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Visual information processing in the brain goes from global to local. A large volume of

experimental studies has suggested that among global features, the brain perceives the

topological information of an image first. Here, we propose a neural network model to

elucidate the underlying computational mechanism. The model consists of two parts.

The first part is a neural network in which neurons are coupled through gap junctions,

mimicking the neural circuit formed by alpha ganglion cells in the retina. Gap junction

plays a key role in the model, which, on one hand, facilitates the synchronized firing

of a neuron group covering a connected region of an image, and on the other hand,

staggers the firing moments of different neuron groups covering disconnected regions

of the image. These two properties endow the network with the capacity of detecting

the connectivity and closure of images. The second part of the model is a read-out

neuron, which reads out the topological information that has been converted into the

number of synchronized firings in the retina network. Our model provides a simple yet

effective mechanism for the neural system to detect the topological information of images

in ultra-speed.

Keywords: global first, topological perception, gap junction, electrical synapse, subcortical pathway, ipRGCs,

alpha RGCs, superior colliculus

1. INTRODUCTION

It has been a long-standing debate in the field concerning whether feature analysis in visual
information processing goes from local to global, or from global to local (Palmer, 1999; Chen,
2005b). The former claims that the primitives of visual processing are local features of objects.
This view has successfully explained a large number of experimental phenomena (Hubel and
Wiesel, 1959; Treisman and Gelade, 1980; Marr, 1982; Hubel, 1988; DiCarlo et al., 2012), but failed
to account for others where visual systems show superior sensitivity to global features, e.g., the
topological perception (Chen, 1982, 2005b), the configural-superiority effect (Weisstein andHarris,
1974; Navon, 1977; Pomerantz et al., 1977), the holistic processing of face and objects (Farah et al.,
1998; McKone et al., 2007; Goffaux et al., 2010; Taubert et al., 2011; Bona et al., 2016), and Gestalt
psychology (Wagemans et al., 2012). On the other hand, the global-to-local view states that in
the visual processing, global features of objects are processed first, which subsequently guide the
processing of local features (Hegdé, 2008).

In the framework of global-to-local processing, Chen et al. went one step further to argue that
the global nature of visual perception can be described by topological invariants and that the global
precedence actually is topological primacy (see review Chen, 2005b). Topology is defined as the
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geometric properties which are preserved under continuous
transformations, such as stretching and bending (Armstrong,
2013), and important topological properties include connectivity
and the number of holes. Two shapes are called topologically
different, as long as they differ in either the connectivity or
the number of holes (Figure 1). Over decades, accumulating
evidences on adults, infants and animals have demonstrated
that visual systems are highly sensitive to topological features.
The pioneering work of Chen (1982) first revealed that in
the adult human visual system, the topological perception is
prior to perceptions of other geometrical properties. Specifically,
under 5-ms stimulus presentation, he found that subjects could
discriminate a disc vs. a ring (which are topologically different)
with a much higher accuracy than a disc vs. a square or a
triangle (which are topologically same but different in other
geometrical properties). Later, in other tasks, including multiple-
object tracking (Zhou et al., 2010) and long-range apparent
motion perception (Zhuo et al., 2003), Chen et al. further
confirmed that the human visual perception is indeed sensitive
to the connectivity or the hole of stimuli. The studies on
infants also support the precedence of topological perception
(Piaget and Inhelder, 1956; Darke, 1982; Chien et al., 2012;
Kibbe and Leslie, 2016). It was found that newborns, even as
young as few days old, display the preference of using the
topological information to discriminate objects (Turati et al.,
2003). Furthermore, animal studies provide more evidence to
support the notion that topological perception is primitive in
the visual processing. For example, Chen et al. (2003) found
that honey bees with small brains have the ability to distinguish
patterns that are topologically different after only a few trials
learning, and they could even generalize the learned figure
to novel patterns never seen before. Experiments from other
researchers also demonstrated that chicks (Versace et al., 2016)
and pigeons (Watanabe et al., 2019) use topological features as
cues for discriminating objects.

Altogether, it suffices to say that topological properties
are essential for visual perception, and very likely, they are
the primitives of visual perception. Computationally, using
topological features to represent and characterize objects has
advantages, as it provides a relatively stable way to represent
objects under transformations like stretching, rotation, or

FIGURE 1 | Key topological properties. (A) Images a and b are topologically different in the property of connectivity. (B) Images a and b are topologically different in

the number of holes.

distortion. Although it is coarse, topology discrimination enables
animals to detect the presence of objects rapidly without detailed
local feature analysis, and this is crucial for animals to survive in
natural environments.

Despite topological perception has been well-documented in
the literature, the detail mechanism of how the neural system
implements it remains largely unclear. It is a known fact that the
conventional artificial feedforward neural network has difficulty
to recognize the topology of images (McClelland et al., 1987;
Minsky and Papert, 1987; Wang, 2000; Chen, 2005b). Recently,
a number of experimental findings indicate that topology
perception in the brain is carried out via the subcortical pathway
from retina to superior colliculus (SC) and then to higher cortex.
First, electrophysiological studies on retinal ganglia cells (RGCs)
have revealed that there exists a type of RGCs, called alpha
RGCs, which are specialized to encode the global features of
stimuli (Neuenschwander and Singer, 1996; Roy et al., 2017).
Specifically, they found that the presentation of a contiguous
stimulus, rather than disjointed local features, produced long-
range synchronization among widely separated alpha RGCs
(Neuenschwander and Singer, 1996; Roy et al., 2017), and
importantly, the occurrence of this kind of synchronization relies
on gap junctions (also called electrical synapses) between neurons
(Völgyi et al., 2013; Roy et al., 2017). Second, psychophysical
and neuroimaging studies on humans have indicated that SC,
rather than the primary visual cortex (V1), plays an important
role in topological perception. For example, Turati et al. (2003)
showed that despite of their immature visual cortex, newborns
of 2–3 days old were able to detect and discriminate perceptual
similarity based on the hole feature. Also, it was found that
aging (Meng et al., 2019) and disruption of V1 (Du et al.,
2011) significantly reduced human’s ability of discriminating
local geometric properties, but did not affect their topological
discrimination. The neuroimaging study also showed that the
neural responses in SC to hole stimuli were greater than that to
no-hole stimuli under the low awareness condition (Meng et al.,
2018). These findings are consistent with the electrophysiological
studies on SC, which unveil that the functional role of neurons
in the superficial layers of SC is to encode whether there is a new
object in their receptive fields (Rizzolatti et al., 1980; Girman and
Lund, 2007; Ito and Feldheim, 2018), and notably, their neuronal
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responses to visual stimuli are irrelevant to specific features, such
as direction, orientation or shape (Marrocco and Li, 1977; White
et al., 2017a,b).

Inspired by the above experimental findings, we propose a
simple computational model for topological perception in the
brain. Specifically, the model consists of two parts. The first
part is a neural network in which neurons are connected via
gap junctions, and it models the neural circuit formed by alpha
RGCs in the retina (Neuenschwander and Singer, 1996; Völgyi
et al., 2013; Roy et al., 2017). The second part is a read-out
neuron, which suggests a way for SC and higher cortical neurons
(Marrocco and Li, 1977; Rizzolatti et al., 1980; Girman and Lund,
2007; White et al., 2017a,b; Ito and Feldheim, 2018) to read out

the topological information extracted by the retina network. We
elucidate the computational properties of the proposed network
model, and demonstrate that the model is effective and robust for
detecting holes in various visual stimuli as observed in human
psychophysical experiments.

2. MATERIALS AND METHODS

We consider a two-layer spiking network model (see
Figures 2A,B for the network architecture illustration). The
first layer is the encoding layer, which is composed of 80 × 80
encoding neurons (ENs), and the second layer is the read-out
layer, which consists of only one read-out neuron (RON). RON

FIGURE 2 | The neural network model. (A) The model is composed of two layers. The first layer is the encoding layer which receives external inputs, and its function

is to encode the connected regions in an image. The second layer is the read-out layer, whose function is to read-out neuronal activity patterns in the encoding layer.

Notably, all neurons in the first layer project excitatory synapses to the neuron in the second layer. (B) Neurons in the encoding layer are uniformly distributed in the

space and are coupled with eight nearest neighbors with gap junctions. (C) Simulation of a pair of electrically coupled neurons N0 and N1. The top panel shows the

external input I to N0, and the bottom panel presents the voltage dynamics of the neuron pair. N0 exhibits excitation and inhibition effects on N1 at different stages of

the neuronal dynamics. At the A → B0 → B1 phase, N0 shows an excitatory effect to N1 (see N1 rise phase A → B2 → B3); while at B1 → C0 phase (refractory

period), N0 exhibits a strong inhibitory effect to N1 (see N1 decay phase B3 → C1). (D) A full circle stimulus, containing two connected regions. (E) Parameter-space

analysis of response behaviors of the network when the full circle stimulus (D) is presented. The phase plane shows three different spiking patterns which depend on

the coupling strength J and spikelet factor γ . For each pair of (γ , J), the result is obtained by averaging over 10 trials. (F) The AF behavior of the network. J = 0.5 and

γ = 0.05. (G) The SPS behavior of the network when the spikelet factor γ and the coupling strength J are too strong. J = 3.0 and γ = 0.15. (H) The TPS behavior of

the network. J = 6.0 and γ = 0.25. (F–H) The top panel shows the raster plot of spikes in the encoding layer, while the bottom panel the spikes of RON. The

abscissas and ordinates of both panels are time and neuron index, respectively. Colors indicating neurons in different groups. Specifically, coral denotes neurons on

the circle, while blue denotes neurons on the background.
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receives excitatory projections from all ENs, and hence can read
out synchronized activities in the encoding layer.

2.1. Neuronal Dynamics
For simplicity, all neurons in the model are implemented as leaky
integrate-and-fire (LIF) models. The encoding layer receives
the external inputs, and each neuron is connected to its eight
neighboring neurons by electrical synapses (Figure 2B). The
dynamics of an encoding neuron is given by

τ
dVi(t)

dt
= −Vi(t)+

∑

j∈NG(i)

I
gap
ij (t)+ Iexti (t), (1)

where the subscript i = (1, ...,N) refers to the neuron index, Vi

the membrane potential of the neuron, τ the membrane time
constant, I

gap
ij the current from neuron j transmitted through gap

junction, NG(i) the set of neurons which are electrically coupled
with the neuron i, and Iext the external current from the image.
Whenever Vi(t) reaches a fixed threshold Vth (i.e., Vi(t) ≥ Vth),
the neuron generates a spike and its potential is reset to the
rest value Vreset , followed by the refractory period τ arp. At the
onset of the simulation, membrane potentials of all neurons are
randomly initialized.

The current mediated by electrical couplings is decomposed
into two parts,

I
gap
ij (t) = I

gap,sub
ij (t)+ I

gap,sup
ij (t), (2)

where I
gap,sub
ij denotes the sub-threshold current, and I

gap,sup
ij the

supra-threshold current, called as spikelet. The sub-threshold
current mediated by electrical coupling is given by,

I
gap,sub
ij (t) = J[Vj(t)− Vi(t)], (3)

where J is the coupling strength. The supra-threshold
contribution is assumed to be proportional to the gap junction
strength J and scaled by a spikelet factor γ , which is written as,

I
gap,sup
i (t) = γ Jδ(t − t

spike
j ), (4)

where t
spike
j represents the spiking moment of neuron j and γ

is a parameter controlling the contribution of a spike to the
increment of neuronal potential.

The external current Iexti , which conveys the luminance level
of the image, is modeled as a continuous current with a Gaussian
white noise, which is written as,

Iexti (t) = µext
i + σ 2ηi(t), (5)

where µext is the mean of the external input, σ 2 the amplitude
of input fluctuations, and ηi(t) satisfies

〈

ηi(t)
〉

= 0 and
〈

ηi(t)ηj(t
′

)
〉

= δijδ(t − t
′

). Usually, the amplitude σ 2 in our

simulations is set to be a value, so that the noise amplitude is
around 10% compared to the mean external input.

The second layer in the model is a read-out neuron (RON)
(see Figure 2A), which suggests a possible way for SC neurons
to read out the topological information of an image that has
been extracted by the encoding layer (see more discussions
in Discussion section). Specifically, we consider RON receives
projections from all neurons in the encoding layer, whose
dynamics is given by

τR
dVR(t)

dt
= −VR(t)+ IchemR (t)+ InoiseR (t), (6)

where VR is the potential of RON, τR the time constant, IchemR
the chemical synaptic current from the encoding neurons, and
InoiseR the background noise. Specifically, the current transmitted
via chemical synapses is given by

IchemR (t) =
∑

j∈NC

JRδ(t − tj − D), (7)

where JR denotes the chemical synaptic strength, tj the spiking
moment of the presynaptic neuron j, NC the set of neurons in
the encoding layer, and D the transmission delay of chemical
synapses. For simplicity, we omit the rise and decay phases of
post-synaptic currents. Since the function of the read-out layer
in our model is coincidence detection, we set τR to be sufficiently
small, such that RON will fire only when a sufficient number of
neuronal spikes simultaneously arrive in a short-time window.
Additionally, the background noise is set to be

InoiseR (t) = µnoise
R + 1ηi(t), (8)

with µnoise
R and 1 are, respectively, the mean and the variance of

the noise.

2.2. Simulation Experiments
In all simulations, the dynamical equations are integrated by
using the Euler–Maruyama method with a fixed time-step
dt = 0.01 ms. The network dynamics was simulated using
Python, and the corresponding code the corresponding code can
be available in the GitHub: https://github.com/chaoming0625/
Gap_Junction_and_Topology. Parameters used in numerical
simulations are reported in Table 1.

3. RESULTS

3.1. The Neural Network Model With Gap
Junction
In our proposed model (Figures 2A,B), gap junction plays a key
role for topological detection. The neuronal interaction mediated
by gap junction exhibits two prominent properties, as illustrated
in Figure 2C. Firstly, once a neuron fires, the spike generated by
it will increase the potentials of the connected neurons rapidly,
and this tends to synchronize coupled neurons in the network.
Secondly, after firing, the neuron falls into the refractory period
with a deep low potential, which induces strong negative currents
to the connected neurons, and this tends to inhibit the firing of

coupled neurons [note that I
gap,sub
ij (t) = −Vi(t), when Vj =
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TABLE 1 | Parameter of neurons, synapses, and simulation protocol.

Parameters of the encoding neurons Values

Vth—Spike emission threshold 10 mV

Vreset—Reset potential 0 mV

τ—Membrane time constant 5 ms

τ arp—Absolute refractory period 3.5 ms

σ 2—Variance of external current 1.0–2.0 mV

Parameters of the read-out neuron Values

Vth—Spike emission threshold 10 mV

Vreset—Reset potential 0 mV

τR—Membrane time constant 0.05 ms

τ arp—Absolute refractory period 0.5 ms

µnoise
R —Mean background noise 4.0 mV

1—Variance of background noise 0.5 mV

Parameters of electrical couplings Values

J—Gap junction strength 3.0

γ—Spikelet factor 0.15

Parameters of chemical synapses Values

JR—Chemical synaptic strength 0.15 mV

D—Chemical transmission delay 0.1 ms

Parameters of the stimuli Values

Iextb —Value of black stimulus 20.0 mV

Iextg —Value of gray stimulus 12.0 mV

0]. As explained below, these two salient properties give rise to
characteristic network responses which are differentiable with
respect to connected and non-connected regions in an image.

As an example, consider a full black circle as in Figure 2D

is presented to the network. The whole image consists of two
connected regions, the circle and the background, which have
different luminance levels. In our model, neurons covering a
connected region (having the same luminance level) receive the
same external input. We find that the network exhibits three
response behaviors depending on the properties of gap junction
(Figure 2E), which are: (1) Asynchronous Firing (AF, Figure 2F),
i.e., all ENs fire independently and irregularly. This happens
when both the spikelet factor γ and the coupling strength J
are too small, and the neuronal interactions are very weak,
leading to that neuronal firings are largely driven by external
inputs with independent noises; (2) Single Population Spike (SPS,
Figure 2G), i.e., all ENs are synchronized to generate a single
population spike. This happens when the spikelet factor γ and
the coupling strength J are both too large. In such a parameter
regime, the synchronization effect of gap junction is too strong,
leading to that all ENs are synchronized irrespective to the
different external inputs they receive. (3) Two Population Spike
(TPS, Figure 2H), i.e., ENs are synchronized but meanwhile
clustered to generate two population spikes depending on the
external inputs they receive. This happens when the spikelet
factor γ and the coupling strength J have appropriate values,
so that, on one hand, the synchronization effect of gap junction
ensures that neurons covering the same connected region
(receiving the same external input) are synchronized, and, on the
other hand, the inhibitory effect of gap junction ensures that the

synchronized firings of neuron groups covering different regions
(having different luminance levels and hence receiving different
external inputs) are well-separated in time. Computationally, this
is due to that the neuron group receiving the larger external input
will generate synchronized firing first; after that the neurons fall
into the refractory period, and they will suppress and delay the
synchronized firing of the other neuron group. To accomplish
the topological detection task, we set the parameters of gap
junction in the regime of TPS, such that the network can on
one hand, generate synchronous firings to detect connected
regions, and on the other hand, stagger synchronous firings of
disconnected regions.

The synchronized responses of ENs can be easily detected
by RON. Due to the small time constant, RON only responds
to synchronized inputs from the encoding layer. As shown in
Figures 2F–H (see the lower panels), each population spike of
ENs generates a single spike of RON.

3.2. Topological Detection of the Network
The topology of an image has two fundamental features,
connectivity and closedness (the existence and the number of
holes). It is straightforward to understand that our model has
the capability of detecting the connectivity of an image. In
response to the inputs from a connected region, the responses
of the neurons covering the connected region (they receive
the similar external inputs) will become highly synchronized
due to their electrical couplings (Bennett and Zukin, 2004),
which provides a way to encode the connectivity of the
image. This is also supported by the experimental evidence,
which found that long-range synchronization occurred among
widely separated alpha RGCs with electrical couplings in
response to a continuous stimulus, rather than to disjointed
local features (Neuenschwander and Singer, 1996; Roy et al.,
2017).

Therefore, the focus of the present study is to demonstrate that
our network model has the capability of detecting the existence
and the number of holes in an image, another key property
of topology (Pomerantz et al., 2003; He, 2008; Casati, 2009;
Bertamini and Casati, 2015; Zhang et al., 2019). The stimuli
we used, as shown in Figures 3A,D,G, are adapted from the
materials in the human and animal experiments (Chen, 1982,
2005b; Chen et al., 2003; Chien et al., 2012; Zhang et al.,
2019), where Figure 3A is a solid disk without hole, Figure 3D
a stimulus containing a single hole, and Figure 3G a case
of two holes. Figures 3B,E,H are the corresponding network
responses to the stimuli, and Figures 3C,F,I are the illustrations
of synchronized neuronal responses in ENs.

Overall, we show that the number of holes in an image is
encoded by the number of synchronized responses (population
spikes) in the encoding layer, which are further readout by
the number of spikes of RON. For example, presentation of
Figure 3A produces two population spikes of ENs and two
spikes of RON (Figures 3B,C), while presentation of Figure 3D
produces three population spikes of ENs and three RON spikes
(Figures 3E,F). Notably, although the stimulation value (the
luminance level) of the hole (inside the ring in Figure 3D)
is the same as that of the background (outside the ring in
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FIGURE 3 | Topological detection of the network. (A,D,G) The images with different number of holes. (A) contains no hole, (D) one hole, and (G) two holes. (B,E,H)

The evolution of network activity. (B,E,H) Are results when stimuli (A,D,G) are presented, respectively. In each subfigure, the top panel shows the raster plot of the

encoding layer, and the bottom the dynamics of the membrane potential of RON. The abscissas of both panels are time, and the ordinates of the top and bottom

panel are neuron index and membrane potential, respectively. (C,F,I) The spatial mapping of EN spikes. (C,F,I) corresponds to (B,E,H), respectively. Neurons in the

same group are shown in the same color with (B,E,H). Pixels in the white color denote neurons not firing in the whole process. (J–L) The averaged membrane

potential traces of neurons inside, on or outside of the ring when stimuli (A,D,G) are presented, respectively. The orange line corresponds to the neurons on the ring,

the blue line the neurons on the background, and the coral and orchid lines the neurons on the holes. Parameters: J = 3.0 and γ = 0.15.

Figure 3D), the synchronized response of the neurons covering
the hole (the orange spikes in Figures 3E,F) always lags behind
that of the neurons covering the background (the blue spikes
in Figures 3E,F). This property comes from that compared
to the neurons outside the ring, the neurons inside the ring

receive stronger inhibition from the neurons on the ring (see
more detailed analysis in the below). Moreover, we observe
that presentation of Figure 3G (containing two holes) reliably
produces four population spikes of ENs and four RON firings
(Figures 3H,I).
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To reveal the underling mechanism, we look at the dynamics
of neurons inside, on, and outside the ring. Results are shown in
Figures 3J–L. First, we see that because of receiving a stronger
stimulation than those on the background or inside the ring, the
neurons on the ring (black pixels) generate the first population
spike; afterwards those neurons fall into a deep and relatively
long-lasting refractory period (see the voltage trace in khaki color
illustrated in Figures 3J–L). Second, during the refractory period
of ring neurons, while the neurons inside and outside the ring
all receive inhibitions from the ring neurons, inside neurons tend
to receive stronger inhibitions than outside ones (see the voltage
traces in blue and orange color shown in Figure 3K). Therefore,
under the condition of receiving the same level of stimulation, the
neurons inside the ring always generate a population spike before
the neurons outside the ring. Third, for an image containing two
holes having exactly the same size and surroundings, although
the neurons inside two holes receive the same external input and
lateral inhibition from surrounds, they still tend to fire at different
moments due to receiving independent noises (see the average
voltage dynamics in orange and orchid color in Figure 3L).

Notably, because of noises, the network response varies
over trials. In the case of discriminating two holes from one
hole, we observed a successful rate of 70%. This probabilistic
behavior is in agreement with the observation of human
psychophysical experiments, which showed that the topological
detection of humans is also probabilistic when images are
only briefly presented in <10 ms, e.g., the successful rate of
discriminating hole from circle is about 64.5% (Chen, 2005b).
For visualizing the detailed spatio-temporal voltage dynamics

when the stimuli (Figures 3A,D,G) are presented, please refer to
Supplementary Videos 1–3. Note that, for simplicity, we have
only presented the results for images with shape luminance level
changes. We check that our model works equally well when
the luminance intensity of the image changes smoothly (see
Supplementary Figure 1).

In summary, we demonstrate that the synchronization and
lateral inhibition effects mediated by gap junctions enable the
network to encode the number of holes in an image into different
numbers of population spikes of ENs, which provides a reliable
cue for the neural system to read out the topology information of
an image.

3.3. Topological Detection Is Invariant to
Variations of Shape and Spatial Frequency
To confirm that our network model can really detect
the topological property of closedness, we vary the
stimulus to various forms, while keeping their topological
property unchanged.

From our intuitive experience, circle, square, triangle, and
cross are quite different figures, but from the viewpoint of
topology, they are equivalent. Therefore, the characteristic of
network responses for topological detection should be the same.
We first conduct experiments on a solid (Figure 4A) and a
hollow squares (Figure 4D), and find that the network responses
are exactly the same as when the disk (Figure 3A) and the
ring (Figure 3D) are presented, that is, two population spikes
of ENs and two RON spikes are generated for the stimuli
without hole (comparing Figures 3B,C with Figures 4B,C),

FIGURE 4 | Topological detection with respect to shape variation of images. (A,D) Image of square shape. (A) A solid square. (D) A hollow square. (B,E) Population

spikes of ENs (top panels) and the voltage dynamics of RON (bottom panels). (C,F) Spatial activities of EN neurons. Figure legends are the same as in Figure 3.

Parameters: J = 3.0 and γ = 0.15.
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and three population spikes of ENs and three RON spikes
are generated for the stimuli with one hole (comparing
Figures 3E,F with Figures 4E,F). Furthermore, we perform
experiments on a solid triangle (Supplementary Figure 2A),
a hollow triangle (Supplementary Figure 2B), and a cross
(Supplementary Figure 2C), and get the same result. Overall,
these results confirm that the network response varies with the
topology, rather than the shape of the stimulus.

Based on the finding of Carlson et al. (1984) that geometrical
illusions are not primarily a consequence of low spatial
frequencies and the suggestion of Chen (2005a) that low spatial
frequencies are not likely to be critical to perceptual organization
in general, we try to figure out whether the spatial frequency
will affect the network behavior. Considering that the stimuli

used above are all in low spatial frequencies (LSF), we construct
new stimuli (Figures 5A,D,G) in high spatial frequencies (HSF),
which are adapted from thematerials used in human experiments
(Carlson et al., 1984; Chen, 2005b). Figures 5A,D are made of
exactly the same four line segments, while they are topologically
different. We find that the network response doesn’t vary with
the spatial frequency. Specifically, the stimulus without hole
persistently produces two population spikes of ENs and two
RON spikes (Figures 5B,C), whereas the stimulus with one hole
reliably generates three population spikes of ENs and three
RON spikes (Figures 5E,F). We also try stimuli of triangle-
shape and obtain the same result, see Supplementary Figure 3.
Furthermore, we generate a stimulus composed of discrete dots
(Figure 5G), which is similar to the figures in Carlson et al.

FIGURE 5 | Topological detection with respect to variations of spatial frequency of images. (A,D,G) Images with different spatial frequencies. (A) An image made of

four line segments without hole. (D) An image made of the same four line segments as in (A) but containing one hole. (G) An image shaped like (D) but comprised of

discrete dots. (B,E,H) Population spikes of ENs (top panels) and the voltage dynamics of RON (bottom panels). (C,F,I) Spatial activity of EN neurons. Figure legends

are the same as in Figure 3. Parameters: J = 3.0 and γ = 0.15.
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(1984) and is free of low spatial frequencies. We observe that
the network model displays the same response property as when
the continuous line is presented (comparing Figures 5H,I with
Figures 5E,F). Altogether, these results indicate that the hole
detection property of our model is rather robust to the variation
of spatial frequencies of images.

In above, we demonstrate that the topological detection of
our network model is rather robust to the variations of shape
and spatial frequency of images. It is also straightforwardly
understandable that our network model is invariant with respect
to the position shift, rotation, and distortion of an image, as
they all generate the same number of population spikes of ENs
depending only on the number of holes in the image. Thus,
our network model does have the capability of detecting the
topological property of an image.

3.4. Sensitivity of Topological Detection
In above, we have demonstrated that our network model is able
to detect the existence of holes in an image, i.e., the closure
of a region. In practice, there always exists a threshold of gap
below which we perceive disconnected segments as connected.
Therefore, we are going to investigate how our network model
is sensitive to the gap size in topological detection. We present
incomplete rings with different degrees of breach (Figure 6A)
to the network, and observe that with the small size of breach,
the network outputs three RON spikes (Figures 6B,C). However,
when the breach size θ gradually increases, the network suddenly
“recognizes” that the image has no hole (see Figure 6D), i.e.,
ENs only generate two population spikes (Figures 6E,F). This
is straightforwardly understandable, as the breach increases,
the activities of the neurons inside and outside the ring

FIGURE 6 | Sensitivity of topological detection. (A) An example of a ring with a breach, whose degree is θ . θ = 40◦ is shown. (B,C) The network activity in response

to a ring with a small breach, where ENs generate three population spikes and RON produces three spikes. J = 3.0, γ = 0.15, θ = 40◦. (D) The average number of

RON spikes vs. the breach size. The transition occurs sharply around 50◦. The results are obtained by averaging over 20 trials. (E,F) The network activity in response

to a ring with a big breach, where ENs generate two population spikes and RON produces two pulses. J = 3.0, γ = 0.15, θ = 54◦. (G–I) The response properties of

the network with a varied coupling range, where each neuron is connected to its four nearest neighbors. (G) The image of Figure 5D is presented. (H,I) The image of

Figure 5G is presented. Parameters: J = 3.0, γ = 0.20. (B,C,E–I) Figure legends are the same as Figure 3.
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become more and more synchronized due to more and more
direct interactions between them, and eventually the population
spikes they generate merges to a single one (see Figures 6E,F).
Interestingly, we find that this transition occurs sharply, which
is around the breach size of 50◦ at the current parameter
setting (see Figure 6D). We confirm that although the value of
the transition point may vary with the parameters, this sharp
transition behavior always holds (see Supplementary Figure 4).
This property can serve as a prediction of our model testable in
human psychophysical experiments.

Furthermore, we test how the coupling range of gap junction
affects the sensitivity of topological detection. We construct a
network model in which each neuron is connected with its
four nearest neighbors. We first confirm that the model has
the capability of detecting a hole in an image, see the network
response in Figure 6G when the stimulation of Figure 5D is
presented. However, we also observe that when the image
composed of dotted lines as shown in Figure 5G is presented, the
network is unable to generate synchronous firing, but is rather
in the state of irregular firing (see Figure 6H), and the network
response can no longer stagger the hole and the background. This
result tells us that the coupling range of gap junctions between
neurons strongly affects the sensitivity of topological detection
in reality.

4. DISCUSSION

In the present study, we have proposed a spiking neural network
with gap junction for topological detection. Our results show
that gap junction-coupled neural networks are intrinsically
sensitive to the topological properties, such as connectivity,
closure (Figures 3–5) or semi-closure (Figure 6) of an image.
A prominent computational property of gap junction is that it
promotes neuron synchronization, which endows the network
with the ability of detecting connected regions in an image.
Another prominent computational property of gap junction is
that it mediates strong lateral inhibition between connected
neurons after one of them fires. Together with the fact that
neurons within a closure receive much stronger inhibition than
neurons outside, the network is able to stagger the moments of
neuron firings within and outside a closure, and hence produces
different numbers of synchronized firings corresponding to an
image having or not having holes. Overall, our model provides
a simple yet effective mechanism for topological detection
in neural systems. Importantly, our model captures a key
behavioral characteristic of object vision, i.e., the ultra-speed
object detection (Thorpe et al., 1996; Kirchner and Thorpe, 2006).
It has been suggested that the human visual system has the
ability of getting “gist” of a scene when the stimulus is presented
as briefly as 10 ms (Hegdé, 2008). In the case of topological
perception, Chen (1982) demonstrated even the stimulation
duration is <10 ms, adult humans are able to discriminate
the global topological difference. Our proposed model provides
a simple mechanistic explanation for this kind of ultra-speed
topological perception: a gap junction-coupled neural network
can rapidly group those distant neurons covering the same

connected region and meanwhile segregate different neuron
groups covering different regions, forming a stable topological
visual representation in <10 ms.

4.1. Biological Plausibility
Our model uses electrical synapses to synchronize distant
neurons corresponding to a connected region. This is consistent
with the recent experimental works which found that gap
junction is important for long-range synchronization among
neurons over long distances (Neuenschwander and Singer,
1996; Völgyi et al., 2013; Roy et al., 2017). Particularly, Roy
et al. (2017) found that electrical couplings between ON
alpha RGCs and polyaxonal amacrine cells are responsible to
produce the long-range correlated activity critical for global
object perception. Specifically, they found that presentation
of large stimuli of various shapes always produced long-
range synchronization between distant ON alpha RGC pairs
under electrical coupling, whereas presentation of discontinuous
stimuli of several segments could not. Moreover, blockade of gap
junctions diminished such kind of coherent firing. These results
indicate that electrical couplings are essential for the neural
representation of the image connectivity.

We propose that a retina network with electrical coupling is
capable of encoding global topological features. This is in line
with the functional roles of ON alpha RGC network (Schmidt
et al., 2014; Allen et al., 2019). ON alpha RGCs found by Roy
et al. (2017) are actually one type of ipRGCs, i.e., M4 ipRGCs
(Schmidt et al., 2011, 2014). Recently, M4 ipRGCs are found
essential for full contrast sensitivity in mouse visual functions
(Schmidt et al., 2014). Deletion of ON alpha RGCs inmice caused
severe deficits in contrast sensitivity. Meanwhile, by constructing
special patterns that are distinguishable for cones but contain
significant contrast for melanopsin, Allen et al. (2019) found
that M4 ipRGCs in human have the capacity to encode coarse
patterns and influence the appearance of everyday images. Hence,
it is evident that M4 ipRGCs, which are crucial for the coarse
pattern encoding and contrast sensitivity, should also be able
to encode global topological patterns. However, it was reported
that M4 cells have rich dendrites and exhibit non-linear spatial
summation (Estevez et al., 2012). The simplified biophysics of our
neurons does not capture this effect, and the functional role of
dendritic computation in the M4 cells should be investigated in
the future work.

If retina RGCs are able to encode global topological patterns,
where and how these topological information extracted in the
retina are further processed? The candidate brain area is SC.
It has been long suggested that there is a type of SC neurons
which is capable of global visual processing (Rizzolatti et al., 1980;
Bender and Davidson, 1986). For example, Rizzolatti et al. (1980)
found that some neurons in SC respond very poorly to simple
visual stimuli, while produce strong and sustained discharges
for all complex stimuli. In the primate, compared with the role
of “feature detector” of neurons in visual cortex (like V1), this
type of SCs neurons is now thought to be a class of “event
detector” (Ito and Feldheim, 2018), because their responses to
the visual stimuli within their receptive fields are irrelevant to
the specific stimulus features, such as direction, orientation or
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shape (Girman and Lund, 2007; White et al., 2017a,b, 2019). One
example is the recent study done by White et al. (2017a,b, 2019),
in which they found that SC neurons in monkeys are capable of
encoding visual saliency in a featureless manner (Marrocco and
Li, 1977). Inspired by these neurobiological findings, we used a
single neuron to read out each event that ENs produce coherent
activity for a connected region in an image. However, our
implementation of the read-out mechanism is over-simplified,
because despite the existence of wide-field SC cells receiving
hundreds of RGC projections (Gabbiani et al., 2001; Wang et al.,
2010; Gale and Murphy, 2014), a SC neuron receiving global
RGC projections is rare. Future work will consider the detailed
connections between retina and SC.

4.2. Gap Junctions Mediate Retinal Lateral
Inhibition
Lateral inhibition in the retina is thought to be crucial for visual
perception (Kramer and Davenport, 2015). It has been suggested
these inhibition activities are the results of retinal microcircuits
which involve two inhibitory interneurons: horizontal cells (HCs)
in the outer retina and amacrine cells (ACs) in the inner
retina. First synaptic mechanism of lateral inhibition results
from the feedback regulation mediated by HCs, which alters the
neurotransmitter release in rods and cones (Wu, 1991). Later,
lateral inhibition due to AC GABAergic inhibitory feedback to
bipolar cells has also been observed (Feigenspan et al., 1993;
Dong andWerblin, 1998; Roska et al., 2000). Furthermore, recent
works suggested lateral inhibition occurs among RGCs which are
indirectly mediated by spiking GABAergic wide-field ACs (Chen
et al., 2016; Johnson et al., 2018). Overall, all three levels of lateral
inhibition are produced by interneurons and have been shown
to be closely involved in various visual processes, such as edge
(contrast) enhancement (Campbell and Robson, 1968; Kramer
and Davenport, 2015), spatial induction (Cook and McReynolds,
1998; Yeonan-Kim and Bertalmío, 2016), direction selectivity
(Chen et al., 2016), and color processing (Schnaitmann et al.,
2018). In this paper, our modeling study suggests that through
gap junctions, RGCs can provide direct lateral inhibition to the
coupled cells without the involvement of interneurons. This is
due to that when a RGC briefly spikes, it will enter into a
long refractory period, during which its connected cells via gap
junctions will be strongly inhibited. This kind of lateral inhibition
has been observed in Golgi cells in the cerebellar input layer
(Vervaeke et al., 2010), in which a relatively deep and protracted
afterhyperpolarization (one of the processes that contribute to
the refractory period) in Golgi cells mediated a robust form of
surround depression.

To further highlight the crucial role of gap junction-
mediated lateral inhibition in topological detection, we carry
out experiments by adding local GABAergic AC feedback
inhibitions in the model (see Supplementary Figure 5A). Since
the chemical transmission is too slow in reality, we set the
synapse delay to be 0.1ms.With such unrealistic fast feedback AC
inhibition, we observe that the network behaves similarly to that
without AC inhibitions (compare Supplementary Figures 5B,C

with Figures 3E,F). Furthermore, to ablate the lateral inhibition

of gap junctions while preserve their synchronization effect,
we artificially block gap junctions when neurons are in their
refractory period (setting J = 0). In such a way, the
contribution of local chemical inhibitions is isolated. We find
that: (1) when the receptive field of AC is not big enough
to cover most of the hole, synchronous firings of neurons
on the hole cannot be segregated from that of neurons on
the background (Supplementary Figures 5D,E); (2) when the
receptive field of AC is big enough to cover most of the
hole, synchronous firings of neurons on the hole and the
background can be well-segregated in the first 10 ms but
are mixed together later on (Supplementary Figures 5F,G).
Overall, our ablation study reveals that gap junction-mediated
lateral inhibition is the necessary and sufficient requirement for
rapid topological detection. Certainly, AC-mediated and other
chemical inhibitions are also important for neural information
processing, but they tend to work at different time scales and
are more likely responsible for non-topological feature analysis,
such as edge detection. It will be interesting to explore how
different inhibitory mechanisms cooperate together to solve the
coarse-to-fine feature analysis.

4.3. Global-to-Local Visual Processing
Starts From Early Topological Detection
It is now widely agreed that visual perception takes place
in a predominantly global-to-local or coarse-to-fine procedure
(Bullier, 2001; Bar, 2004, 2007; Hegdé, 2008). Supporting
evidence comes from the experiments using various materials,
ranging from the simple stimuli [like lines, dots, gratings, and
letters (Weisstein and Harris, 1974; Navon, 1977; Pomerantz
et al., 1977; Watt, 1987; Hughes et al., 1996)] to complex images
[such as faces (Farah et al., 1998; McKone et al., 2007; Goffaux
et al., 2010; Taubert et al., 2011) and natural scenes (Parker et al.,
1992, 1997; Schyns and Oliva, 1994; Lu et al., 2018)]. In this
framework, the global and coarse information is processed first
and subsequently activates the high-level visual cortex rather than
primary visual cortex; whereafter, a feedback signal is generated
and further guides the processing of the conventional local
feature analysis (Bar, 2003; Bar et al., 2006). The bottom-up local
feature analysis has so far been well-established, in which the
visual processing begins from extracting the local features in the
low visual areas followed by integrating such local features to
extract more global features in the higher visual areas (Hubel
andWiesel, 1959; Treisman and Gelade, 1980; Marr, 1982; Hubel,
1988; DiCarlo et al., 2012). Later, more and more researches
begin to emphasize the role of top-down facilitation in visual
perception (Bar et al., 2006; Gilbert and Li, 2013). However,
several questions remain elusive in this framework: how and
where is such top-down facilitation ignited (Bar, 2003; Goffaux
et al., 2010)? In particular, at the early visual stage, how global
features are rapidly extracted?

In the case of topological perception, it has been found that
the neural substrate of topological perception in humans lies
in the final stage of the ventral cortical visual system, i.e., the
temporal lobe (Zhuo et al., 2003; Wang et al., 2007). Moreover,
on monkeys, a single-unit recording study unveiled there exists a
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subset of inferior temporal neurons responding selectively to hole
patterns with a short latency (<100 ms) (Komatsu and Ideura,
1993). Similarly, how are such topological features extracted?
What pathway does it route through to ignite the temporal lobe?
Here, we hypothesize that the topological features (like “holes”)
begin to be extracted in the retina. Specifically, we propose
that in the retina, the alpha RGC network coupled through
electrical couplings is capable of producing the topologically
discriminable neural representations in a short time interval
of <10 ms. We also demonstrate that such rapid and stable
topological representations can be easily read-out by the SC or
higher visual cortex. Our hypothesis can be partially supported
by earlier two experiments (Ölveczky et al., 2003; Baccus et al.,
2008). Specifically, they found that there exists a subset of RGCs
specialized to distinguish local motion within the scene from the
global retinal image drift due to fixational eye movements. In
other words, the global motion detection begins in the retina,
which supports the notion of the retinal representation of global
information. In future, further detailed investigations should be
carried out.

4.4. Related Works
The most relevant work is a pioneering model called LEGION
(Wang and Terman, 1995), which was designed using the
mechanisms of local excitation and global inhibition. Wang
(2000) demonstrated that LEGION exhibits sensitivity to the
topological connectivity, but did not investigate the detection
of holes. Our model differs from LEGION in two fundamental
aspects. First, the computational mechanisms are different.
LEGION achieves synchronization via chemical excitatory
synapses between nearby oscillators and employs a global
chemical inhibitory synapse to deactivate different groups of
oscillators, which are not feasible in retina; whereas, our model
relies on gap functions which widely exist in the retina to
synchronize and differentiate neuron groups. Second, the time
courses are different. The time for LEGION to detect the
topological connectivity is too slow, as the emergence of stable
phase differences between objects needs multiple cycles. In
contrary, our model has the ability to detect the topological

property rapidly as briefly as <10 ms. Overall, our model better
captures the computational nature of the retina.
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