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Cytokines and other peptides are
secreted from skeletal muscles in

response to exercise and function as
hormones either locally within the muscle
or by targeting distant organs. Such
proteins are recognized as myokines, with
the prototype myokine being IL-6.
Several studies have established a role of
these muscle-derived factors as important
contributors of the beneficial effects of
exercise, and the myokines are central to
our understanding of the cross talk
during and after exercise between skeletal
muscles and other organs. In a study into
the mechanisms of a newly defined
myokine, CXCL-1, we found that
CXCL-1 overexpression increases mus-
cular fatty acid oxidation with con-
comitant attenuation of diet-induced fat
accumulation in the adipose tissue.
Clearly this study adds to the concept of
myokines playing an important role in
mediating the whole-body adaptive
effects of exercise through the regulation
of skeletal muscle metabolism. Yet, myo-
kines also contribute to whole-body
metabolism by directly signaling to
distant organs, regulating metabolic pro-
cesses in liver and adipose tissue. Thus
accumulating data shows that myokines
play an important role in restoring a
healthy cellular environment, reducing
low-grade inflammation and thereby pre-
venting metabolic related diseases like
insulin resistance and cancer.

Exercise is associated with many beneficial
metabolic and health effects. Today it is
known that during exercise, cytokines and
other peptides are secreted by the working
muscles with the potential to act locally
within the muscle tissue or in an endocrine

manner by targeting distant organs.
Although they are not exclusively secreted
by the muscle cells, such proteins are
classified as “myokines” within the context
of skeletal muscle physiology.1 Emerging
evidence suggests that these muscle-
derived cytokines play an important role
in mediating both acute exercise-associated
metabolic changes, as well as the metabolic
changes following training adaptation.2

Increased insulin responsiveness, glucose
uptake and fatty acid oxidation within
skeletal muscles are some of the antici-
pated beneficial effects of regular exercise,
all of which have been shown in part to be
mediated by myokines. Likewise, systemic
effects of myokines released in response to
muscle contractions are involved in various
immediate and long-term metabolic regu-
latory mechanisms in distant organs like
the adipose tissue.3 Thus myokines are
central to our understanding of the cross
talk during and after exercise between
skeletal muscles and other organs (Fig. 1).
In view of that, further insight into the
effect and regulation of potential myokines
is of major importance.

The first myokine identified was inter-
leukin 6 (IL-6),4 which is now recognized
as the prototype myokine, exerting both
local muscular effects as well as endocrine
effects on distant organs.5 Since the
discovery of IL-6, it has been recognized
that skeletal muscle has the capacity to
express a large range of myokines. Today
the list of verified myokines includes IL-6,
IL-8, IL-15, brain-derived neurotrophic
factor (BDNF), leukemia inhibitory factor
(LIF), fibroblast growth factor 21 (FGF21)
and follistatin-like-1.3 In addition, recent
proteomic studies have predicted that the
list of myokines may include more than
600 candidates belonging to distinctly
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different protein families.6 Recently we
and others reported that an acute bout of
exercise in mice induced a 6-fold increase
in skeletal muscle mRNA and a 2.4-fold
increase in serum concentration of
the chemokine CXC motif ligand-1
(CXCL-1) also known as KC (keratino-
cyte-derived chemokine), suggesting that
CXCL-1 acts as an exercise-induced
myokine.7,8 Murine CXCL-1 is often
mentioned as the functional homolog to
human IL-8, which previously was iden-
tified as a myokine in humans.9 However,
murine CXCL-1 shares the highest
sequence homology (90% homology in
conserved regions) with human CXCL-1,
also named GROa (growth-related onco-
gene, a).10 CXCL-1 belongs to the
glutamate-leucine-arginine (ELR)-contain-
ing CXC chemokine family and has
primarily received attention for its role in
inflammation, chemotaxis and angio-
genesis,11,12 its neuro-protective effects13

and as a regulator of tumor growth14,15

whereas its role in metabolism remains to
be clarified.

In line with the involvement of myo-
kines in regulation of skeletal muscle
metabolism, we went on to characterize
the role of CXCL-1 in the exercise-
associated adaptations in oxidative capacity
in the muscle.16 To this end, we used a
mouse model of in vivo electrotransfer-
mediated overexpression of CXCL-1 in the
tibialis cranialis muscle. The resulting
increases in muscle CXCL-1 mRNA and
serum CXCL-1 in this model are within

the normo-physiological range and com-
parable to levels observed in response to a
single bout of exercise.7,8 Importantly this
model reflects the long-term effects of
regular exercise-induced peaks in CXCL-1
rather than an occasional acute exercise
effect. As assessed by MR scanning, DEXA
scanning and weight of dissected organs,
this long-term overexpression model
revealed a CXCL-1-dependent reduction
in the diet-induced fat accumulation in
adipose tissue. In fact, after three months
of high-fat feeding, CXCL-1 transfected
animals had a significantly lower visceral
fat mass (1277.5 ± 107.2 mg) compared
with control mice (1889.5 ± 147.1 mg,
p , 0.01). Likewise, did these mice have
lower subcutaneous fat mass (494.8 ±
51.2 mg) compared with control mice
(637.2 ± 40.8 mg, p , 0.05). Chow-fed
mice also had lower levels of adipose
tissue. As determined by DEXA scanning
eight weeks after the transfection, the
CXCL-1 transfected mice had significantly
lower proportion of total body fat (13.2 ±
1.6%) compared with chow-fed control
mice (19.8 ± 1.5%, p , 0.01). Similar
results were found by MR scanning.
Interestingly, the reduced accumulation
of fat in the CXCL-1 transfected animals
was associated with increased fatty acid
oxidation in the muscles, as measured both
directly and indirectly through upregula-
tion of rate-limiting oxidative enzymes.
Furthermore, the CXCL-1-dependent
reduction adipose tissue mass was accom-
panied by whole-body improvements in

glucose tolerance and insulin sensitivity.
Clearly this study shows that by influenc-
ing metabolism locally in the muscles, the
myokines are likely to be involved in the
whole-body metabolic adaptive changes
that occur in response to regular exercise
like, for example, attenuation of fat
accumulation.

Induction of other myokines, in par-
ticular IL-6, has been involved in similar
metabolic adaptations. By signaling
through the gp130Rβ/IL-6Ra receptor,
causing subsequent activation of the
AMPK and/or phosphatidylinositol
3-kinase (PI3-kinase) pathways, IL-6 acts
within the muscle to increase glucose
uptake and fatty acid oxidation.1 Upon
receptor activation, IL-6 signals through
either the Janus kinase/signal transducer
and activator of transcription (STAT)
pathway or a Ras/ERK/CAAT enhancer
binding protein (C/EBP) β pathway.17

In addition to the local muscular effects
that indirectly affect whole body metabo-
lism, myokines have also been shown to
act directly on distant organs when
released into the systemic circulation.
Again IL-6 can be used as an example.
Following release from both type I and
type II muscle fibers in response to muscle
contractions circulating IL-6 works in an
endocrine fashion.1 In adipose tissue IL-6
has been shown to increase lipolysis and
fatty acid oxidation,18 likely through the
induction of AMPK phosphorylation.19 In
further support of IL-6 affecting accu-
mulation of fat in adipose tissue, IL-6
knockout mice have been found to
develop late-onset obesity.20 In the liver,
muscle-derived IL-6 is suggested to
enhance hepatic glucose production dur-
ing exercise21 and has been reported to
directly upregulate gluconeogenic genes,
i.e., phosphoenolpyruvate carboxykinase
(PEPCK) and 6-phosphatase (G6Pase),
leading to increased hepatic glucose pro-
duction.22 Interestingly, IL-6 is also
thought to affect pancreatic function, and
secretory products from skeletal muscles
have directly been shown to increase
proliferation and glucose-stimulated insu-
lin secretion from primary β-cells.23,24 In
addition, injection of IL-6 as well as
elevated levels of IL-6 induced by exercise
have recently been demonstrated to stimu-
late GLP-1 secretion from intestinal L cells

Figure 1.Muscle-organ cross talk mediated by myokines. In response to muscle contraction skeletal
muscle expresses and releases myokines into the circulation. The myokines mediate effects locally
within the muscle in an autocrine or paracrine manner to increase glucose uptake and fat
oxidation. When released into the circulation, the myokines act in a hormone-like fashion
mediating peripheral effects including increased hepatic glucose production during exercise,
lipolysis in adipose tissue and likely have a preventing effect on tumor growth.
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and pancreatic a cells, leading to improve-
ments in insulin secretion and glycemia.25

Thus, skeletal muscle and the pancreas
act in a synergistic manner to monitor
systemic glucose homeostasis and these
results demonstrate a role of myokines in
mediating cross talk between insulin
sensitive tissues.

In line with this, plasma IL-6 is not only
directly correlated with exercise intensity,
but is also inversely related to plasma
glucose level.26 With this, it is thought that
IL-6 works as a sensor of carbohydrate
availability.18,22,27 Thus, contracting muscle
fibers produce and release IL-6 in an
endocrine manner to facilitate substrate
mobilization from liver and adipose tissue.
More recently it was also reported that
muscle-derived IL-6 induces expression of
CXCL-1 in the liver and that IL-6 is
directly essential for the peaks in liver
CXCL-1 expression that occurs in response
to exercise. These observations further
suggest that IL-6 is involved in muscle-to-
liver cross talk during exercise.8 Also, an
exercise-induced and PGC1-a (transcrip-
tional co-activator PPAR-c co-activator-1
a) dependent myokine named Irisin was
recently reported to replicate some of the
positive effects of exercise and diet. It
increases energy expenditure likely through
stimulation of UCP-1 and brown-fat-like
development and was found to improve
glucose tolerance in obese animals.28

Definitely the communication network
between muscles and other tissues define a
physiological concept of muscle-to-organ
cross talk. Common for many of the
identified myokines are a direct or indirect

effect on adipose tissue. Importantly,
visceral fat is known as a source of systemic
chronic low-grade inflammation, which in
turn is involved in the pathogenesis of
various disorders like insulin resistance,
atherosclerosis and cancer.5 The attenuat-
ing effect of myokines on accumulation
visceral adipose tissue either by acting
directly on the adipose tissue itself or by
improving fatty acid metabolism in the
muscle is therefore of major importance in
describing why inactivity is a strong risk
factor for development of various diseases
induced by low-grade inflammation like
type 2 diabetes and cancer.5 With this, the
myokines could in theory be therapeutic
for human metabolic disease and other
kind of disorders that normally are
improved with regular exercise.

In continuation of this, regular exercise is
clearly associated with reduced cancer
development and progression in large
epidemiological studies29,30 and a few
animal studies report that exercise is
associated with decreased tumor growth
and metastatic dissemination.31 The pro-
tective effect of exercise is applicable on a
diverse array of neoplastic diseases, indi-
cating that the mechanism behind this
protection is not limited by specific onco-
genic mutations but likely caused by more
general mechanisms. We have recently
shown that myokines, in addition to the
reduction of low-grade inflammation, also
play a direct role in the tumor-suppressing
effect of exercise. By incubating breast
cancer cells with serum taken immediately
after an exercise bout, we found that the
exercise-conditioned serum could reduce

cancer cell viability and induce apoptosis
through caspase activation.32 This study
identified Oncostatin M as an exercise-
induced myokine with anti-proliferative
effects on the breast cancer cells. Likely
the protection of exercise on tumor devel-
opment and progression occurs through a
variety of exercise-related changes like
improved inflammatory fitness, immune
function, growth factor signaling, sex
hormones and improved metabolic status
some of which are affected by the myokines.
Knowing the mechanisms behind the
beneficial anti-cancer effect of exercise will
serve as foundation for public health guide
with regard to exercise and likely facilitate
the improvement of current anti-cancer
strategies

Taken together, with the identified
pleiotropic effects of myokines on multiple
tissues, leading to fine-tuning of fuel
utilization and energy homeostasis in these
tissues, we believe that these secreted
myokines are able to restore a healthy
cellular environment, reduce low-grade
inflammation and thereby prevent meta-
bolic related diseases like insulin resistance
and cancer.
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