboration between experi-

mental and computational researchers, and the challenges we face

to do this fairly and effectively. Achieving this will ensure that the

resulting deep learning models are biologically meaningful and

computationally tractable.

INTRODUCTION

As biologists, we are constantly constructing, refining, and

testing a private internal ‘‘model’’ of the systems we study.

As we are exposed to new data or ideas that challenge or

confirm this model, we adapt accordingly. This accumu-

lated experience allows us to hypothesize about what hap-

pens under unseen conditions or teach others about the

systems we study. The remarkable thing about human

brains is that they learn and understand complex systems

through a relatively small number of observations, making

them an engine for innovation. However, two revolutions

have altered this status quo: the exponential growth of data

science technologies such as cloud computing, artificial

intelligence, and machine learning and the increased

capacity to generate vast amounts of data. Together these

revolutions are allowing us to train in silico deep learning

(DL) models that can take advantage of these vast datasets

in a way we cannot ourselves.

The application of DL models has already delivered

several novel insights. Most notably, the development of

AlphaFold2 (Jumper et al., 2021), a semi-supervised DL

model that can predict protein structure from a sequence,

is revolutionizing how we study protein structure.

AlphaFold2 uses multiple sequence alignment data, which

are generated by aligning multiple similar protein se-

quences and identifying regions of high or low similarity.

Since our ability to collect a large number of protein se-

quences has been established for some time, the scale of

this problem far exceeded our human capabilities and is

something the machine learning field has been trying to
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tackle for some time. Increasingly, we are now seeing

similar problems arise in other areas of biology. For

instance, as stem cell biologists, we can now collect hun-

dreds of thousands and up to millions of observations of

individual cells during differentiation or development.

Interpreting these data also exceeds our capabilities, espe-

cially as we combine data from multiple experiments and

modalities. As a community, we must develop DL models

to bridge this interpretation gap, learning the relationships

between different conditions, focusing our investigations,

and making full use of the data we generate.

Increasingly, developments in stem cell research are be-

ing catalyzed by DL models. The application of imaging

and deep neural networks has helped better measure and

understand changes in morphology that occur during dif-

ferentiation, predicting how cells are likely to differentiate

(Ren et al., 2021), annotating cells in an unbiasedway (Guo

et al., 2021), or elucidating stem cell identify (Stumpf and

MacArthur, 2019). DL methods have also been developed

to reconstruct developmental trajectories from single-cell

data (for example, La Manno et al., 2018; Lummertz da Ro-

cha et al., 2018; Moon et al., 2019), and these models are

allowing us to understand the fate choice of stem cells at

a resolution far higher than previously possible (Pellin

et al., 2019) and even find novel cell states arising during

reprogramming (Liu et al., 2020). DL is also extending

our capability to control the behavior of stem cells, for

instance, controlling their pattern formation (Libby et al.,

2019) or finding optimal culture conditions (Kamaraj

et al., 2020; Kanda et al., 2022).

In this perspective, we will focus on the impact of DL

models on transcriptomics in the context of stem cell

biology. Still, similar advances are also taking place across

biology, from proteomics to medical imaging. The chal-

lenge remains onhow to effectively introduce thesemodels

into our scientific workflows and shape their future devel-

opment to maximize their ability to help us tackle the

most critical problems in human health and disease.

The underpinning of any model is the data

A critical requirement for generating accurate models is the

data on which they are trained. The widespread adoption

of high-throughput technologies to measure gene expres-

sion and genomic sequences has resulted in the generation
.
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of vast quantities of data. However, how these data are

generated and shared can dramatically impact their utility

for training DL models.

Open access data sharing has made data publicly avail-

able to the scientific community. Publications are routinely

required to deposit their newly generated raw and pro-

cessed data in repositories such as the Gene Expression

Omnibus (Barrett et al., 2013), Short Read Archive (Leino-

nen et al., 2011), and European Nucleotide Archive

(Amid et al., 2020). However, to effectively use these data

resource as a whole for training a DL model, one would

need to perform a significant amount of standardization

and normalization of the raw and processed files deposited.

This would be necessary to account for any batch effects,

such as processing pipeline, experimental protocol, and in-

ter-individual differences. As a result, the data from within

these repositories are rarely used collectively, and with the

scale of data being so important for training, this is a

limiting factor for the use of these resources for DLmodels.

One way to overcome this is to re-analyze individual

datasets from repositories using a standardized analysis

pipeline. For example, Remap (Chèneby et al., 2020) re-

analyzed public CHIP-seq data to generate a catalog of mil-

lions of peaks and obtained high-quality regulatory regions

in humans and Arabidopsis. For transcriptomics data, the

recount (Collado-Torres et al., 2017) and ARCHS4 (Lach-

mann et al., 2018) projects provide an online resource

where RNA-seq data from different human and mouse

studies are realigned to the same gene models and then re-

counted, allowing for uniform reprocessing of the data.

Although these reanalyses reduce the variation between

datasets by using uniform processing, it is impossible to ac-

count for the experimental differences between datasets

fully. As such, some batch effects may remain, which can

unpredictably affect the DL model’s training.

Oneway to create large, uniform datasets is via consortia-

led efforts that generate the data with standardized proto-

cols and data processing pipelines. For example, for over

20 years, the FANTOM consortium has generated large

amounts of transcriptomics data in humans and mice.

The generated data have been released in raw and bro-

wsable formats (Abugessaisa et al., 2021). Similarly, the

ENCODE consortium has generated large amounts of

data to describe regulatory elements in humans and mice.

Currently, in its fourth phase, ENCODE4 makes their

generated transcriptomics and epigenetics data publicly

available and ensures that all newly obtained human sam-

ples are consented for unrestricted data sharing. More

recently, the human cell atlas (HCA) (Regev et al., 2017)

has launched, intending to collect single-cell data gener-

ated across the globe. The HCA has a data coordination

platform that facilitates data sharing, thus maximizing

data usage and streamlining efforts across the scientific
community. Such datasets can be used routinely for gene-

level hypotheses and global studies (Alam et al., 2020;

Fort et al., 2014) but also provide the ideal dataset for

training or benchmarking DL methods (e.g., Köhler et al.,

2021; Lotfollahi et al., 2022a; Niu et al., 2019). As the field

develops, consortia such as FANTOM, ENCODE, and the

HCA must consider the application of the data generated

for training DL models as one of the primary outcomes

and design experiments tomaximize applicability for in sil-

ico as opposed to human interpretation. For this to be

possible, the field must prioritize building trust and under-

standing of DL methods among the research community.

DL enables data-driven science, allowing us to extract in-

formation from multiple data modalities or experimental

conditions. For instance, the correct combination of DL

with temporal gene expression data from annotated em-

bryos was able to dissect the dynamics of human develop-

ment at an unprecedented scale (Meistermann et al., 2021).

Equally, a recent study demonstrated that it was possible to

accurately predict the fate of neural stem cells after only

one day in culture by applying DL models to bright-field

imaging data from differentiating neural stem cells (Zhu

et al., 2021). Looking to the future, there are several ways

that we can ensure that DL models are as generalizable

and comprehensive as possible. Firstly, using DL models

to integrate more layers of data will provide a more com-

plete view of development. Secondly, training models on

multiple experimental conditions at once will avoid them

being over-fitted to specific processes and, as such, more

likely to be able to make robust predictions outside of our

collected observations.

As a community, the choice and breadth of measures of

success will also be crucial to determining the accuracy of

DL models. For instance, in a recent study DL models

were trained to predict endothelial cells based on their

morphology in phase-contrast images and orthogonally

validated by CD31 expression from immuno-staining of

the test set, allowing for the model accuracy to be assessed

inmultiple ways (Kusumoto et al., 2018). Developing these

measures of success relies on collaboration between wet-

bench and computational researchers, ensuring they are

biologically meaningful and computationally tractable.

To achieve this, it is crucial to familiarize wet-bench re-

searchers with the importance of generating appropriate

data for DLmethods and engaging them in future develop-

ments. The most potent DL approaches will emerge from

combined innovation in experimental design and algo-

rithm development.

DL models are already helping to leverage public data

Withmore sequencing data being generated, incorporating

data from diverse sources is becoming increasingly crucial.

Without the ability to combine data accurately, researchers
Stem Cell Reports j Vol. 18 j 6–12 j January 10, 2023 7
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are left to interpret each dataset individually and fail to

capitalize on this growing resource. DL models are already

proving to be a powerful tool in data integration. For

instance, numerous DL-based tools for integrating single-

cell transcriptomic data have been developed, e.g., scVI

(Lopez et al., 2018), trVAE (Lotfollahi et al., 2020), scANVI

(Xu et al., 2021), scGen (Lotfollahi et al., 2019), and expi-

Map (Lotfollahi et al., 2022b). Many of these tools employ

an autoencoder-based neural network model that attempts

to encode the high-dimensional input gene expression

into a lower-dimensional representation before decoding

this back to the original input space. The DL model then

aims to minimize the difference between the original

training data and the encoded-decoded counterpart. The

hypothesis is that if the model can find a set of weights

to do this with high accuracy, then the encoded low-

dimensional representation must capture much of the

meaningful information from the higher-dimensional

input. This encoding-decoding process allows the model

to learn themajor sources of variation, biological and tech-

nical, in the input data. The learnt biological relationships

can be used to infer gene regulatory networks, which have

been applied to identify lineage-specific gene regulation in

mouse hematopoiesis (Shu et al., 2021). Furthermore, the

technical differences can be removed to harmonize the

data, allowing data from different studies to be analyzed

together.

Increasingly, there are DL-based tools for interpreting

single-cell genomics data across different modalities, e.g.,

transcriptomics, protein levels, and spatial data. A pioneer-

ing DL model in multimodal integration, the TotalVI

model (Gayoso et al., 2021), uses the same encoding-decod-

ing process to learn both single-cell transcriptomics and

protein data distribution to create a joint low-dimensional

representation. This allows for the imputation of data from

one modality, e.g., protein levels from the learnt represen-

tation and the integration of different multimodal single-

cell data. DL-based tools are also applied to multimodal

spatial data. The DestVI model (Lopez et al., 2022) decon-

volutes the cell types observed in spatial transcriptomics

by training two autoencoders to learn cell-type-specific

gene expression patterns and the spatial context of these

patterns. It is also possible to predict gene expression

from different DNA sequences, as demonstrated by the

Nvwa tool (Li et al., 2022), which identified cell-type-spe-

cific TF-gene regulatory relationships conserved across

species. Tools like this will benefit stem cell research by

elucidating how cis-regulatory elements drive differentia-

tion into different lineages. For instance, the Nvwa tool

could be used to further decipher the grammar of transcrip-

tional regulation and its downstream impact on phenotype

by complementing studies such as in Vigilante et al. (2019),

where genetic variation in human iPSC cell lines that affect
8 Stem Cell Reports j Vol. 18 j 6–12 j January 10, 2023
stem cell behavior have been identified. Currently, these

DL models are applied on matched multimodal data where

different modalities are profiled simultaneously on the

same single cell. However, many studies often profile the

different modalities from different samples due to tech-

nical limitations in extracting cellular material from single

cells. Thus, there is an opportunity to modify existing DL

models for use with unmatched data where the different

modalities are profiled on different single cells. This will

allow biologists to extract further biological insights from

existing data.

As the volume and types of data increase and innova-

tions in DL continue accumulating, we expect the

complexity of DL models to increase. However, with this

increase in model complexity, the interpretability of these

models may suffer. Currently, most DL models function as

‘‘black boxes.’’ However, as biologists, we are concerned

with the underlying gene programs and pathways that

drive different biological processes. Thus, to build trust in

DL models, it is crucial to move toward interpretable DL

models where users can identify the genes or pathways

contributing to the results. This will also provide a better

understanding of the underlying mechanisms, which can

be tested experimentally to further confirm the accuracy

of DL models.

The future of data and models in stem cell research

Despite numerous technological advances, the complexity

of most experimental designs has remained relatively un-

changed. The typical experiment often comprises cells

from a ‘‘steady state’’ subjected to a single modification/

perturbation or compared with a ‘‘modified state’’ such as

a disease. This design lends itself well to questions that

we (as humans) find more accessible to answer, such as

‘‘what is the difference between the steady and modified

state?’’ This means that despite the data providing higher

resolution and increased complexity, the types of questions

being addressed have not evolved at the same rate. How-

ever, this is beginning to change; in many cases, the scale

and cost of data generation will make these innovations a

necessity, with the data being so complex that without a

DL intermediary, their interpretation becomes impossible.

One area where this will likely happen in the near future

is data generated using spatial and single-cell sequencing.

With each innovation in spatial transcriptomics comes

an increase in either spatial resolution or sample size.

Thus, we should anticipate methods that can measure

gene expression at a subcellular resolution at an organ

scale. Similarly, the cost per cell is decreasing for single-

cell sequencing, and more modalities can now be profiled

simultaneously. We should also expect that we will

routinely collect millions of observations, from multiple

modalities, of biological processes over time. In both cases,
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analyzing this data by treating each data point indepen-

dently will become computationally prohibitive and fail

to extract the true value of the data. Instead, we should

strive to use this data to train general models of cellular

behavior. Using these models, we can go far beyond

knowing which genes are cell type specific but instead

test hypotheses about changes in gene expression or find

the critical events that initiate the divergence of different

cell fate over time. As we collect more data and innovate

DL architectures, these models will become more accurate

and increasingly offer an alternative to in vitro and animal

models to test hypotheses.

Using single-cell technologies to profile individually per-

turbed cells has already created a new generation of assays

that generate highly complex datasets. For example, per-

turb-seq is a high-throughput method of performing

single-cell RNA sequencing on pooled genetic or trans-

criptional perturbation screens (Dixit et al., 2016). These

approaches are already used in the stem cell field to search

for optimal combinations of regulators for driving

neuronal differentiation (e.g., Kreimer et al., 2022; Lugin-

bühl et al., 2021), understanding T cell development

(Schmidt et al., 2022), and screen thousands of perturba-

tions in vivo (Jin et al., 2020). The data generated are of a

much larger scale, with experiments demonstrating the

capability to capture the effect of thousands of pertur-

bations at once, but in the near future, this could expon-

entially increase to millions of perturbations in a single

experiment. Consequently, many current approaches to

analyzing gene expression will need to change. Dimension

reduction approaches will become inadequate to provide

insight into the data, and the generation of lists of differen-

tially expressed genes will become meaningless given the

numerous different conditions/perturbations. As a result,

deploying DL models will become essential to extract the

full potential of these emerging datasets. These models

will bring many new capabilities, for example, transferring

the result of perturbations from one cell type to another, al-

lowing us to experiment with the effect of a drug or genetic

perturbation without needing to experiment on precious

samples (Lotfollahi et al., 2021). These tools can be applied

to stem cell research to find perturbations that can improve

the efficiency of differentiation protocols or better under-

stand how these processes occur in vivo.

Generative DL models can also be used to predict future

cell states in a developmental process or in a differentiation

experiment. For instance, the PRESCIENT tool (Yeo et al.,

2021) employs DL to learn the underlying differentiation

landscape from time-series scRNA-seq data. The learnt

model was then used to simulate changes in cell fate in he-

matopoiesis and pancreatic b cell differentiation. Such

techniques can be applied to model very early develop-

ment, allowing us to predict cell fate decisions beyond
the first 14 days of embryo development where current

ethics prohibit experimentation. This will allow stem cell

biologists to better understand the drivers for diseases

and biology related to early organogenesis.

Another feature of these models that is often overlooked

is their portability, which impacts our ability to share bio-

logical findings. For instance, predictive models trained

on large consortia-level datasets can be easily shared, allow-

ing researchers with smaller datasets to apply these models

to their problems. The open sharing of models also facili-

tates benchmarking against each other to assess the most

suitable one for a given task. Equally, shared models can

be used as a starting point for future development. The suc-

cess of model sharing will rely on establishing the correct

infrastructure for model deposition, curation, and bench-

marking and providing the interface between the life and

data sciences. Early efforts in developing such infrastruc-

ture have come from model zoos. These are machine

learning model deployment platforms designed specif-

ically for model ease of use. Model zoos specific to compu-

tational biology such as Kipoi (Avsec et al., 2019) and

BioImage (Ouyang et al., 2022), as well as domain-agnostic

model zoos such as ModelZoo.co, already contain thou-

sands of pre-trained DL models that can be readily re-im-

plemented onto new data. As the field develops, the stem

cell community will need to engage more closely with

developing these critical infrastructures to ensure that

they are guided equally by computational and biological

expertise. Not only will the success of these models rely

on the production of high-quality data, but the way that

themodels are trained and the biologically relevantmetrics

that are used to gauge the success of their training also have

a significant impact on their biological accuracy and utility.

Challenges to overcome

Reaching a pointwhere DLwill shape stem cell researchwill

require overcoming several challenges. These challenges are

not just computationalandbiological but also social/human

and will require input from several disciplines to overcome.

Firstly, as a field,wemust learn frommistakesmade in previ-

ous uses ofDL and ensure that our biases (conscious andun-

conscious) are not transferred to these models through the

data we generate and the metrics we define. Thus, the data

generated to trainDLmodelsmust represent our species un-

biasedly and comprehensively, covering different biological

systems and incorporating diverse genetic backgrounds.

This will be critical in ensuring that the rewards from

applying DL are as equitable as possible in the future.

Some aspects of stem cell biology set them apart from

other cell types in our body, and these differences could

be important to consider in implementing DL models.

For instance, stem cells are dynamic, sensing and respond-

ing to the microenvironment. As such, DL models will
Stem Cell Reports j Vol. 18 j 6–12 j January 10, 2023 9
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need to be able to capture dynamical properties, and the

data used to train themodels will need sufficient resolution

to capture these changes. This is further complicated

because differentiation and reprogramming can happen

asynchronously and in different orders. As such, DL

models will need to be able to predict the behavior of indi-

vidual cells but also incorporate how their ensemble at a

given moment affects the global dynamics. This combina-

tion of multiple hierarchies and interactions makes stem

cells difficult tomodel compared with stable, fully differen-

tiated cell states whose dynamics tend to be simpler.

Another challenge we face is that even with the expected

advances in sequencing technologies, our measurements

only provide a partial and incomplete description of the

cell state we are trying to model. We must find ways to

interface our digital models with their ‘‘real-world’’ coun-

terparts. This may involve simulating the same experi-

ments on the digital models and comparing them to the

same experiments carried out on the biological cells or hav-

ing a series of functional tests that can be carried out in

silico to ensure that the behavior of the cellular models

accurately captures what happens in biology. As a field,

we will need to have an ongoing dialogue on how best to

cross this in silico to in vitro or in vivo divide, and this will

be critical to the utility of the models we generate.

Conclusion

Overall, we expect that DL models will increasingly

become part of our arsenal of tools to explore biology. As

both data generation and DL models improve, generaliz-

able DL models of the cell will evolve. Ultimately, these

will allow in silico experiments to become another alterna-

tive to current in vitro and in vivo models. Although they

will never replace wet-lab experiments or animal work,

they have enormous potential to direct the focus of these

or enable testing hypotheses that would never be experi-

mentally feasible. As a stem cell community, we should

actively combine the data and life sciences to realize this

potential and enable our field to benefit from the

increasing number of innovations in DL.
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