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The process for using statistical inference to establish personalized treatment strategies requires specific techniques for data-analysis
that optimize the combination of competing therapies with candidate genetic features and characteristics of the patient and disease.
A wide variety of methods have been developed. However, heretofore the usefulness of these recent advances has not been fully
recognized by the oncology community, and the scope of their applications has not been summarized. In this paper, we provide an
overview of statistical methods for establishing optimal treatment rules for personalized medicine and discuss specific examples in
various medical contexts with oncology as an emphasis. We also point the reader to statistical software for implementation of the
methods when available.

1. Introduction

Cancer is a set of diseases characterized by cellular alterations
the complexity of which is defined atmultiple levels of cellular
organization [1, 2]. Personalized medicine attempts to com-
bine a patient’s genomic and clinical characteristics to devise a
treatment strategy that exploits current understanding of the
biological mechanisms of the disease [3, 4]. Recently the field
has witnessed successful development of several molecularly
targeted medicines, such as Trastuzumab, a drug developed
to treat breast cancer patients with HER2 amplification and
overexpression [5, 6]. However, successes have been limited.
Only 13% of cancer drugs that initiated phase I from 1993 to
2004 attained finalmarket approval by theUS Food andDrug
Administration (FDA) [7]. Moreover, from 2003 to 2011,
71.7% of new agents failed in phase II, and only 10.5% were
approved by the FDA [8].The low success rate can be partially
explained by inadequate drug development strategies [3]
and an overreliance on univariate statistical models that
fail to account for the joint effects of multiple candidate
genes and environmental exposures [9]. For example, in
colorectal cancer there have been numerous attempts to
develop treatments that target a singlemutation, yet only one,

an EGFR-targeted therapy for metastatic disease, is currently
used in clinical practice [10].

In oncology, biomarkers are typically classified as either
predictive or prognostic. Prognostic biomarkers are cor-
relates for the extent of disease or extent to which the
disease is curable. Therefore, prognostic biomarkers impact
the likelihood of achieving a therapeutic response regardless
of the type of treatment. By way of contrast, predictive
biomarkers select patients who are likely or unlikely to
benefit from a particular class of therapies [3]. Thus, pre-
dictive biomarkers are used to guide treatment selection for
individualized therapy based on the specific attributes of a
patient’s disease. For example, BRAFV600-mutant is a widely
known predictive biomarker which is used to guide the
selection of Vemurafenib for treatment metastatic melanoma
[11]. Biomarkers need not derive from single genes as those
aforementioned and yet may arise from the combination of a
small set of genes ormolecular subtypes obtained from global
gene expression profiles [6]. Recently, studies have shown
that the Oncotype DX recurrence score, which is based on 21
genes, can predict awoman’s therapeutic response to adjuvant
chemotherapy for estrogen receptor-positive tumors [12, 13].
Interestingly, Oncotype DX was originally developed as a
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prognostic biomarker. In fact, prognostic gene expression sig-
natures are fairly common in breast cancer [12, 14].The reader
may note that Oncotype DX was treated as a single biomaker
and referred to as a gene expression based predictive classifier
[3].

Statistically, predictive associations are identified using
models with an interaction between a candidate biomarker
and targeted therapy [15], whereas prognostic biomarkers
are identified as significant main effects [16]. Thus, analy-
sis strategies for identifying prognostic markers are often
unsuitable for personalized medicine [17, 18]. In fact, the
discovery of predictive biomarkers requires specific statistical
techniques for data-analysis that optimize the combina-
tion of competing therapies with candidate genetic features
and characteristics of the patient and disease. Recently,
many statistical approaches have been developed provid-
ing researchers with new tools for identifying potential
biomarkers. However, the usefulness of these recent advances
has not been fully recognized by the oncology community,
and the scope of their applications has not been sum-
marized.

In this paper, we provide an overview of statistical meth-
ods for establishing optimal treatment rules for personalized
medicine and discuss specific examples in various medical
contexts with oncology as an emphasis. We also point the
reader to statistical software when available. The various
approaches enable investigators to ascertain the extent to
which one should expect a new untreated patient to respond
to each candidate therapy and thereby select the treatment
that maximizes the expected therapeutic response for the
specific patient [3, 19]. Section 2 discusses the limitations
of conventional approaches based on post hoc stratified
analysis. Section 3 offers an overview of the process for the
development of personalized regimes. Section 4 discusses
the selection of an appropriate statistical method for differ-
ent types of clinical outcomes and data sources. Section 5
presents technical details for deriving optimal treatment
selection rules. In Section 6, we discuss approaches for
evaluating model performance and assessing the extent to
which treatment selection using the derived optimal rule is
likely to benefit future patients.

2. Limitations of Subgroup Analysis

Cancer is an inherently heterogeneous disease. Yet, often
efforts to personalize therapy rely on the application of
analysis strategies that neglect to account for the extent of het-
erogeneity intrinsic to the patient and disease and therefore
are too reductive for personalizing treatment inmany areas of
oncology [20–23]. Subgroup analysis is often used to evaluate
treatment effects among stratified subsets of patients defined
by one or a few baseline characteristics [23–26]. For example,
Thatcher et al. [21] conducted a series of preplanned subgroup
analyses for refractory advanced non-small-cell lung cancer
patients treated with Gefitinib plus best supportive care
against placebo. Heterogeneous treatment effects were found
in subgroups defined by smoking status; that is, significant
prolonged survival was observed for nonsmokers, while no
treatment benefit was found for smokers.

Though very useful when well planned and properly
conducted, the reliance on subgroup analysis for developing
personalized treatment has been criticized [24, 25]. Obvi-
ously, a subgroup defined by a few factors is inadequate
for characterizing individualized treatment regimes that
depends onmultivariate synthesis.Moreover, post hoc imple-
mentation of multiple subgroup analyses considers a set of
statistical inferences simultaneously (multiple testing), and
errors, such as incorrectly rejecting the null hypothesis, are
likely to occur. The extent to which the resulting inference
inflates the risk of a false positive finding can be dramatic
[23]. Take, for example, a recent study that concluded that
chemotherapy followed by tamoxifen promises substantial
clinical benefit for postmenopausal women with ER negative,
lymph node-negative breast cancer [27] through post hoc
application subgroup analysis. Subsequent studies failed to
reproduce this result, concluding instead that the regime’s
clinical effects were largely independent of ER status [28], but
may depend on other factors including age.

3. Personalized Medicine from
a Statistical Perspective

From a statistical perspective, personalized medicine is a
process involving six fundamental steps provided in Figure 1
[20, 29, 30]. Intrinsic to any statistical inference, initially one
must select an appropriate method of inference based on the
available source of training data and clinical endpoints (e.g.,
steps (1) and (2)). Step (3) is the fundamental component of
personalized treatment selection, deriving the individualized
treatment rule (ITR) for the chosen method of inference.
An ITR is a decision rule that identifies the optimal treat-
ment given patient/disease characteristics [31, 32]. Section
5 is dedicated to the topic of establishing ITRs for various
statistical models and types of clinical endpoints that are
commonly used to evaluate treatment effectiveness in onco-
logy.

Individualized treatment rules are functions of model
parameters (usually treatment contrasts reflecting differences
in treatment effects) which must be estimated from the
assumed statistical model and training data. Statistical esti-
mation takes place in step 4. The topic is quite general,
and it thus is not covered in detail owning to the fact that
other authors have provided several effective expositions
on model building strategies in this context [29, 33]. After
estimating the optimal treatment rule in step (4), the resulting
estimated ITR’s performance and reliabilitymust be evaluated
before the model can be used to guide treatment selection
[34]. The manner in which one assesses the performance of
the derived ITR depends on the appropriate clinical utility
(i.e., increased response rate or prolonged survival dura-
tion). Evaluation of model goodness-of-fit and appropriate
summary statistics that use the available information to
measure the extent to which future patients would benefit
from application of the ITR is conducted in step (5) and
will be discussed in Section 6. The ITR is applied to guide
treatment selection for a future patient based on his/her
baseline clinical and genetic characteristics as the final
step.
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(1) Acquire the training data

∙ Randomized data from a comparative trial
∙ Observational cohorts

(2) Choose a method of inference based on clinical
endpoints and data dimension

∙ Binary
∙ Continuous
∙ Survival

∙ Low dimensional
∙ High dimensional

(3) Identify the individualized treatment rule

∙ Derive the treatment contrasts
∙ Select a clinically relevant decision threshold

(4) Fit the model to training data

∙ Select the important covariates
∙ Estimate the model parameters

(5) Evaluate performance

∙ Assess model goodness-of-fit and prediction
∙ Measure the extent of clinical benefit

(6) Apply the treatment rule to future patients

∙ Acquire prognostic and predictive covariates
∙ Select the optimal treatment

Figure 1: The process for using statistical inference to establish personalized treatment rules.

4. Selecting an Appropriate
Method of Inference

The quality of a treatment rule depends on the aptness of
the study design used to acquire the training data, clinical
relevance of the primary endpoints, statistical analysis plans
for model selection and inference, and quality of the data.
Randomized clinical trials (RCT) remain the gold standard
study design for treatment comparison, since randomization
mitigates bias arising from treatment selection. Methods
for deriving ITRs using data from RCTs are described in
Section 5.1. Data from well conducted observational studies
provide useful sources of information as well, given that
the available covariates can be used to account for potential
sources of confounding due to selection bias. Predominately,
methods based on propensity scores are used to adjust for
confounding [35, 36]. Approaches for establishing ITRs using
observational studies are discussed in Section 5.2.

The predominate statistical challenge pertaining to the
identification of predictive biomarkers is the high-dimen-
sional nature of molecular derived candidate features. Clas-
sical regression models cannot be directly applied since the
number of covariates, for example, genes, is much larger than
number of samples. Many approaches have been proposed
to analyze high-dimensional data for prognostic biomarkers.
Section 5.3 discusses several that can be applied to detect
predictive biomarkers under proper modification.

In oncology, several endpoints are used to compare clin-
ical effectiveness. However, the primary therapeutic goal is
to extend survivorship or delay recurrence/progression.Thus,
time-to-event endpoints are often considered to be the most
representative of clinical effectiveness [37]. The approaches
aforementioned were developed for ordinal or continuous
outcomes and were thus not directly applicable for survival
analysis. Methods for establishing ITRs from time-to-event
endpoints often use Cox regression or accelerated failure time
models [38, 39]. The later approach is particularly appealing

in this context since the clinical benefits of prolonged survival
time can be easily obtained [40, 41]. In Section 5.4, we will
discuss both models.

The performance of ITRs for personalized medicine
is highly dependent upon the extent to which the model
assumptions are satisfied and/or the posited model is cor-
rectly specified. Specifically, performances may suffer from
misspecification of main effects and/or interactions, random
error distribution, violation of linear assumptions, sensitivity
to outliers, and other potential sources of inadequacy [42].
Some advanced methodologies have been developed to over-
come these issues [43], including semiparametric approaches
that circumvent prespecification of the functional form of
the relationship between biomarker and expected clinical
response [32, 40]. In addition, optimal treatment rules can
be defined without regression models, using classification
approaches where patients are assigned to the treatment that
provides the highest expected clinical benefit. Appropriate
class labels can be defined by the estimated treatment differ-
ence (e.g., >0 versus ≤0), thereby enabling the use of machine
learning and data mining techniques [42, 44, 45]. These will
be discussed in Section 5.5.

5. Methods for Identifying Individualized
Treatment Rules

This section provides details of analytical approaches that are
appropriate identifying ITRs using a clinical data source.The
very nature of treatment benefit is determined by the clinical
endpoint. While extending overall survival is the ultimate
therapeutic goal, often the extent of reduction in tumor
size as assessed by RECIST criteria (http://www.recist.com/)
is used as a categorical surrogate for long-term response.
Alternatively, oncology trials often compare the extent to
which the treatment delays locoregional recurrence or dis-
ease progression. Therefore, time-to-event and binary (as in
absence/presence of partial or complete response) are the
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most commonly used endpoints in oncologic drug develop-
ment [37, 46].

Let 𝑌 denote the observed outcome such as survival
duration or response to the treatment, and let 𝐴 ∈ {0, 1}

denote the treatment assignment with 0 indicating standard
treatment and 1 for a new therapy. Denote the collection of
observable data for a previously treated patient by (𝑌, 𝐴,X),
where X = 𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑝
, represents a vector of values for

the 𝑝 biomarkers under study. Quantitatively, the optimal
ITRderives from the following equation relating the observed
response to the potential outcome attained under the alterna-
tive treatment

𝑌 = 𝐴𝑌
(1)
+ (1 − 𝐴)𝑌

(0)
, (1)

where𝑌(1) and𝑌(0) denote the potential outcomes that would
be observed if the subject had been assigned to the new
therapy or the standard treatment, respectively [32, 43]. Let
𝐸(𝑌 | 𝐴,X) = 𝜇(𝐴,X) denote the expected value of 𝑌 given
𝐴 and X. The optimal treatment rule follows as

𝑔
opt
(X) = 𝐼 {𝜇 (𝐴 = 1,X) − 𝜇 (𝐴 = 0,X) > 0} , (2)

where 𝐼(⋅) is the indicator function. For instance, if
𝐼{𝜇(1, age > 50) − 𝜇(0, age > 50) > 0} = 1, then the optimal
rule would assign patients who are older than 50 to the new
treatment. However, 𝐸(𝑌 | 𝐴,X) is actually a function of
parameters, 𝜇(𝐴,X;𝛽), denoted by 𝛽. The model needs to be
“fitted” to the training data to obtain estimates of 𝛽, which we
denote by �̂�. Hence for a patient with observed biomarkers
X = x, the estimated optimal treatment rule is

𝑔
opt
(X = x, �̂�)

= 𝐼 {𝜇 (𝐴 = 1,X = x; �̂�) − 𝜇 (𝐴 = 0,X = x; �̂�)} .
(3)

The above equation pertains to steps (3) and (4) in Figure 1;
that is, the parameter estimates from a fitted model are used
to construct the personalized treatment rule. The remainder
of this section instructs the readers how to identify ITRs for
the various data types.

We classify the statistical methods presented in this
section into five categories: methods based on multivariate
and generalized linear regression for analysis of data acquired
from RCT (Section 5.1) and observational studies (Section
5.2); methods based on penalized regression techniques for
high-dimensional data (Section 5.3); methods for survival
data (Section 5.4); and advanced methods based on robust
estimation and machine learning techniques (Section 5.5).

5.1. Multiple Regression for Randomized Clinical Trial Data.
Classical generalized linear models (GLM) can be used
to develop ITRs in the presence of training data derived
from randomized clinical study. The regression framework
assumes that the outcome 𝑌 is a linear function of prognostic
covariates, 𝑋

1
; putative predictive biomarkers, 𝑋

2
; the treat-

ment indicator, 𝐴; and treatment-by-predictive interaction,
𝐴𝑋
2
:

𝜇 (𝐴,X) = 𝐸 (𝑌 | 𝐴,X)

= 𝛽
0
+ 𝛽
1
𝑋
1
+ 𝛽
2
𝑋
2
+ 𝐴 (𝛽

3
+ 𝛽
4
𝑋
2
) .

(4)

Let Δ(X) = 𝐸(𝑌 | 𝐴 = 1,𝑋) − 𝐸(𝑌 | 𝐴 = 0,𝑋) = 𝜇(𝐴 = 1,

𝑋) − 𝜇(𝐴 = 0,𝑋) denote the treatment contrast. The optimal
treatment rule assigns a patient to the new treatment if
Δ(X) > 0. For binary endpoints, the logistic regressionmodel
for 𝜇(𝐴,X) = 𝑃(𝑌 = 1 | 𝐴,X) is defined such that

log{
𝜇 (𝐴,X)

1 − 𝜇 (𝐴,X)
} = 𝜔 (𝐴,X)

= 𝛽
0
+ 𝛽
1
𝑋
1
+ 𝛽
2
𝑋
2
+ 𝐴 (𝛽

3
+ 𝛽
4
𝑋
2
) .

(5)

The treatment contrast Δ(X) can be calculated using 𝐸(𝑌 |

𝐴 = 𝑎,𝑋) = 𝑃(𝑌 = 1 | 𝐴 = 𝑎,X) = 𝑒𝜔(𝐴,X)/(1 + 𝑒𝜔(𝐴,X))
for 𝑎 = 0, 1, respectively. Similarly, an optimal ITR assigns a
patient to the new treatment if Δ(X) > 0. This optimal treat-
ment rule can be alternatively defined as 𝑔opt(X) = 𝐼{(𝛽

3
+

𝛽
4
𝑋
2
) > 0} without the need to calculate the treatment

contrast Δ(X) [43, 45].
Often one might want to impose a clinically meaningful

minimal threshold, Δ(X) > 𝛿, on the magnitude of treatment
benefit before assigning patients to a novel therapy [45, 47].
For example, it may be desirable to require at least a 0.1
increase in response rate before assigning a therapy for which
the long-term safety profile has yet to be established. The use
of a threshold value can be applied to all methods. Without
loss of generality, we assume 𝛿 = 0 unless otherwise specified.
In addition, the reader should note that the approaches for
constructing an ITR described above can be easily applied to
linear regression models for continuous outcomes.

This strategy was used to develop an ITR for treatment
of depression [19] using data collected from a RCT of 154
patients. In this case, the continuous outcome was based
on posttreatment scores from the Hamilton Rating Scale for
Depression. The authors constructed a personalized advant-
age index using the estimated treatment contrasts Δ(X),
derived from five predictive biomarkers. A clinically signif-
icant threshold was selected, 𝛿 = 3, based on the National
Institute for Health and Care Excellence criterion. The
authors identified that 60% of patients in the sample would
obtain a clinicallymeaningful advantage if their therapy deci-
sion followed the proposed treatment rule. The approaches
discussed in this section can be easily implemented with
standard statistical software, such as the 𝑅 (http://www.r-
project.org/) using the functions lm and glm [48].

5.2. Methods for Observational Data. Randomization attenu-
ates bias arising from treatment selection, thereby providing
the highest quality data for comparing competing interven-
tions. However, due to ethical or financial constraints RCTs
are often infeasible, thereby necessitating an observational
study. Treatment selection is often based on a patient’s
prognosis. In the absence of randomization, the study design
fails to ensure that patients on competing arms exhibit similar
clinical and prognostic characteristics, thereby inducing bias.

However, in the event that the available covariates capture
the sources of bias, a well conducted observational study
can also provide useful information for constructing ITRs.
For example, the two-gene ratio index (HOXB13:IL17BR)
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was first discovered as an independent prognostic biomarker
for ER+ node-negative patients using retrospective data
from 60 patients [49]. These findings were confirmed on
an independent data set comprising 852 tumors, which was
acquired from a tumor bank at the Breast Center of Baylor
College of Medicine [50]. Interestingly, the two-gene ratio
index (HOXB13:IL17BR) was reported to predict the benefit
of treatment with letrozole in one recent independent study
[51].

Methods based on propensity scores are commonly used
to attenuate selection bias [35]. In essence, these approaches
use the available covariates to attempt to diminish the effects
of imbalances among variables that are not of interest for
treatment comparison. Moreover, they have been shown
to be robust in the presence of multiple confounders and
rare events [52]. Generally, after adjusting for bias using
propensity scores, the same principles for deriving ITRs from
RCTs may be applied to the observational cohort.

The propensity score characterizes the probability of
assigning a given treatment 𝐴 from the available covariates,
X [35]. Using our notation, the propensity score is 𝜋(X, 𝜉) =
𝑃(𝐴 = 1 | X, 𝜉), which can be modeled using logistic
regression

log{ 𝜋 (X)
1 − 𝜋 (X)

} = 𝜉
0
+ 𝜉
1
𝑋
1
+ 𝜉
2
𝑋
2
+ 𝜉
3
𝑋
3
+ ⋅ ⋅ ⋅ + 𝜉

𝑝
𝑋
𝑝
,

(6)

where 𝑝 is the number of independent variables used to
construct the propensity score and 𝜉

𝑗
represents the 𝑗th

regression coefficient, which characterizes the 𝑗th covariate’s
partial effect. After fitting the data to obtain estimates for
the regression coefficients, �̂�, the estimated probability of
receiving new treatment can be obtained for each patient,
�̂�(Xi) = 𝜋(Xi, �̂�), by inverting the logit function. The event
that �̂� ≈ 0 implies that the measured independent variables
are reasonably “balanced” between treatment cohorts. In
practice, one often includes as many baseline covariates into
the propensity score model as permitted by the sample size.

Methods that use propensity scores can be categorized
into four categories: matching, stratification, adjusting, and
inverse probability weighted estimation [36, 53]. Matching
and stratification aim to mimic RCTs by defining a new
dataset using propensity scores such that outcomes are
directly comparable between treatment cohorts [53]. These
two approaches are well suited for conventional subgroup
analysis but their application to personalized medicine has
been limited. Regression adjustment or simply adjusting can
be used to reduce bias due to residual differences in observed
baseline covariates between treatment groups. This method
incorporates the propensity scores as an independent variable
in a regression model and therefore can be used in con-
junction with all regression-based methods [36]. Methods
involving inverse probability weighted estimators will be
discussed in Section 5.5.1 [43].

Of course, propensity scores methods may only attenuate
the effects of the important confounding variables that have
been acquired by the study design. Casual inference in gen-
eral is not robust to the presence of unmeasured confounders

that influenced treatment assignment [35, 54, 55]. For the
development of ITRs, predictive and important prognostic
covariates can be incorporated in the regression model for
the clinical outcome𝑌 alongwith the propensity scores, while
other covariatesmay be utilized only in themodel for estimat-
ing the propensity scores. Hence, propensity score methods
may offer the researcher a useful tool for controlling for
potential confounding due to selection bias andmaintaining a
manageable number of prognostic and predictive covariates.

5.3. Methods for High-Dimensional Biomarkers. The meth-
ods presented in the previous sections are appropriate for
identifying an ITR using a small set of biomarkers (low-
dimensional).However, recent advances inmolecular biology
in oncology have enabled researchers to acquire vast amounts
of genetic and genomic characteristics on individual patients.
Often the number of acquired genomic covariates will exceed
the sample size. Proper analysis of these high-dimensional
data sources poses many analytical challenges. Several meth-
ods have been proposed specifically for analysis of high-
dimensional covariates [56], although the majority of these
methods are well suited only for the analysis of prognostic
biomarkers. In what follows, we introduce variable selection
methods that were developed to detect predictive biomarkers
from high-dimensional sources as well as describing how to
construct optimal ITRs from the final set of biomarkers.

An appropriate regressionmodel can be defined generally
as 𝐸(𝑌 | 𝐴,X) = ℎ

0
(X) + 𝐴(X̃𝛽), where ℎ

0
(X) is an unspe-

cified baseline mean function, 𝛽 = (𝛽
0
, 𝛽
1
, . . . , 𝛽

𝑞
)
𝑇 is a

column vector of regression coefficients, and X̃ = (1,X) the
design matrix. Subscript 𝑞 denotes the total number of bio-
markers, which may be larger than the sample size 𝑛. An
ITR derives from evaluating the interactions in 𝐴(X̃𝛽), not
the baseline effect of the high-dimensional covariates ℎ

0
(X)

[32]. Technically, function 𝐴(X̃𝛽) = 𝐴(𝛽
0
+ 𝛽
1
𝑋
1
+ 𝛽
2
𝑋
2
+

⋅ ⋅ ⋅ + 𝛽
𝑞
𝑋
𝑞
) cannot be uniquely estimated using traditional

maximum likelihood-based methods when 𝑞 > 𝑛 [57].
Yet, practically, many of the available biomarkers may not
influence the optimal ITR [31]. Thus, the process for identify
ITRs from a high-dimensional source requires that we first
identify a sparse subset of predictive biomarkers that can be
utilized for constructing the ITR.

Parameters for the specifiedmodel can be estimated using
the following loss function:

𝐿
𝑛,𝜙
(𝛽, 𝛾) =

1

𝑛

𝑛

∑
𝑖=1

[𝑌
𝑖
− 𝜙 (X

𝑖
; 𝛾) − X̃𝛽 {𝐴

𝑖
− 𝜋 (X

𝑖
)}]
2

, (7)

where 𝜙(X; 𝛾) represents any arbitrary function character-
izing the “baseline” relationship between X and Y (e.g., an
intercept or an additive model). Here we let 𝜋(X

𝑖
) = 𝑃(𝐴

𝑖
=

1 | X
𝑖
) denote either a propensity score (for observational

data) or a randomization probability (e.g., 0.5 given 1 : 1
randomization) for RCT data. If 𝜋(X) is known, estimation
using this model yields unbiased estimates (asymptotically
consistent) of the interaction effects 𝛽 even if the main effects
are not correctly specified, providing a robustness [32].
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Penalized estimation provides the subset of relevant
predictivemarkers that are extracted from the nonzero coeffi-
cients of the corresponding treatment-biomarker interaction
terms of

�̂� = argmin
𝛽

{

{

{

𝐿
𝑛,𝜙
(𝛽, 𝛾) + 𝜆

𝑛

𝑝+1

∑
𝑗=1

𝐽

𝛽
𝑗



}

}

}

, (8)

where 𝜆
𝑛
is a tuning parameter which is often selected via

cross validation and 𝐽 is a shrinkage penalty. Different choices
of 𝐽 lead to different types of estimators. For example, the
lasso penalized regression corresponds to 𝐽 = 1 [58] and
the adaptive lasso to 𝐽 = 𝜔

𝑗
= 1/|𝛽init,𝑗|, where 𝛽init,𝑗 is an

initial estimate of 𝛽
𝑗
[59]. With little modification, (8) can

be solved using the LARS algorithm implemented with the
𝑅 package of 𝑙𝑎𝑟𝑠 [32, 60, 61]. As we have shown before, a
treatment rule can be defined from the parameter estimates
as 𝐼{𝛽

0
+ 𝛽
1
𝑋
1
+ 𝛽
2
𝑋
2
+ ⋅ ⋅ ⋅ + 𝛽

𝑞
𝑋
𝑞
> 0}. Note this generic

formmay have zero estimates for some coefficients (e.g., 𝛽
2
=

𝛽
5
= ⋅ ⋅ ⋅ = 𝛽

𝑞
= 0); hence an ITR can be equivalently con-

structed from the final estimated nonzero coefficients and the
corresponding covariates.

Alternative penalized regression approaches include
SCAD [62] and elastic-net [63]. All penalized approaches
produce sparse solutions (i.e., identifying a small subset of
predictive biomarkers); however the adaptive lasso is less
effective when 𝑝 > 𝑛. Methods that produce nonsparse
models, such as ridge regression [57], are less preferable since
ITRs based on many biomarkers are often unstable and less
useful in practice [31]. Several packages in 𝑅 offer imple-
mentation of penalized regression, such as 𝑝𝑎𝑟𝑐𝑜𝑟 for ridge,
lasso and adaptive lasso, and 𝑛𝑐V𝑟𝑒𝑔 for SCAD [64, 65].

Lu et al. [32] used a penalized regression approach to
analyze data from the AIDS Clinical Trials Group Protocol
175 (ACTG175) [66]. In this protocol, 2,000 patients were
equally randomized to one of four treatments: zidovudine
(ZDV) monotherapy, ZDV + didanosine (ddI), ZDV +
zalcitabine, and ddI monotherapy. CD4 count at 15–25 weeks
postbaselinewas the primary outcome and 12 baseline covari-
ates were included in the analysis. The resulting treatment
rule favored the combined regimes over ZDV monotherapy.
Moreover, the treatment rule determined that ZDV + ddI
should be preferred to ddI when 𝐼(71.59 + 1.07 × age− 0.18 ×
CD40 − 33.57 × homo) = 1, where CD40 represents baseline
CD4 counts and homo represents homosexual activity. Based
on this treatment rule, 878 patients would have benefited
from treatment with ZDV + ddI.

5.4. Survival Analysis. Heretofore, we have discussed meth-
ods for continuous or binary outcomes, yet often investigators
want to discern the extent to which a therapeutic intervention
may alter the amount of time required before an event occurs.
This type of statistical inference is referred to broadly as
survival analysis. One challenge for survival analysis is that
the outcomes may be only partially observable at the time of
analysis due to censoring or incomplete follow-up. Survival
analysis has been widely applied in cancer studies, often in
association studies aimed to identify prognostic biomarkers

[56, 67]. Here we discuss twowidely usedmodels for deriving
ITRs using time-to-event data, namely, Cox regression and
accelerated failure time models.

The Cox regression model follows as

𝜆 (𝑡 | X, 𝐴) = 𝜆
0
(𝑡) exp {𝛽

1
𝑋
1
+ 𝛽
2
𝑋
2
+ 𝐴 (𝛽

4
+ 𝛽
5
𝑋
2
)} ,

(9)

where 𝑡 is the survival time, 𝜆
0
(𝑡) is an arbitrary baseline

hazard function, and 𝑋
1
, 𝑋
2
represent prognostic and pre-

dictive biomarkers, respectively. Each 𝛽 characterizes the
multiplicative effect on the hazard associated with a unit
increase in the corresponding covariate. Therefore, Cox
models are referred to as proportional hazards (PH) models.

Several authors have provided model building strategies
[29] and approaches for treatment selection [20, 30, 68]. Fol-
lowing the previously outlined strategy, a naive approach for
deriving an ITR uses the hazard ratio (new treatment versus
the standard) as the treatment contrast, which can be calcu-
lated as Δ(X) = exp(𝛽

4
+ 𝛽
5
𝑋
2
). The ITR therefore is 𝐼{(𝛽

4

+𝛽
5
𝑋
2
) < 0}. There are obvious limitations to this approach.

First, violations of the PH assumption yield substantiallymis-
leading results [69].Moreover, evenwhen the PH assumption
is satisfied, because the Cox model does not postulate a
direct relationship between the covariate (treatment) and the
survival time, the hazard ratio fails to measure the extent to
which the treatment is clinically valuable [38, 70].

Accelerated failure time (AFT) models provide an alter-
native semiparametric model. Here we introduce its appli-
cation for high-dimensional data. Let 𝑇 and 𝐶 denote the
survival and censoring times, and denote the observed data
by (�̃�, 𝛿, 𝐴,X) where �̃� = min(𝑇, 𝐶) and 𝛿 = 𝐼(𝑇 < 𝐶).
Define the log survival time as 𝑌 = log(𝑇); a semiparametric
regression model is given as 𝐸(𝑌 | 𝐴,X) = ℎ

0
(X) + 𝐴(X̃𝛽),

where ℎ
0
(X) is the unspecified baseline mean function.

Similar to the previous section, the treatment rule is 𝐼{(𝛽
0
+

𝛽
1
𝑋
1
+ 𝛽
2
𝑋
2
+ ⋅ ⋅ ⋅ + 𝛽

𝑞
𝑋
𝑞
) > 0}. Under the assumption of

independent censoring, the AFT model parameters can be
estimated by minimizing the following loss function:

𝐿
𝑛,𝜙
(𝛽) =

1

𝑛

𝑛

∑
𝑖=1

𝛿
𝑖

𝐺(�̃�
𝑖
)
[�̃�
𝑖
− 𝜙 (X

𝑖
; 𝛾) − X̃𝛽 {𝐴

𝑖
− 𝜋 (X

𝑖
)}]
2

,

(10)

where �̃�
𝑖
= log(�̃�

𝑖
), 𝜋(X

𝑖
) = 𝑃(𝐴

𝑖
= 1 | X

𝑖
) is the propensity

score or randomization probability, 𝐺(⋅) is the Kaplan-Meier
estimator of the survival function of the censoring time, and
𝜙(X; 𝛾) characterizes any arbitrary function.

Thismethod can be extended to accommodatemore than
two treatments simultaneously by specifying appropriate
treatment indicators. For instance, the mean function can be
modeled as 𝐸(𝑌 | 𝐴,X) = ℎ

0
(X) + 𝐴

(1)
{X̃𝛽
(1)
} + 𝐴
(2)
{X̃𝛽
(2)
}

for two treatment drugs versus the standard care. The ITR
assigns the winning drug. Note this work was proposed by
[40] and is an extension of [32] to the survival setting. Hence,
it shares the robustness property and can be applied to obser-
vational data. For implementation, the sameprocedure can be
followed to obtain estimates, with one addition step of calcu-
lating 𝐺(�̃�

𝑖
). There are several 𝑅 packages for Kaplan-Meier
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estimates and Cox regression models. These sources can be
found at http://cran.r-project.org/web/views/Survival.html.
More details pertaining to statistical methods for survival
analysis can be found here [71]. To compare treatment
rules constructed from Cox and AFT models, for example,
methods for measuring the extent of clinical effectiveness for
an ITR will be discussed in Section 6.

We here present an example when an AFT model was
used to construct an ITR for treatment of HIV [40]. The
example derives from the AIDS Clinical Trials Group Pro-
tocol 175 that was discussed in Section 5.3 [32, 66]. In this
case, the primary outcome variable was time (in days) to
first ≥50% decline in CD4 count or an AIDS-defining event
or death. A total of 12 covariates and four treatments (ZDV,
ZDV + ddI, ZDV + zalcitabine, and ddI) were included.
The four treatments were evaluated simultaneously. Patients
receiving the standard care of ZDV monotherapy were
considered as the reference group. Hence, three treatment
contrasts (𝐼ZDV+ddI, 𝐼ZDV+zalcitabine, and 𝐼ddI) were combined
with various putative predictive covariates and compared
with ZDV monotherapy. For example, gender was detected
as the predictive covariate only for ddI monotherapy. The
investigators assumed 𝜙(X; 𝛾) = 𝛾

0
. The treatment rule

recommended 1 patient for ZDV monotherapy, while 729,
1216, and 193 patients were recommended for ZDV + ddI,
ZDV + zalcitabine, and ddI, respectively.

5.5. Advanced Methods

5.5.1. Robust Inference. The performances of ITRs heretofore
presented depend heavily on whether the statistical models
were correctly specified. Recently there has been much atten-
tion focused on the development of more advanced methods
and modeling strategies that are robust to various aspects
of potential misspecification. We have already presented a
few robust models that avoid specification of functional
parametric relationships for main effects [32, 40]. Here, we
introduce two more advanced methods widely utilized for
ITRs that are robust to the type of misspecification issues
commonly encountered in practice [42, 43].

Recall that the ITR for a linear model 𝐸(𝑌 | 𝐴 =

𝑎,X) = 𝜇(𝐴 = 𝑎,X;𝛽) with two predictive markers follows
as 𝑔(X,𝛽) = 𝐼{(𝛽

4
+ 𝛽
5
𝑋
2
+ 𝛽
6
𝑋
3
) > 0}, where 𝑎 = 0, 1.

The treatment rule of 𝑔(X,𝛽) may use only a subset of the
high-dimensional covariates (e.g., {𝑋

2
, 𝑋
3
}), but it always

depends on the correct specification of 𝐸(𝑌 | 𝐴 = 𝑎,X).
Defining a scaled version of 𝛽 as 𝜂(𝛽), the corresponding
ITR is 𝑔(𝜂,X) = 𝑔(X,𝛽) = 𝐼(𝑋

3
> 𝜂
0
+ 𝜂
1
𝑋
2
), where

𝜂
0
= −𝛽
4
/𝛽
6
and 𝜂

1
= 𝛽
5
/𝛽
6
. If the model for 𝜇(𝐴,X;𝛽) is

indeed correctly specified, the treatment rules of 𝑔(X,𝛽) and
𝑔(𝜂,X) lead to the same optimal ITR. Hence, the treatment
rule parameterized by 𝜂 can be derived from a regression
model or may be based on some key clinical considerations
which enable evaluation of 𝑔(𝜂,X) directly without reference
to the regression model for 𝜇(𝐴,X;𝛽).

Let 𝐶
𝜂

= 𝐴𝑔(𝜂,X) + (1 − 𝐴){1 − 𝑔(𝜂,X)}, where
𝐶
𝜂
= 1 indicates random assignment to an intervention

that is recommended by the personalized treatment rule 𝑔(𝜂,
X). Let 𝜋(X; �̂�) denote the randomization ratio or the

estimated propensity score (as in previous section), and
𝑚(X; 𝜂, �̂�) denote the potential outcome under the treatment
rule estimated from the following model 𝐸(𝑌 | 𝐴 =

𝑎,X) = 𝜇(𝐴,X;𝛽). For example, if the treatment rule 𝑔(𝜂,X)
= 1, then 𝑚(X; 𝜂, �̂�) = 𝑔(𝜂,X)𝜇(𝐴 = 1,X; �̂�) + {1 − 𝑔(𝜂,

X)}𝜇(𝐴 = 0,X; �̂�) = 𝜇(𝐴 = 1,X; �̂�). Two estimators of
the expected response to treatment, the inverse probability
weighted estimator (IPWE) and doubly robust AIPWE, are
given as follows:

IPWE (𝜂) = 1

𝑛

𝑛

∑
𝑖=1

𝐶𝜂⋅𝑖𝑌𝑖

𝜋
𝑐
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𝑖
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=
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𝑛

𝑛

∑
𝑖=1

𝐶𝜂⋅𝑖𝑌𝑖

𝜋 (X
𝑖
; �̂�)
𝐴𝑖 {1 − 𝜋 (X

𝑖
; �̂�)}
1−𝐴𝑖

,

AIPWE (𝜂) = 1

𝑛

𝑛

∑
𝑖=1

{
𝐶𝜂⋅𝑖𝑌𝑖

𝜋
𝑐
(X
𝑖
; 𝜂, �̂�)

−
𝐶𝜂⋅𝑖𝑌𝑖 − 𝜋𝑐 (X𝑖; 𝜂, �̂�)

𝜋
𝑐
(X
𝑖
; 𝜂, �̂�)

𝑚 (X
𝑖
; 𝜂, �̂�)} ,

(11)

where 𝜋
𝑐
(X
𝑖
; 𝜂, �̂�) = 𝜋(X; �̂�)𝑔(𝜂,X) + {1 − 𝜋(X; �̂�)}{1 −

𝑔(𝜂,X)}. The optimal treatment rule follows as 𝑔(�̂�,X = x),
where �̂� is estimated from the above models; a constraint,
such as ‖𝜂‖ = 1, is imposed to obtain a unique solution
�̂� [43]. If the propensity score is correctly specified, the
IPWE estimator yields robust (consistent) estimates; AIPWE
is considered a doubly robust estimator since it produces con-
sistent estimates when either propensity score or the model
𝐸(𝑌 | 𝐴 = 𝑎,X) is misspecified, but not both [42, 43]. The
companion𝑅 code is publicly available at http://onlinelibrary
.wiley.com/doi/10.1111/biom.12191/suppinfo.

5.5.2. Data Mining and Machine Learning. The methods
presented in Section 5.5.1 are robust against misspecification
of regression models. Yet, they often require prespecification
of the parametric form for the treatment rule (e.g., 𝐼(𝑋

3
>

𝜂
0
+ 𝜂
1
𝑋
2
)), which can be practically challenging [44].

Well established classification methods and other popular
machine learning techniques can alternatively be customized
to define treatment selection rules [44, 72, 73]; these methods
avoid prespecification of the parametric form of the ITR. An
ITR can be defined following a two-step approach: in the
first step, treatment contrasts are estimated from a posited
model and in the second step classification techniques are
applied to determine the personalized treatment rules. For
example, when only two treatments are considered, a new
variable 𝑍 can be defined based on the treatment contrast;
that is, 𝑍 = 1 if Δ(X) = {𝜇(𝐴 = 1,X) − 𝜇(𝐴 = 0,X)} > 0 and
𝑍 = 0 otherwise.The absolute value of the treatment contrast
𝑊
𝑖
= |Δ(X)| can be used in conjunction with a classification

technique to define an appropriate ITR [44].
Unlike classification problems wherein the class labels

are observed for the training data, the binary “response”
variable 𝑍, which serves as the class label, is not available
in practice. Specifically, patients who are in the class 𝑍 = 1
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have {𝜇(𝐴 = 1,X) > 𝜇(𝐴 = 0,X)} and should therefore
be treated with the new therapy; however these quantities
need to be estimated, since patients are typically assigned to
only one of the available treatments. This imparts flexibility
for estimation of the optimal treatment regimes, since any
of the previously discussed regression models and even some
ensemble prediction methods such as random forest [74] can
be used to construct the class labels 𝑍

𝑖
and weights �̂�

𝑖
[44].

An ITR can be estimated from the dataset {𝑍
𝑖
,X
𝑖
, �̂�
𝑖
} using

any classification approach, where �̂�
𝑖
are subject specific

misclassification weights [44, 45]. This includes popular
classificationmethods such as adaptive boosting [75], support
vector machines [76], and classification and regression trees
(CART) [77]. At least one study has suggested that SVM
outperforms other classification methods in this context,
whereas random forest and boosting perform comparatively
better than CART [78]. However, the performances of
these classification algorithms are data dependent. Definitive
conclusion pertaining to their comparative effectiveness in
general has yet to be determined [78]. It shall be also noted
that these classification methods can be also applied to high-
dimensional data [45, 72].

One special case of this framework is the “virtue twins”
approach [45]. Specifically, in the first step a random forest
approach [74] is used to obtain the treatment contrasts. Then
in the second step CART is used to classify subjects to
the optimal treatment regime. The approach can be easily
implemented in 𝑅 using packages of randomForest [79] and
rpart [80]. Very recently, Kang et al. [42] proposed amodified
version of the adaptive boosting technique of Friedman et al.
[75]. The algorithm iteratively fits a simple logistic regression
model (“working model”) to estimate 𝑃(𝑌 = 1 | 𝐴,X) and at
each stage assigns higher weights to subjects whose treatment
contrast is near zero. After a prespecified stopping criterion
is met, an average of the treatment contrasts Δ(X) is calcu-
lated for each patient using all models fitted at each iteration.
A subject is assigned to the new therapy if Δ(X) > 0. The 𝑅
code for the aforementioned boosting methods is publicly
available at http://onlinelibrary.wiley.com/doi/10.1111/biom
.12191/suppinfo.

Lastly, we present a breast cancer example where several
biomarkers were combined to construct an optimal ITR.
The data was collected in the Southwest Oncology Group
(SOWG)-SS8814 trial [13] and analyzed with the machine
learning approach of Kang et al. [42]. Three hundred and
sixty-seven node-positive, ER-positive breast cancer patients
were selected from the randomized trial of SOWG. A total of
219 received tamoxifen plus adjuvant chemotherapy and 148
was given tamoxifen alone.The outcome variable was defined
as breast cancer recurrence at 5 years. The authors selected
three genes, which had presented treatment-biomarker inter-
actions in amultivariate linear logistic regressionmodel [42].
Data were analyzed with logistic models, IPWE, AIPWE,
logistic boosting, a single classification tree with treatment-
biomarker interactions, and the proposed boosting approach
with a classification tree as the working model. Each method
identified different patient cohorts that could benefit from
tamoxifen alone: these cohorts consisted of 184, 183, 128, 86,

263, and 217 patients, respectively (see Table 5 in [42]). In this
analysis, the clinical benefits provided by these 6 treatment
rules were not statistically different. Hence, investigators
need to evaluate and compare ITRs in terms of the extent
of expected clinical impact. This is considered in the next
section.

6. Performance Evaluation for
Individualized Treatment Rules

Heretofore, we have discussed various methodologies for the
construction of ITR, while their performances need to be
assessed before these rules can be implemented in clinical
practice. Several aspects pertaining to the performance of a
constructed ITR need to be considered. The first one is how
well the ITR fits the data, and the second is how well the
ITR performs compared with existing treatment allocation
rules. The former is related to the concept of goodness-of-fit
or predictive performance [34]. As the true optimal treatment
groups are hidden, model fits may be evaluated by measuring
the congruity between observed treatment contrasts and
predicted ones [34, 47]. More details can be found in a recent
paper by Janes et al. [47]. Performances of ITRs can be
compared via assessment of a global summary measure, for
example, prolonged survival time or reduced disease rate [40,
42]. Summarymeasures are also very useful for evaluating the
extent to which an ITR may benefit patients when applied in
practice. Moreover, it is essential that performance of an ITR
is considered in comparison to business-as-usual procedures
such as a naive rule that randomly allocates patients to
treatment [81]. Summary measures will be discussed in
Section 6.1. The effectiveness of an ITR should go beyond the
training data set used to construct a treatment rule; cross-
validation and bootstrapping techniques are often employed
to assess the impact of ITRs on future patients [81] and will
be discussed in Section 6.2.

6.1. Summary Measures. ITRs may be derived from differ-
ent methodologies, and comparisons should be conducted
with respect to the appropriate clinically summaries. A few
summary measures for different types of outcomes have
been proposed [19, 40, 42]; these measures quantify the
direct clinical improvements obtained by applying an ITR in
comparison with default methods for treatment allocation.

Binary Outcomes. Clinical effectiveness for binary clinical
response is represented by the difference in disease rates (or
treatment failure) induced by ITR versus a default strategy
that allocates all patients to a standard treatment [42, 47, 82].
Let 𝑔opt(X) = 𝐼{𝜇(𝐴 = 1,X)−𝜇(𝐴 = 0,X) < 0}, be an optimal
ITR. This difference is formally defined as

Θ
𝐵
{𝑔

opt
(X)}

= 𝑃 (𝑌 = 1 | 𝐴 = 0)

−

1

∑
𝑎=0

[𝑃 {𝑌 = 1 | 𝐴 = 𝑎, 𝑔
opt
(X) = 𝑎} 𝑃 {𝑔opt (X) = 𝑎}]
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= [𝑃 {𝑌 = 1 | 𝐴 = 0, 𝑔
opt
(X) = 1}

−𝑃 {𝑌 = 1 | 𝐴 = 1, 𝑔
opt
(X) = 1}] 𝑃 {𝑔opt (X) = 1} .

(12)

Note 𝜇(𝐴,X) needs to be estimated to construct the ITR
yet parameters 𝛽 are omitted for simplicity. Larger values
of Θ
𝐵
{𝑔opt(X)} indicate increased clinical value for the

biomarker driven ITR. A subset of patients that are recom-
mended for new treatment (𝐴 = 1) under an ITR may have
been randomly selected to receive it, while the remaining
subset of “unlucky” patientswould have received the standard
treatment [19]. The summary measure of Θ

𝐵
{𝑔opt(X)} char-

acterizes a weighted difference in the disease rates between
the standard and the new treatments in a population wherein
the constructed optimal ITR would recommend the new
treatment 𝑔opt(X = 1). The weight is the proportion of
patients identified by the optimal ITR for the new treatment
and can be empirically estimated using the corresponding
counts. For example, 𝑃{𝑔opt(X) = 1} can be estimated
using the number of patients recommended for the new
treatment divided by the total sample size. A similar summary
statistic can be derived for an alternative strategy allocating
all patients to the new treatment. The summary could be
applied to the aforementioned breast cancer example [42],
for example, with the aim of finding a subgroup of patients
who were likely to benefit from adjuvant chemotherapy,
while those unlikely to benefit would be assigned tamoxifen
alone to avoid the unnecessary toxicity and inconvenience of
chemotherapy.

Continuous Variables. Another strategy for continuous data
compares outcomes observed for “lucky” subjects, those who
received the therapy that would have been recommended
by the ITR based [81]. Further, one business-as-usual drug
allocation procedure is randomizing treatment and standard
care at the same probability of 0.5. A summary statistic
is to measure the mean outcome under ITR compared to
that obtained under random assignment, for instance, the
mean decrease in Hamilton Rating Scale for Depression as
discussed in Section 5.1 [19]. Define the summary measure
as Θ
𝐶
{𝑔opt(X)} = 𝜇{𝑔opt(X),X} − 𝜇{𝑔rand(X),X}, where

𝑔rand(X) represents the randomization allocation procedure.
The quantity of 𝜇{𝑔𝑜𝑝𝑡(X),X} represents the mean outcome
under the constructed IRT that can be empirically estimated
from the “lucky” subjects, and 𝜇{𝑔rand(X),X} can be esti-
mated empirically from the sample means.

Alternatively, an ITR may be compared to an “optimal”
drug that has showed universal benefits (a better drug on
average) in a controlled trial. The clinical benefits of an
“optimal” drug can be defined as 𝜇{𝑔best(X),X} = max{𝜇(𝐴 =

0,X), 𝜇(𝐴 = 1,X)}; 𝜇(𝐴 = 𝑎,X), and can be empirically
estimated from the sample means of the new and standard
treatments, respectively. Then the alternative summary mea-
sure is defined as Θ

𝐶alt = {𝑔opt(X)} = 𝜇{𝑔opt(X),X} −
𝜇{𝑔best(X),X}.

Survival Data. For survival data, a clinically relevant measure
is mean overall (or progression free) survival time. As

survival time is continuous in nature, the identical strategy
provided above for continuous outcomes can be employed
here. However, because the mean survival time may not
be well estimated from the observed data due to a high
percentage of censored observations [40], an alternative
mean restricted survival duration was proposed and defined
as the population average event-free durations for a restricted
time of 𝑡∗ [41, 83].Often 𝑡∗ is chosen to cover the trial’s follow-
up period. Mathematically, it can be calculated by integrating
the survival function of 𝑆(𝑡) over the domain of (0, 𝑡∗), that is,
𝜇{𝑔opt(X),X, 𝑡∗} = ∫𝑡

∗

0
𝑆(𝑡)𝑑𝑡, and often estimated by the area

under the Kaplan-Meier curve up to 𝑡∗ [84]. Thus, an ITR’s
potential to prolong survival can be calculated asΘ

𝑆
{𝑔opt(X),

𝑡∗} = 𝜇{𝑔opt(X),X, 𝑡∗} − 𝜇{𝑔rand(X),X, 𝑡∗}.

6.2. AssessingModel Performance. The summaries heretofore
discussed evaluate an optimal ITR for a given model and
estimating procedure. Because these quantities are estimated
conditionally given the observed covariates, they neglect
to quantify the extent of marginal uncertainty for future
patients. Hence an ITR needs to be internally validated if
external data is not available [34]. Cross-validation (CV) and
bootstrap resampling techniques are commonly used for this
purpose [19, 42, 45, 81], and expositions on both approaches
are well described elsewhere [33, 85, 86].

We here briefly introduce a process that was proposed by
Kapelner et al. [81] in the setting of personalized medicine.
Tenfold CV is commonly used in practice, where the whole
data is randomly partitioned into 10 roughly equal-sized
exclusive subsamples. All methods under consideration are
applied to 9/10 of the data, excluding 1/10 as an independent
testing data set. The process is repeated 10 times for each
subsample. Considering the assignments recommended by
the optimal ITRs, the summary measures can be calculated
using results from each testing fold [45].TheCVprocess gives
the estimated summary measures, and its variation can be
evaluated using bootstrap procedures. Specifically, one draws
a sample with replacement from the entire data and calculates
the summary measure from 10-fold CV. This process will
be repeated 𝐵 times, where 𝐵 is chosen for resolution of
the resulting confidence intervals [81]. Using the summary
measures as𝐵 new random samples, the correspondingmean
and variances can be calculated empirically. Note that the
summary measures compare two treatment rules, one for the
optimal ITR and another naive rule (e.g., randomization).

The above procedure can be applied to all the meth-
ods we have discussed so far. The 𝑅 software package
𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (http://labs.fhcrc.org/janes/index.html)
can be used to implement these methods for evaluating
and comparing biomarkers for binary outcomes [47]. Very
recently, an inferential procedure was proposed for contin-
uous outcomes that is implemented in the publicly available
𝑅 package “Personalized Treatment Evaluator” [81, 87]. Both
methods consider data from RCTs with two arms for com-
parative treatments.Thesemethods are, in general, applicable
to regression model based methods but are not suitable for
approaches based on classification techniques or penalized
regression.
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Next we present two examples. Recall in Section 5.5 that
Kang et al. [42] reported the estimated clinical benefits of
an ITR for breast cancer when compared to the default
strategy of assigning all patients to adjuvant chemotherapy.
The proposed approach (based on boosting and classification
trees) achieved the highest value of the summary measure
at 0.081 with 95% confidence interval (CI) (0.000, 0.159)
[42]. In the second example, introduced in Section 5.1 [19],
the authors calculated the mean score of the Hamilton
Rating Scale for Depression for two groups of subjects;
groups were defined by randomly assigning patients to the
“optimal” and “nonoptimal” therapy as defined by the ITR.
The reported difference between the two groups was −1.78
with a 𝑃 value of 0.09, which fails to attain a clinical
significant difference of 3 [19]. The same data was analyzed
by Kapelner et al. [81]. Following the discussed procedure,
the authors reported the estimated values (and 95% CI)
of Θ
𝐶
{𝑔opt(X)} and Θ

𝐶alt{𝑔
opt(X)} as −0.842(−2.657, −0.441)

and −0.765(−2.362, 0.134), respectively. The results, which
fail to achieve clinical significance, were based on rigorous
statistical methods and thus can be considered reliable
estimates of the ITR’s performance.

7. Discussion

As our understanding tumor heterogeneity evolves, person-
alized medicine will become standard medical practice in
oncology. Therefore, it is essential that the oncology com-
munity uses appropriate analytical methods for identifying
and evaluating the performance of personalized treatment
rules. This paper provided an exposition of the process for
using statistical inference to establish optimal individualized
treatment rules using data acquired from clinical study. The
quality of an ITR depends on the quality of the design used to
acquire the data.Moreover, an ITRmust be properly validated
before it is integrated into clinical practice. Personalized
medicine in some areas of oncologymay be limited by the fact
that biomarkers arising from a small panel of genesmay never
adequately characterize the extent of tumor heterogeneity
inherent to the disease. Consequently, the available statistical
methodology needs to evolve in order to optimally exploit
global gene signatures for personalized medicine.

The bulk of our review focused on statistical approaches
for treatment selection at a single time point. The reader
should note that another important area of research considers
optimal dynamic treatment regimes (DTRs) [88, 89], wherein
treatment decisions are considered sequentially over the
course ofmultiple periods of intervention using each patient’s
prior treatment history. Zhao and Zeng provide a summary
of recent developments in this area [90].
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