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COMMENTARY

The Precision Medicine Initiative1 announced by President Obama aims to be a novel 
approach to disease treatment and prevention by allowing for individual variability in 

genes, environment, and lifestyle. Although its immediate goal is to support clinical tri-
als of targeted cancer therapies based on a tumor’s molecular signature, about half of its 
$200+ million budget for this year is aimed at a new cohort study of 1 million people for 
research on etiology and prevention.1,2 Here, I focus on the relevance of genomic research 
to personalized prevention.3–6

In his seminal article entitled “Sick individuals and sick populations,” Rose7 distin-
guished the 2 primary goals of epidemiology: discovering “the determinants of individual 
cases and the determinants of incidence rate.” He called the corresponding strategies for 
prevention as the “high-risk approach,” which seeks to protect susceptible individuals, and 
as the “population approach,” which seeks to control the underlying causes of incidence. 
In the genomics era, these correspond to using an individual’s genetic profile to target 
primary and secondary prevention versus classical public health strategies to clean up the 
environment or promote healthful behaviors so as to reduce the overall burden of disease. 
Population-wide interventions may provide large benefits to the population as a whole 
while offering little benefit to most individuals (the “prevention paradox”8), so the trade-off 
depends in part on how much risk is confined to an identifiable minority.

This commentary discusses 2 main themes: the evaluation of targeted versus popula-
tion-wide interventions and the need for causal inference methods to accomplish this. I will 
illustrate these points with examples from primary prevention (air pollution regulation and 
genetic targeting of smoking cessation) and from secondary prevention (colonoscopies, as 
discussed in the companion article9).

THE COUNTER-FACTUAL NATURE OF PREVENTION RESEARCH
It is often argued that the importance of research on gene–environment (G × E) interactions 
is that it could lead to novel prevention strategies based on modifiable risk factors. The dif-
ficulty with using observational studies to evaluate prevention programs lies in the causal 
interpretation of the effect of an intervention. Even if an exposure is associated with disease 
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across individuals, it does not follow that changing exposure 
would change any individual’s disease risk. The general idea of 
counter-factual inference can be understood in terms of a hypo-
thetical 2 × 2 table10 comparing the potential outcomes of the 
same individual under the alternative exposure scenarios. The 
outcomes of subjects on the main diagonal are unaffected by 
exposure (“doomed” or “immune”). The only ones for whom 
exposure has any effect (caused or prevented) are those in the 
off-diagonal cells. The net benefit of removing exposure is thus 
the difference in the size of these two cells. Unfortunately, it is 
only in a crossover trial that we observe individual outcomes 
under both exposure scenarios and these are only possible for 
acute responses and unethical for hazardous exposures. In 
observational studies, we see only the margins—the distribu-
tion of outcomes among exposed and among unexposed indi-
viduals—and these are different individuals. We therefore have 
to assume there is no uncontrolled confounding, that is, that the 
groups are comparable in terms of the distribution of other risk 
factors, or at least that all known confounders have been taken 
into account in the analysis. Only a randomized controlled trial 
can ensure that, and only in expectation. Causal inference11–15 
changes the target of inference from association across individ-
uals to the mean difference within individuals in their expected 
outcomes under exposed and unexposed scenarios (the “aver-
age causal effect”). Details of the various procedures differ, 
but one relatively easy to understand approach begins with a 
model for the “propensity” for exposure based on the available 
confounder information and then reweights subjects inversely 
to examine the effect of exposure in a hypothetically uncon-
founded population.

Hernán et al.16 have refined the potential outcomes 
approach based on inverse probability weighting, illustrating the 
different conclusions obtained in the case of AZT (zidovudine) 
treatment in HIV/AIDS survival and reconciling the conflicting 
results on hormone replacement therapy use and cardiovascular 
disease from observational epidemiology studies and the ran-
domized Women’s Health Initiative trial.17 None of those exam-
ples bear directly on primary prevention; however, so I begin 
with an example applied to population-based prevention.

Causal Inference for Population-wide Primary 
Prevention
One of the most effective interventions for reducing all-cause 
mortality nationwide has been the Clean Air Act of 1970. A 
huge body of epidemiologic evidence has demonstrated asso-
ciations between ambient air pollution and various health out-
comes. But how can we assess the impact specifically of the 
Clean Air Act on mortality? Zigler et al.18 used causal infer-
ence to compare the counties of southwest United States that 
were in and out of compliance in 1990 in terms of changes 
in air pollution and mortality over the following decade. 
Since counties could differ in ways that might confound any 
comparisons, they developed a spatial hierarchical model for 
the propensity to be in compliance and then computed the 

expected pollution and mortality outcomes for each county 
under their observed compliance status and their counterfac-
tual ones. They found that the average causal effect of regula-
tion was a 2.7% reduction in mortality and an improvement in 
air quality attributable to regulation. However, only about half 
the change in mortality was directly attributable to improve-
ments in ozone and PM

10
, whereas the rest was mediated by 

changes in other risk factors (possibly including other pollut-
ants). This approach to evaluating policy could be helpful in 
many other areas besides air pollution.19

GENETIC TARGETING PREVENTION PROGRAMS
Any prevention effort presumes that we have an effective inter-
vention and that intervention changes outcomes. Next, would 
either be improved by targeting high-risk populations, say by 
genetics? This then presumes that we have a way of identify-
ing high-risk individuals, assuming we can obtain genotypes 
or a surrogate like family history from the population at risk. 
Finally, is the intervention more effective in that group (gene–
treatment interaction)?

Individual Variability
Although many people see some heavy smokers living to old 
age without lung cancer while some nonsmokers get lung can-
cer at an early age as evidence of interindividual variability in 
sensitivity to tobacco smoking (e.g.,21), Peto21 argued that this 
observation is consistent with cancer simply being a stochastic 
process with a homogeneous baseline risk: “To ask why a par-
ticular individual failed to get cancer is probably as meaning-
less as asking why a particular uranium atom failed to decay.” 
Even if there were no interindividual variation, we would still 
see some smokers surviving to old age and other nonsmok-
ers getting cancer at young ages. Of course, we have identified 
some differences in risk due to known genetic variants, health 
status, contextual factors, and so on, and family studies show 
that there must be more genetic variation still to be discovered.

The predictive value of a risk model is usually evalu-
ated by its receiver operating characteristic curve. For Crohn’s 
disease and type I diabetes, the area under the curve (AUC) 
is substantial, but for most cancers, the predictive value of 
genetic risk scores is modest (AUCs in the range of 55%–
70%),22–24 comparable to the AUCs obtained from models 
based only on family history or nongenetic factors, like the 
Gail models for breast25 or colorectal26 cancers. Furthermore, 
the addition of genetic markers to nongenetic risk factors 
is often modest, typically about a 5% improvement in the 
AUC.27,28 This will improve with larger consortia, but there 
may be a practical limit. For example, meta-analysis of height 
in 134,000 subjects has identified more than 100 variants, but 
they explain only about 7% of the total phenotypic variation; 
to raise that figure just to 15% would require a sample size 
of almost 500,000 individuals.29 Even the projected AUCs for 
all future single nucleotide polymorphisms will likely still be 
modest for most cancers.30,31
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Gene–Environment Interactions
G × E interactions have been studied for specific genes and 
specific exposures with limited success for several decades, the 
poster child being NAT2 and smoking for bladder cancer.32 Only 
recently have genome-wide interaction studies been done for 
specific exposures and metabolomic data used for environment-
wide association studies33 and G × E-wide interaction stud-
ies.34–36 More efficient statistical methods are being developed 
for such studies,37 but applications to date have been disappoint-
ing. Colorectal cancer is an obvious candidate, as there are 14 
established environmental risk and protective factors, most of 
them modifiable. Based on these findings, several prevention tri-
als have been launched,38–46 aimed at prevention of further adeno-
mas among individuals who have already had at least one. While 
not designed as genetically targeted trials, some postrandomiza-
tion gene–treatment interaction analyses have been reported.47,48 
There have been numerous observational studies of G × E inter-
actions with candidate genes,49–54 but a comprehensive analysis 
of a genetic risk score composed of 27 genome-wide association 
study single nucleotide polymorphisms and these 14 environ-
mental factors found no significant multiplicative interactions, 
and only weak additive interactions with height, processed meat, 
and hormone replacement therapy use. For other cancers, the 
yield of significant G × E interactions has been more reward-
ing: breast with body mass, age at menarche and parity,55 bladder 
with tobacco smoking,56 and lung with asbestos,57,58 as well as 
for other diseases like asthma,33,59,60 diabetes,61 and stroke.62

Genetic Targeting for Primary Prevention
All smokers would benefit from quitting, but is that benefit 
any greater for those who are genetically at highest risk? A 
randomized placebo-controlled trial compared two smoking 
cessation treatments, the nicotine patch or varenicline, strati-
fied by the nicotine metabolite ratio, a phenotypic assay of 
the activity level of the CYP2D6 enzyme that metabolizes 
nicotine and cotinine.63 They found that varenicline was more 
efficacious than the patch and had fewer side effects in normal 
metabolizers but not in slow metabolizers.

Genetic Targeting for Secondary Prevention
A recent perspective64 asked how much of the nearly 50% declines 
in colorectal cancer incidence and mortality since 1975 could be 
attributed to screening. Nine randomized controlled trials showed 
effectiveness of fecal occult blood testing and sigmoidoscopy, but 
they argued that much of the decline occurred before any effect 
of recent increases in screening. (Other simulations,65 however, 
have attributed about half of the decline to screening.) The dis-
cussed several possible explanations, including improvements in 
treatment and early detection for mortality and changes in risk 
factors for incidence. But neither article considered personalized 
prevention. Hsu et al,66 however, have provided a model for pre-
dicting the age at start of screening that would provide the same 
benefit conditional on gender, family history, and 27 genetic vari-
ants as would population-wide screening at age 50.

The complex dependence of an individual’s screening 
behavior on their own and family member’s screening histories 
could make screening look deleterious if high-risk individuals 
are more prone to get screened. In the companion article,9 I 
describe the application of causal inference methods to evalu-
ating population-wide and targeted screening programs, using 
simulation and analysis of a large case–control study.67,68 How-
ever, it is not clear that the predicted reductions in the number 
needed to screen by any of the targeted approaches compared 
with population-wide screening are enough to justify their 
greater complexity, which would require obtaining informa-
tion on risk factors, family history, or genetics before deciding 
on an appropriate screening schedule. Although there may be 
a benefit in terms of reduced cancer incidence, it is not clear 
what the impact on mortality would be.69 This would require 
either a cohort study of cancer deaths in relation to screen-
ing (which would have the same problems of self-selection of 
screening behavior) or a randomized controlled trial. A full 
cost–benefit analysis would also have to address false nega-
tive and false positives, acceptability, the costs of targeting, 
and weigh the benefits of reduced incidence and mortality, all 
in relation to other screening modalities like occult blood and 
DNA-based tests.70–72

CONCLUSIONS
Although the genomics revolution has potential to transform 
prevention in addition to treatment, we still have a long way to 
go to more effectively identify who should be targeted. Envi-
ronmental interventions like air pollution regulation cannot be 
targeted to any subgroup, genetic, or otherwise. Others, like 
antismoking campaigns, exercise, or diets, could in principle, 
but this might not be practical or cost efficient. The most effi-
cient would be to identify those at high genetic sensitivity to 
avoidable exposures. But simply predicting genetic risks is not 
sufficient: we need evidence of G × E interaction. We should 
not let the enthusiasm for personalized medicine distract us 
from opportunities for classical public health approaches to 
prevention.
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