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Endotoxemia is characterized by initial uncontrollable inflammation, terminal immune paralysis,
significant cell apoptosis and tissue injury, which can aggravate or induce multiple diseases
and become one of the complications of many diseases. Therefore, anti-inflammatory and
anti-apoptotic therapy is a valuable strategy for the treatment of endotoxemia-induced tissue
injury. Traditional Chinesemedicine exhibits great advantages in the treatment of endotoxemia.
In this review, we have analyzed and summarized the active ingredients and their metabolites
of Sanhuang Xiexin Decoction, a famous formula in endotoxemia therapy. We then have
summarized the mechanisms of Sanhuang Xiexin Decoction against endotoxemia and its
mediated tissue injury. Furthermore, silico strategy was used to evaluate the anti-apoptotic
mechanism of anisodamine, a well-known natural product that widely used to improve survival
in patients with septic shock. Finally, we also have summarized other anti-apoptotic natural
products as well as their therapeutic effects on endotoxemia and its mediated tissue injury.

Keywords: endotoxemia, anti-apoptosis, immunosuppression, herbal medicine, sanhuang xiexin decoction,
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INTRODUCTION

Possible sources of plasma endotoxin are bacteria from infected local tissues, blood, respiratory tract,
digestive tract, food, or other ingested matter (Munford, 2016). The intestinal and other epithelial cells,
such as those of the skin or lungs, are the first line of defense against endotoxins entering the bloodstream.
Bacteria release bacterial lipopolysaccharide (LPS) or endotoxins mainly through lymphatic channels (e.g.,
small intestinal lymphatic system) and thoracic duct into the circulation from infected parts. Furthermore,
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LPS can also be absorbed from the gastrointestinal mucosa, especially
the damaged intestinal mucosa (Brenchley, 2006) into the portal
circulation. Erridge (Erridge, 2011) andDeitch (Deitch, 2012) showed
that the largest source of LPS detected in the peripheral venous blood
was from the small intestine. In addition, blood-borne bacteria can
release LPS directly into the bloodstream to cause diseases, such asN.
meningitidis (Ovstebo et al., 2005; Coureuil et al., 2014) and E. coli
(Simpson et al., 2000). However, when the amount of endotoxin is
overloaded, the host defense fails to eliminate and control the
infection, leading to endotoxemia or even sepsis (Piwowar, 2014).
In addition to endotoxemia/sepsis, excessive amounts of LPS are also
implicated in the pathogenesis of a range of diseases, such as
atherosclerosis, alcoholic liver disease, autoimmunity, metabolic
syndrome, renal injury, multiple organ failure, depression, and
chronic fatigue. Interestingly, these diseases both share a common
pathophysiological basis: the imbalance between induction of
apoptosis and resistance to apoptosis (Manco et al., 2010).

Apoptosis is a conserved process of programmed cell death
characterized by chromatin fragmentation and condensation,
membrane blebbing, and nuclear collapse. Apoptosis also plays
important roles in a variety of physiological processes, including
embryogenesis, tissue remodeling, immune response, and
carcinogenesis (Kerr et al., 1972; Williams, 1991). In this process,
cells that are no longer needed or that will be detrimental to an
organism or tissue are disposed of in a highly ordered manner. This
process can effectively block the development of inflammatory
responses and tumorigenesis. Figure 1 illustrates how
endotoxemia occurs, with six apoptosis hallmarks and related
assays to distinguish apoptosis cells from normal healthy ones.

It has been shown that various herbal ingredients exhibit
potent anti-apoptotic effects and improve the survival rate in
experimental endotoxemia models. In the last decade, an
increasing number of studies have emphasized that the
reduced incidence of various endotoxin-related pathologies is

closely related to herbal medicine, which is a good source of
beneficial natural anti-inflammatory, anti-oxidative stress, and
anti-coagulant bioactive compounds. Moreover, the active
ingredients of many herbs have been used to treat
endotoxemia and its complications with impressive efficacy.
For example, the administration of anisodamine significantly
improved the survival rate of septic shock. Considering the
complexity of the apoptosis-related endotoxemia mechanisms
and the fact that the modulatory effects of herbs are difficult to be
systematically presented in various experimental studies.
Therefore, we wrote this review to provide a general and
descriptive overview of the potential role and underlying
mechanisms of apoptosis-related progression in endotoxemia,
as well as biomarkers and assays for endotoxemia, and the
bidirectional regulation of apoptosis in endotoxemia by herbal
components and their metabolism (especially Sanhuang Xiexin
decoction and Anisodamine).

This review explores these issues by taking a novel perspective
on apoptosis regulation in the treatment of endotoxemia. It
begins with the herbal ingredients that may affect the
inflammatory response, visceral protection, and apoptosis of
endotoxemia in vitro and in vivo. How the major herbal
ingredients are metabolized will then be discussed, followed by
a summary of these metabolites and their effects. The review
concludes by considering the influencing factors that determine
whether herbal ingredients regulating apoptosis are advantageous
in therapeutic endotoxemia.

ENDOTOXEMIA IS ASSOCIATED WITH
VARIOUS DISEASES

Numerous variables can be activated in endotoxemia, including
circulating glucocorticoid, cytotoxic T lymphocytes, oxygen free
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radicals, nitric oxide, heat shock proteins, FAS ligand, and pro-
inflammatory cytokines (e.g., TNF-α, IL-1, and IL-6); all of these
factors may initiate apoptosis (Harjai et al., 2013). Recently,
regulation of the apoptotic process has been considered as a
new therapeutic strategy for the treatment of endotoxemia and its
complications (Eduardo and Fresno, 2013). Therefore, an in-
depth understanding of the molecular regulation of endotoxin-
induced apoptosis could provide a scientific basis for the
intervention and treatment of the various diseases mentioned
in Figure 1.

ETX INDUCES APOPTOSIS IN VITRO AND
IN VIVO

ETX receptors could be divided into the following categories:
scavenger receptor (SR), lipopolysaccharide-binding protein
(LBP), cluster of differentiation antigen 14 (CD14) (Ulevitch
and Tobias, 1995), β2-integrins (such as CD11/CD18), and
Toll-like receptors (TLRs). They are extensively distributed on
the surface of immune cells such as monocytes, macrophages, and

neutrophils and play an important role in the recognition and
elimination of ETX in the host. The binding of LPS to LBP
activates transmembrane receptors such as SR, β2-integrins, and
TLRs to transmit signals into the cell. These signals further
promote the activation of transcription factors and induce the
expression of pro-inflammatory genes. The expression of these
overproduced pro-inflammatory products can further cause the
induction of apoptosis. Apoptosis is induced by the intrinsic
(mitochondrial) pathway and the extrinsic (death receptor-
mediated) pathway (Danial and Korsmeyer, 2004). The
intrinsic pathway involves mitochondria and depends mainly
on Bcl2 family proteins and caspase 9/7/6/3 (Hengartner, 2000;
Leist and Jäättelä, 2001). The extrinsic pathway is involved in
death signaling, such as TNF-α with TNF receptor 1 (TNFR1).
Then, the activation of death signaling further activates
caspase-8, which cleaves procaspase-3 into its active form
and activates various genes such as P53, Fas, Bcl2, and NF-
κB alone (Micheau and Jürg, 2003; Peter and Krammer, 2003).
In contrast, the NF-κB signaling cascade and p53 activate pro-
apoptotic Bcl2 family proteins and inhibit anti-apoptotic Bcl2
family proteins and inhibitors of apoptotic proteins (cIAPs) via

FIGURE 1 | Schematic diagram of endotoxin damage and the detection of apoptotic cells.
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transcription, as well as several other p53 targets such as BAX,
Noxa (Latin for damage, a BH3 protein involved only in
regulating cell death decisions), p53-upregulated apoptosis
regulator (PUMA) and BID to trigger apoptosis.
Furthermore, p53 also transactivates several other genes that
may contribute to apoptosis, including phosphatase and tensin
homolog deleted on chromosome-10 (PTEN), APAF1, Perp,
and genes that cause elevated levels of reactive oxygen species
(ROS). The overproduction of ROS leads to extensive oxidative
damage to all components of mitochondria. Mitochondrial
DNA damage induced by ROS further disrupts the oxidative
phosphorylation of mitochondria, which leads to a range of
human diseases. Herbal ingredients are often involved in the
treatment of endotoxemia with anti-inflammatory, antioxidant,
and anti-apoptosis effects, which are interrelated and affect
each other. Interestingly, however, there is no one-to-one
correlation between anti-inflammatory/antioxidant and anti-
apoptotic/pro-apoptotic.

Endotoxin has been reported to significantly induce apoptosis
in vitro and in vivo (O’Brien and Abraham, 2004; Neff et al., 2006;
Li et al., 2018). ETX can directly stimulate the production of
cytokines by monocytes-macrophages to activate the body’s local
or overall immune system against bacterial infections. On the
other hand, if the infection is severe, large amounts of ETX in the
body come into contact with mononuclear-macrophages and
release vast inflammatory cytokines such as TNF-a leading to
an uncontrolled inflammatory response. In addition, ETX
stimulates the production of large amounts of nitric oxide
(NO) by inducing non-calcium-dependent inducible nitric
oxide synthase (INOS) in vascular cells. ETX also activates
monocytes, macrophages, and neutrophils, and further
promotes the expression of apoptosis-related receptors, such as
Fas, TLR-2, and CD14, which can also induce apoptosis and
tissue damage (Hotchkiss et al., 2002). Apoptosis of parenchymal
cells can lead to dysfunction in multiple organs, while apoptosis
of immune cells manifests as impaired host immune tolerance
and immunosuppression (Hotchkiss et al., 2005), ultimately
leading to septic shock, systemic inflammatory response
syndrome (SIRS), organ dysfunction syndrome (MODS), and
death. Interestingly, in sepsis, both pro- and anti-apoptotic
members of the apoptosis-related pathway are upregulated, but
the ratio is more favorable to the pro-apoptosis. In addition,
lymphocytes are susceptible to endotoxin-induced apoptosis,
with increased apoptosis of CD4+ T cells (Jäättelä and
Tschopp, 2003), B cells, and follicular dendritic cells in the
spleen of patients, while oxidative stress can lead to apoptosis
of thymocytes (Fehsel et al., 1995). Although there is evidence
that granulocytes can limit inflammatory damage through
apoptosis, this is macrophage-dependent because the
phagocytosis of apoptotic cells by macrophages effectively
prevents the release of toxic content from dead cells. If a large
number of macrophages undergo apoptosis, the apoptotic
granulocytes will eventually lyse and release toxic molecules
such as elastase and myeloperoxidase from neutrophils, major

FIGURE 2 | Metabolic pathways of main components of Sanhuang
Xiexin Decoction.
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base proteins (MBP) from eosinophils, Eos cationic protein
(ECP), and Eos-derived neurotoxin (EDN), leading to further
uncontrolled inflammatory responses. However, the non-
immune cells are mainly parenchymal cells of the liver, lung,
and intestine (Suzuki et al., 2011; Liu H. et al., 2015; Guo et al., 2019),
while cardiomyocytes (Liu et al., 2013; Zhang et al., 2015; Tian et al.,
2019) and nerve cells (Peña et al., 2011; Reichardt et al., 2017) of
apoptosis have also been reported.

ANTI-APOPTOSIS MECHANISM OF
HERBAL MEDICINE IN ENDOTOXEMIA

It has been observed that various herbal ingredients can improve
the healing of endotoxemia, not only through anti-inflammatory
effects, but also through their regulation of apoptosis in many
types of immune cells (including lymphocytes and macrophages),
endothelial cells, and parenchymal cells in different solid organs,
especially heart, liver, and lung (Cheng et al., 2014). Although

apoptosis has been extensively studied in various diseases such as
cancer, neurodegenerative diseases, and HIV infection, its role in
sepsis and its regulation as a novel therapeutic approach in the
treatment of endotoxemia has attracted attention in recent years.

Sanhuang Xiexin Decoction and Its
Metabolites
Sanhuang Xiexin decoction was firstly described in the Synopsis of
Golden Chamber by Zhongjing Zhang of the Eastern Han
Dynasty and is a classical formula widely used in Chinese
medicine to treat fire and detoxify. It is composed of Rhizoma
Rhei (Rheum palmatum L.), Rhizoma Coptidis (Coptis chinensis
Franch), and Radix Scutellaria (Scutellaria baicalensis Georgi).
Previous studies have shown that Sanhuang Xiexin Decoction has
effective therapeutic effects on endotoxemia through anti-
inflammation (Lo et al., 2005a; Lo et al., 2005b). Other recent
studies have shown that it also possesses potent anti-apoptotic
activity. The main anti-apoptotic ingredients are aloe-emodin,

FIGURE 3 | Molecular docking of anisodamine binding with apoptosis receptor of endothelial cells.
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coptisine, and baicalin. Figure 2 depicts its formula and the
metabolic steps and products of coptisine and baicalin in vivo. For
example, aloe-emodin can attenuate myocardial infarction and
cardiomyocyte apoptosis (Yu et al., 2019). The metabolites are
rhein, aloe-emodin sulfates/glucuronides, and rhein sulfates/
glucuronides (Yu et al., 2016). Among them, rhein exhibited
significant anti-apoptosis in endotoxemia and showed significant
protective effects against endotoxin-induced kidney injury (Yu
et al., 2015). Coptisine, a major compound from Rhizoma
Coptidis that clears heat and dampness, purging fire for
removing the toxin has been reported to exhibit protective
effects on HaCaT keratinocytes by blocking the mitochondria-
dependent apoptotic pathway (Choi, 2019). Furthermore,
baicalin is the most reported anti-apoptotic component of
Sanhuang Xiexin Decoction, showing anti-apoptotic effects in
a variety of cell types, including cardiomyocytes (Liou et al., 2011;
Liou et al., 2012), C2C12 myoblast (Pan et al., 2019), arterial
endothelial cells (Shou et al., 2017), neuronal cells (Zheng, et al.,
2015), hepatic stellate cells (Wu et al., 2018a; Wu et al., 2018b),
endplate chondrocytes (Pan et al., 2017), renal cells (Zhu et al.,
2016) and colonic epithelial cells (Yao et al., 2016). Baicalein
6-O-β-D-glucopyranuronoside (Akao et al., 2013) and baicalein
(Wang et al., 2015) are the main metabolites of baicalin that
inhibit the apoptosis of intestinal epithelial cells, thus reducing
the chance of endotoxemia in cirrhosis (Liu Y. et al., 2015) and
cardiomyocyte injury (Zhu et al., 2019).

Molecular Docking Prediction of
Anisodamine for Anti-Apoptotic Treatment
of Endotoxemia
Anisodamine is a well-known natural product that is widely used
to improve the survival of patients with septic shock. The binding
capacity of anisodamine and its 23 intracorporal metabolites

(Chen et al., 2005) to endothelial cell apoptosis-related
receptors was evaluated by molecular docking technology. As
shown in Figure 3, anisodamine and its metabolites bind mainly
to TNFR1 and APO3 with high affinity. Other individual
metabolites, such as N-demethyl-6 beta hydroxytropine and 1-
sulfate conjugated hydroxyanisodamine also bind to FAS and
APO2 with strong affinity. Thus, the therapeutic effect of
anisodamine on endotoxemia involves molecular mechanisms
associated with apoptosis. However, further evaluation regarding
the molecular mechanisms of anisodamine in vitro and in vivo is
necessary.

Other Anti-Apoptosis Ingredients Derived
From Herbal Medicines
As seen in Figure 4, immune paralysis and organ damage are the
main culprits for the poor prognosis of endotoxemia. Many
herbal ingredients are effective in the treatment of
endotoxemia by inhibiting apoptosis. Their effects, target
organs/cells, dosage, relevant targets, and indications
have been summarized in Table 1. The activation of the
TLR4/NF-κB pathway leads to exacerbation of inflammation
and apoptosis, which in turn leads to worsening endotoxemia.
Therefore, inhibition of inflammation, oxidative stress, and
apoptosis is a new research focus in the treatment of
endotoxemia (Guan et al., 2019; Li et al., 2019; Zhao et al., 2020).

Meng et al. confirmed that sanguinarine attenuates ETX-
induced inflammation and apoptosis by blocking the TLR4/NF-
κB pathway (Meng et al., 2018). However, in general, the
mechanism of herbal ingredients based on this pathway for the
treatment of endotoxemia is less studied, and it remains to be
verified whether the inhibition of this pathway signal can be used to
evaluate and screen potential herbal ingredients. Furthermore,
leukocyte adhesion molecules have been suggested as new targets

FIGURE 4 | Schematic diagram of the molecular mechanism of endotoxin-induced apoptosis.
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TABLE 1 | Effect of herbal ingredients on anti-apoptosis related pathway molecular (excepted those mentioned in the text).

Herbal medicine Effects Related targets Endotoxemia
related indications

References

Punicalagin (PNG) Anti-apoptosis, nephroprotection, anti-
inflammation, anti-oxidant

↓: Serum Cr, NGAL, KIM-1, IL-18,
TNF-α, IL-6; MDA, NO, MPO, iNOS.
Bax/Bcl2, caspase-3/-8/-9

Sepsis complication of acute
kidney injury

Fouad et al.
(2016)

Thaliporphine Anti-inflammation, anti-apoptosis;
radioprotection

↓: p38/NF-κB pathway; TNF-a,
caspase 3, serum cTnI, LDH, Reverse
steeper EDPVR, Gentler ESPVR

Cardiac depression Lee et al. (2010)

↑: PI3K/Akt/mTOR pathway
Apocynin Hepatocyte protection, anti-apoptosis,

anti-oxidation
↓: Hydroperoxides, MDA, SOD,
NADPH, POX

Endotoxemia Ben et al. (2000)

↑: CAT, SOD, G-POX
Stevioside Anti-apoptosis, anti-oxidation, anti-

inflammation, immunoregulation
↓: SOD, CAT, GSH, MDA, NO, DPPH;
TNF-α, IL-1β, IL-6

Acute liver injury Latha et al. (2017)

↑: AST, ALT
Soybean oil, olive oil Anti-inflammation, immunoregulation ↓: Mitochondrial pathway, Apoptosis

of lymphocyte, Caspase-8, Bax, Bcl-
xl, caspase-3, TNF-α, IL-6

Sepsis complications of acute
lung injury and acute respiratory
distress syndrome

Bi et al. (2010)

↑: PI3K/Akt phosphorylation
Cordyceps sinensis Anti-apoptosis, anti-inflammation,

immunoregulation
↓: NF-κB, TNF-α, AST, NO, AST,
caspase-3/-6, PARP

Sepsisshock complication of
hepaticdysfunction

Chen and Wu.
(2014)

↑: Phosphorylation of MAPK (ERK1/2),
SOD, IL-10

Garlic Anti-inflammation, pro-apoptosis,
immunoregulation, anti-platelet, anti-
hypertension, antioxidation

↓: TNF-a, IL-6 Preeclampsia Makris et al.
(2005)↑: IL-10, sTRAIL/Apo-2L

Salvia miltiorrhizae Improve microcirculation, anti-
inflammation, antioxidation, anti-
apoptosis, mucosal protection,
macrophage protection

↓: p65NF-κB, PLA2, Bax Severe acute pancreatitis;
obstructive jaundice

Zhang et al.
(2009)

Sophocarpine Anti-inflammation, anti-apoptosis,
antioxidation

↓: p38/JNK, NF-κB, PI3K/AKT, Bcl-xl,
H2O2, O2, NO, CYP2E/NRF2, CYPE2,
ROS, ALT, ALT, ALP, AST, IL-1β, TNF-
α, IL-6, Cyto-C, Apaf1, caspase-9/-3

Septicliver injury Zheng et al.
(2018)

↑: SOD, CAT, GSH, SOD1, Nrf2
Astragalusroot Cytoprotection, anti-apoptosis,

immunoregulation
↓: ROS, caspase-3, p53,
mitochondrial membrane
depolarization

Endotoxemia Wu et al. (2019)

↑: Bcl2
Astragalin Antioxidation, anti-apoptosis, anti-

inflammation, antianaphylaxis
↓: NF-κB, MAPK, TLR4, JNK
pathways; eotaxin-1, ROS, caspase-
3, NADPH, PLCγ1-PKCβ2-NADPH

Allergic airway diseases;
peribronchial eosinophilia

Cho et al. (2014)

↑: Akt, ERK
Matrine Anti-inflammation, antioxidation, anti-

fibrosis, antiviral
↓: NF-κB, MIP-2, MPO, MDA, TNF- α,
IL-6, IL-8, ALT, AST, LDH, ALP, NO,
sICAM-1, caspase-3

Acute liver injury,
Hepaticischemia

Zhang et al.
(2011)

Green teapolyphenols,
catechins, flavandiols, flavanols,
phenolicacids

Anti-apoptosis, geno protective,
antioxidation

↓: AST, ALT, TB, ALB, NO Liver damage Allam et al. (2017)
↑: TAC

Siniinjection Anti-apoptosis ↓: MABP, iNOS, PI, IL-6, IL-18, ET-
1, NO

Septic shock Pei et al. (2013)

12-O-Tetradecanoyl-phorbol
13-Acetate (TPA)

Anti-apoptosis ↓: NF-κB Endotoxemia Sunil et al. (2002)
↑: C/EBP, p38 MAPK

Strawberry Anti-inflammation, antioxidation, anti-
apoptosis

↓: NF-κB, NO, iNOS, CAT, SOD, ROS,
Caspase 3, PiκBα, TNF-α, IL-1β, IL-6

Human dermalfibroblast Gasparrin et al.
(2018)

↑: pAMPK, SIRT1463, PGC1α, GPX,
GR, GST, IL-10, Nrf2-AMPK

Inflammationliver injury

Betulinicacidderivative BA5 Immunoregulation ↓: NF-κB, TNF-α, IL-2, IL-4, IL-6, IL-
17A, IFN-γ, NO, Activated LY, CD4+

Tcellcalcineurin activity

Delayed hypersensitivity Meira et al. (2017)

Garlic oildiallyldisulfide diallyl
trisulfide

Anti-inflammation, antioxidation, anti-
apoptosis

↓: nitrate/nitrite Intestinaldamage Chiang et al.
(2006)

Rubiaceae-typecyclo-peptide
(RA-V)

Anti-inflammation ↓: NF-κB, NO, IL-8, IL-6, MCP-1,
P-p65, P-IκBα

Septic shock Wang et al.
(2018)

↓: PI3K/AKT, TAK1 + TAB2
(Continued on following page)
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for the development of anti-inflammatory agents (Mukaida et al.,
1996), which is mainly attributed to the enhancement of TNF-
α-induced apoptosis by β2 integrins (CD11/CD18) at 4 and 8 h after
ETX stimulation (Walzog et al., 1997). Moreover, free total rhubarb
anthraquinones (FTRAs) attenuated intestinal injury and enhanced
intestinal barrier function by regulating intestinal immune function
in rats with endotoxin-induced acute pancreatitis (Xiong, et al.,
2018). In addition, endotoxemia can also induce apoptosis through
oxidative stress. For example, piperlongumine exhibits prominent
anti-inflammatory effects by inhibiting the ETX-induced p65 NF-
κB signaling cascade and markedly suppresses cytokine storm
production, which is closely associated with ROS-mediated
induction of late apoptosis and reduced expression of anti-
apoptotic Bcl2 protein (Thatikonda et al., 2020). To sum up,
Figure 4 reveals how the recognition signals of endotoxin,
inflammation, and oxidative stress responses induce apoptosis
directly or indirectly. These herb ingredients show significant
therapeutic effects on endotoxin, inhibiting endotoxin-induced
elevation in Ca2+ and adhesion factors, and activation of
signaling pathways such as TLR4/NF-κB, MAPK, PI3K-AKT,
and mTOR/STAT3.

FUTURE PROSPECTS

In conclusion, numerous studies have shown that the anti-
apoptotic treatment of endotoxemia can improve
immunosuppression and protect parenchymal organ function. A
range of bacterial components such as ETX can induce a cellular
stress response and induce apoptosis. However, ETX, as a caspase
inhibitor, can inhibit apoptosis by engaging its O-antigen (O Ag)
moiety to directly bind caspases, contributing to the successful
colonization of bacteria to support their intracellular propagation
(Günther et al., 2019), but to the detriment of humans. In addition, it
is interesting to note that many anti-apoptotic herbal ingredients in
endotoxemia exhibit pro-apoptotic activity in cancer. For example,
salidroside increases survival in endotoxemicmice (Guan et al., 2011)
and has been reported to inhibit apoptosis in bone marrow
mesenchymal stem cells (Wei et al., 2013), H9c2 cardiomyocytes

(Sun et al., 2018), pulmonary arterial smooth muscle cells (Gui et al.,
2017), pheochromocytoma cells (Hu et al., 2016), neural stem cells
(Yan et al., 2018), cardiomyocytes (Zhu et al., 2015) and umbilical
vein endothelial cells (Chen andWu, 2014), while inducing apoptosis
in colorectal cancer cells (Fan et al., 2016) gastric cancer AGS cells
(Rong et al., 2020). It is thus clear that anti-apoptosis is not a single
effective approach for the treatment of endotoxemia with herbal
medicine, but must be combined with anti-inflammation, anti-
oxidative stress, and anticoagulation to improve the prognosis of
patients with endotoxemia. In addition, it should be noted that the
anti-apoptotic activity of herb ingredients is also affected by the
pathological state of the host. In any case, anti-apoptotic therapy
plays an important role in endotoxemia but has long been neglected,
and a considerable number of experimental studies on endotoxemia
do not involve the detection of apoptotic-related indicators. This
suggests that the impact of apoptosis on the pathophysiological
process of endotoxemia should be emphasized and that anti-
apoptosis is a potential new approach for the treatment of
endotoxemia.
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TABLE 1 | (Continued) Effect of herbal ingredients on anti-apoptosis related pathway molecular (excepted those mentioned in the text).

Herbal medicine Effects Related targets Endotoxemia
related indications

References

Cinnamaldehyde (CA)
Linalool (LIN)

Anti-inflammation ↓: NF-κB, TLR4/MD2, MyD88,
NLRP3, ASC, caspase-1, TNF-α, IL-
1β, IL-18, nitrate/nitrite, IFN-γ,
HMGB-1

Endotoxemia Lee et al. (2018)

Gryllusbimaculatus
Extracts (GBE)

Anti-apoptosis, anti-inflammation,
antioxidation

↓: ROS, NO, IL-6, TNF-α, TG, TLR4,
P-JNK, P-p38, OHdG, p-MLCK,
p-ROCK, p-srcFK

Alcoholic liver diseases Hwang et al.
(2019)Intestinal inflammation

Scytonemin Antiproliferative ↓: cdc25C, p-cdc25C, Cell
cycleregulatory kinases, GST-PLK,
GST-Tie2, Protein kinase A, Protein
kinase Cβ2, CDK1/cyclin B, GST-
Myt1, GST-checkpoint kinase 1, GST-
polo-like kinase 1

Endotoxemia Stevensonet al.
(2002)
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