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One of the initial steps of modern drug discovery is the identification of small organic
molecules able to inhibit a target macromolecule of therapeutic interest. A small proportion
of these hits are further developed into lead compounds, which in turn may ultimately lead to
a marketed drug. A commonly used screening protocol used for this task is high-throughput
screening (HTS). However, the performance of HTS against antibacterial targets has
generally been unsatisfactory, with high costs and low rates of hit identification. Here, we
present a novel computational methodology that is able to identify a high proportion of
structurally diverse inhibitors by searching unusually large molecular databases in a time-,
cost- and resource-efficient manner. This virtual screening methodology was tested prospec-
tively on two versions of an antibacterial target (type II dehydroquinase from Mycobacterium
tuberculosis and Streptomyces coelicolor), for which HTS has not provided satisfactory
results and consequently practically all known inhibitors are derivatives of the same core
scaffold. Overall, our protocols identified 100 new inhibitors, with calculated Ki ranging
from 4 to 250 mM (confirmed hit rates are 60% and 62% against each version of the
target). Most importantly, over 50 new active molecular scaffolds were discovered that under-
score the benefits that a wide application of prospectively validated in silico screening tools is
likely to bring to antibacterial hit identification.
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1. INTRODUCTION

In recent years, bacterial epidemics have been fuelled
by the emergence of multi-drug-resistant pathogen
strains, which increasingly challenge existing treatments
[1]. Despite this growing threat, many new antibiotic
candidates are chemical molecules re-engineered from
old drug classes discovered decades ago for which there
are already underlying resistance mechanisms [1–4].
Fischbach & Walsh [5] have argued that, while making
incremental improvements to existing scaffolds is a
good short-term strategy for refilling the antibiotic pipe-
line, the discovery of new molecular scaffolds should be a
priority owing to the emergence of multi-drug-resistance
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among pathogens and the need for a sustainable plan for
combating resistance. Simmons et al. [6] go even further
by pointing out that the discovery of drugs with novel
modes of action will be vital to meet the threats created
by the emergence of resistance [7]. With the deciphering
of the genome sequences of major human pathogens [8],
many companies vigorously pursued the identification
of novel antibiotic agents from high-throughput screen-
ing (HTS) campaigns using purified enzyme targets
that were validated by genomic approaches as being
essential for the viability of the pathogen [6]. The
expected outcome was the production of brand new
inhibitor classes against these novel targets that could
eventually lead to innovative drugs and hence reduced
likelihood of resistance emerging rapidly. Furthermore,
finding a high number of inhibitor classes was an impor-
tant requirement, as multiple high-quality hits are
needed to counteract the attrition in the subsequent
This journal is q 2012 The Royal Society
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hit-to-lead, lead optimization and clinical stages required
to generate a novel antibiotic [3].

Unfortunately, the performance of HTS against
post-genomic antibacterial targets has generally been
unsatisfactory. Payne et al. [3] critically assessed the
results of what these authors describe as an unprece-
dented concentration of screening resource for a single
therapy area. From the 70 antibacterial HTS campaigns
run between 1995 and 2001 (67 target-based and three
whole cell), it was found that a mere 16 HTS gave rise
to hits and only five of these ultimately resulted in leads
(i.e. molecules that not only inhibited the enzyme
target, but also reduced the growth of the pathogen
in vitro). On the basis of GlaxoSmithKline (GSK)
metrics, the success rate from antibacterial HTS was
four- to fivefold lower than for targets from other thera-
peutic areas available at that time. These authors
concluded that this was a disappointing and financially
unsustainable outcome, especially in view of the length
of time devoted to these experiments and consider-
ing that the costs per HTS campaign were estimated
then to be around US$1 million. Payne et al. [3] also
argued that the difficulty of finding antibacterial hits
from HTS was not unique to GSK, a view further sup-
ported by Simmons et al. [6], who consider that success
in discovering inhibitors, using HTS of chemical
libraries is rare in this area.

The poor efficacy of HTS in this area has been attrib-
uted to the limited chemical diversity of the screened
collections [3] and to the assumption that antibacterial
targets have intrinsically low druggability [9]. Remark-
ably, well-known technical difficulties such as false
negatives in HTS have not been investigated as a contri-
butor to poor efficacy despite false negatives probably
occurring frequently [10], representing typically an esti-
mated 15–26% of the total number of actives [11] and
having a particularly large impact on hard targets
[12]. Most importantly, the cost and slow operation of
HTS imposes the selection of a relatively small set of
promising compounds that in an extreme case may
not contain inhibitors. Hence, while the false-positive
rate of HTS will generally be much better than that
from a virtual screening technique applied to the same
compound library, the fact that virtual screening can
quickly search a much larger portion of the chemical
space means that the latter has, in principle, access to
many more inhibitors and consequently may find
more inhibitors in some cases. As a result of this situ-
ation, lead discovery has generally become a key
bottleneck for the development of new treatments for
infectious diseases [13].

A consensus is now emerging that new approa-
ches for finding antibacterial inhibitors are required.
Fischbach & Walsh [5] consider that retooled target-
based strategies can play an important role in lead
discovery. Hopkins et al. [9] find that new, more cost-
effective and efficient methods of drug discovery are
urgently required if we are to tackle the multiple global
health challenges of emerging and neglected infectious
diseases for which there is relatively little basic science
investment. Recently, Simmons et al. [6] have made a
compelling case for the use of structure-based virtual
screening for antibacterial hit identification. Indeed, the
J. R. Soc. Interface (2012)
application of advanced computational methods to pre-
dict molecular bioactivity has distinctive advantages
such as much reduced time scales and financial costs
that enable the effective exploration of extremely large
molecular databases against a high number of validated
drug targets.

In this study, we investigate a novel computational
methodology that exploits the structures of antibacter-
ial targets in order to identify brand new classes of
inhibitors. We combine state-of-the-art docking proto-
cols hierarchically with ultrafast shape recognition
(USR) capable of quickly identifying database mol-
ecules that are similarly shaped to a known inhibitor.
In this way, only the molecules that can fit the target’s
active site, and hence are likely to bind to the enzyme,
are subsequently fed to the much more computationally
demanding docking calculation. This hybrid approach
permits the effective exploration of truly large and diverse
molecular databases in a time- and resource-efficient
manner while exploiting both ligand and protein structure
data, as a way to increase the likelihood of identifying
new active scaffolds that could be unaffected by existing
resistance mechanisms. The methodology is tested
prospectivelyon twoversions of a post-genomic antibacte-
rial target (type II dehydroquinase from Mycobacterium
tuberculosis and Streptomyces coelicolor), which is repre-
sentative of this situation in that HTS has not provided
satisfactory results and consequently little scaffold
diversity is currently known. Testing any resulting hit
for whole-cell antibacterial activity would be necessary
to determine which of these enzyme inhibitors are able
to reach the intracellular target with sufficient concen-
tration, which implies crossing the bacterial membrane
and being unaffected by resistance mechanisms such
as efflux pumps. Such an extensive follow-up work is
however out of the scope of this study.
2. RESULTS AND DISCUSSION

The enzyme 3-dehydroquinate dehydratase (dehydroqui-
nase; EC 4.2.1.10) catalyses the reversible dehydration of
3-dehydroquinate to form 3-dehydroshikimate [14–16].
Type II dehydroquinase (DHQase for short) is the
third enzyme of the Shikimate pathway, which is essen-
tial for the viability of bacteria such as M. tuberculosis,
S. coelicolor and Helicobacter pylori [17]. This pathway
is present in bacteria, fungi, plants and apicomplexan
parasites, but not in mammals, and hence represents an
ideal target for the development of antibacterial agents,
as these agents would be expected to have a spectrum
of antibacterial activity restricted to those human
pathogens expressing DHQase such as M. tuberculosis
and H. pylori. An HTS of some 150 000 compounds
against H. pylori DHQase was used as a starting point
to identify novel inhibitors [18]. While approximately
100 molecules with more than 50 per cent inhibition of
H. pylori DHQase enzyme activity at a concentration of
20 mg ml21 were identified in the primary screening,
only one confirmed inhibitor against H. pylori DHQase
was reported (the ligand named GAJ in figure 1,
which inhibited this enzyme with Ki ¼ 20 mM).
This molecule also showed micromolar activity against
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Figure 1. Visualization of the three co-crystallized ligands used as templates for the shape similarity screen ((a) CA2 complexed
with S. coelicolor DHQase; (b) RP4 complexed with S. coelicolor DHQase; (c) GAJ complexed with H. pylori DHQase). The van
der Waals surface of each bound molecule is represented as a grid to show the high degree of shape complementarity between the
ligands and their receptors. The core scaffold, defined as that closest to the catalytic residues, is circled. CA2 and RP4 are deriva-
tives of the transition state structure (core scaffold 2,3-anhydroquinic acid which is also the crystallographic ligand FA1), whereas
the innovative structure of GAJ was identified with HTS [18].
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S. coelicolor1 DHQase (Ki ¼ 230 mM) but only residual
activity against the M. tuberculosis enzyme (10% inhi-
bition at 200 mM). The ChEMBL database (https://
www.ebi.ac.uk/chembl/ last accessed on 31 January
2012), which has been estimated [9] to contain 90 per
cent of the published medicinal chemistry structure–
activity data, shows that practically all existing DHQase
inhibitors are derivatives of the same core scaffold
(2,3-anhydroquinic acid or anhydroquinate ring, the reac-
tion intermediate), consistent with the successful use of
rational drug design approaches and the typically low per-
formance of HTS on antibacterial targets. Figure 1 shows
the chemical structures of these active scaffolds as well as
the high degree of shape complementarity between these
molecules and their respective receptors.

Our search for new classes of DHQase inhibitors was
carried out on a molecular database built from the
ZINC resource [19]. With almost nine million com-
mercially available molecules, its size is between 17
and 59 times higher than those previously used for
large-scale HTS campaigns (from 150 000 to 530 000
compounds [3,18]) and, to the best of our knowledge,
the largest that has ever been used in a successful pro-
spective virtual screen. Such a wealth of chemical
diversity is a key component of our screen, as a smaller
database generated with the same procedure would
have contained a lower number of innovative scaffolds.
In order to compile a subset of molecules likely to fit
the active site, we searched for molecules that are simi-
larly shaped to known inhibitors using USR [20]. USR is
an unusually rapid descriptor-based shape similarity
technique [21], which is particularly suited for scaffold
1Streptomyces coelicolor is a close non-pathogenic relative of
M. tuberculosis, and thus is often used as an in vivo model for the
characterisation of compounds that show promise in vitro.
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hopping and has already been successfully applied to
the identification of brand new active scaffolds within
very large molecular databases [22]. It is well known
that using several molecules as search templates results
in a broader exploration of different regions of chemical
space and thus we ran USR using each of the DHQase
ligands shown in figure 1 as templates (CA2 from PDB
entry 2BT4, RP4 from 2CJF and GAJ from 2C4W).
This process resulted in the identification of 4379 diverse
molecules that are similar in shape to these inhibitors,
and thus fit the DHQase active site, from the nine million
molecules initially considered.

These similarly shaped molecules were thereafter
inspected by an in silico model intended to remove
those predicted to be toxic. Toxicity screens during
the early stages of drug discovery should prioritize
specificity (the proportion of correctly identified non-
toxins) over sensitivity (the proportion of correctly
identified toxins), in order to reduce the likelihood of
erroneously discarding good hits at a stage when attri-
tion costs are low [23]. Indeed, our aim is to remove
obviously toxic molecules rather than performing the
exhaustive toxicity analysis that would be required at
later stages. Thus, our model removed compounds pre-
dicted to be both carcinogenic and mutagenic, which
are recognized as serious forms of toxicity in the context
of drug discovery [24]. By discarding compounds pre-
dicted to exhibit both types of toxicity, we sought to
reduce the loss of non-toxins as a result of imperfect pre-
dictions of each individual type. This screen removed
471 molecules from the 4379 molecules analysed.

The resulting 3908 molecules were docked into a
panel of DHQase protein structures. We selected five
ligand-bound DHQase X-ray crystal structures to be
used for docking: three structures of the S. coelicolor
version of the enzyme (PDB codes 1GU1, 2BT4 and
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Table 1. Performance of each virtual screening protocol against M. tuberculosis DHQase. For each protocol, the number of
tested compounds, confirmed inhibitors with IC50 � 250 mM (hit rate between brackets), confirmed inhibitors with IC50 �
500 mM (hit rate between brackets) and indication of potency distribution of these discovered inhibitors (L, lowest IC50; M,
median IC50; H, highest IC50).

virtual screening protocol tested IC50 � 250 mM IC50 � 500 mM (L, M, H) (mM)

1. USR-3.GOLD::ChemScore.GOLD-3 71 20 (28.2%) 40 (56.3%) (48, 245, 475)
2. USR-3.GOLD::ChemScore.RF-Score 67 25 (37.3%) 38 (56.7%) (89, 223, 426)
3. USR-3.GOLD::ChemScore.Top500-5 8 2 (25.0%) 5 (62.5%) (94, 268, 417)
4. USR-RP4 5 0 (0%) 5 (100%) (320, 354, 409)
overall performance 148 47 (31.8%) 88 (59.5%) (48, 243, 475)

2Note that the same validation is not possible with any of the three
GOLD scores, as these provide dimensionless units.
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2CJF), one structure for H. pylori DHQase (2C4W) and
the fifth structure for M. tuberculosis DHQase (1H0R).
The purpose of considering more than one X-ray struc-
ture is twofold. First, because each structure represents
at least a slightly different conformation of the protein
in the crystal, we will be addressing the flexibility
of the protein to some extent. Second, because the
structures refer to three closely related versions of
the same enzyme coming from three different organisms
(two pathogenic bacteria and a commonly used non-
pathogenic model organism), these data will enable
the search for molecules potentially able to kill all
three organisms. As expected, this process resulted in
a similar number of docking poses against each target:
21 788 (1GU1), 28 191 (1H0R), 21 771 (2BT4), 24 814
(2C4W) and 20 976 (2CJF). Pose generation quality
was investigated by re-docking the three largest co-
crystallized ligands (CA2 from 2BT4, RP4 from 2CJF
and GAJ from 2C4W) back to their respective recep-
tors, with root-mean-square deviation (r.m.s.d.) values
between co-crystallized and re-docked poses being
0.59 (2CJF), 0.79 (2BT4) and 2.28 (2C4W). The
r.m.s.d. over 2 Å indicates that there may be significant
errors in pose generation, and thus a more exhaustive
search should lead to improved performance. In addition
to ChemScore [25] values arising from the pose gener-
ation process, each of these five sets of docking poses
were re-scored with GoldScore [26] and ASP [27]. Proto-
col 1 is a consensus scoring [28] strategy that considered
the three sets of docking poses containing the three lar-
gest co-crystallized ligands (CA2 from PDB code 2BT4,
RP4 from 2CJF and GAJ from 2C4W), and each set
was sorted with the average rank of the pose according
to ChemScore, GoldScore and ASP (this consensus
score will be henceforth referred to as GOLD-3). High
ranking poses by three different scoring functions rep-
resent by construction a more reliable prediction than
any of the constituent scoring functions alone. In prac-
tice, consensus scoring has been generally found to
improve virtual screening performance dramatically
with respect to the individual scoring functions [28,29].

The RF-Score [30] is a member of a new class of scoring
functions that use non-parametric machine learning to
build predictive models of binding affinity in an entirely
data-driven manner. RF-Score has been rigorously
shown [30,31] to perform better than 16 standard scoring
functions in ranking protein–ligand complexes according
to predicted binding affinity. Protocol 2 used RF-Score
alone to re-score and rank the same three sets of docking
J. R. Soc. Interface (2012)
poses as in protocol 1. The reason for restricting our study
to three of the five docking sets was that we wanted to
determine the rank of each co-crystallized ligand accord-
ing to both protocols, and considered that the ligand
in 1GU1 and 1H0R (FA1) was too small to have a
competitive potency and thus rank high against the
predominantly larger docked molecules. Protocol 1
ranked ligands 2nd (GAJ), 5th (RP4) and 19th (CA2)
with respect to the 3908 molecules docked against
its corresponding co-crystallized protein (2C4W, 2CJF
and 2BT4, respectively), whereas protocol 2 ranked
these ligands much lower in each list: 2679th (GAJ),
2865th (RP4) and 3878th (GAJ). Interestingly, the
binding affinity prediction of these inhibitors by
RF-Score is particularly accurate for a scoring function:
pK i

RF-Score(2BT4) ¼ 6.30 (þ1.82 with respect to
measured Ki ¼ 33 mM [32]), pK i

RF-Score(2CJF) ¼ 7.35
(þ0.20 with respect to measured Ki ¼ 70 nM [33]) and
pK i

RF-Score(2C4W) ¼ 6.28 (þ1.58 with respect to
measured Ki¼ 20 mM [18])2. In §3, these seemingly con-
flicting retrospective results will be discussed in the
light of the prospective performance of both protocols.
Protocol 3 identified all molecules that ranked in the
top 500 against all five targets to encourage the discovery
of broad-spectrum inhibitors. Lastly, protocol 4 simply
consisted of searching for the most similar molecules to
the RP4 ligand using USR, so as to investigate the advan-
tages of additionally exploiting protein structure as in
protocols 1–3.

The next step was to purchase the compounds high-
lighted by these protocols to test them in vitro against
M. tuberculosis DHQase and S. coelicolor DHQase.
With the modest budget assigned to this proof of concept
(£5000), we could purchase 148 compounds (full details
on this process can be found in electronic supplementary
material, Materials and methods). Tables 1 and 2 show
the performance of each virtual screening protocol
against each target (all IC50 measurements are included
in the electronic supplementary material). Protocol 2
performed better than protocol 1 and much better than
protocol 3, both in terms of hit rate at IC50 � 250 mM
and median IC50. As protocol 3 was the only strategy
exploiting the M. tuberculosis DHQase structure while
using the same consensus scoring as protocol 1, the differ-
ence in performance suggests that focusing on the
compounds at the top of the ranked list is more important



Table 2. Performance of each virtual screening protocol against S. coelicolor DHQase. For each protocol, the number of tested
compounds, confirmed inhibitors with IC50 � 250 mM (hit rate between brackets), confirmed inhibitors with IC50 � 500 mM
(hit rate between brackets) and indication of potency distribution of these discovered inhibitors (L: lowest IC50, M: median
IC50, H: highest IC50).

virtual screening protocol tested IC50 � 250 mM IC50 � 500 mM (L, M, H) (mM)

1. USR-3.GOLD::ChemScore.GOLD-3 71 24 (33.8%) 38 (53.5%) (57, 208, 490)
2. USR-3.GOLD::ChemScore.RF-Score 67 32 (47.8%) 43 (64.2%) (8, 203, 478)
3. USR-3.GOLD::ChemScore.Top 500-5 8 2 (25.0%) 6 (75.0%) (177, 321, 496)
4. USR-RP4 5 0 (0%) 4 (80.0%) (295, 322, 401)
overall performance 148 58 (39.2%) 91 (61.5%) (8, 215, 496)

Table 3. Overall virtual screening performance in terms of
calculated Ki (148 compounds tested against each version of
the enzyme). For each target, confirmed inhibitors with Ki �
100 mM (hit rate between brackets), confirmed inhibitors
with Ki � 250 mM (hit rate between brackets) and the Ki of
the three most potent inhibitors found (L1–L3).

overall
performance Ki � 100 mM Ki � 250 mM

(L1, L2, L3)
(mM)

against Mtb
DHQase

35 (23.6%) 89 (60.1%) (23, 24, 40)

against Scl
DHQase

40 (27.0%) 91 (61.5%) (4, 21, 29)
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than using their exact crystal structure. Lastly, while pro-
tocol 4 did not identify any inhibitor with IC50 �
250 mM, it obtained the best performance in terms of
hit rate at a higher cut-off (IC50 � 500 mM).

In order to assess the overall hit rate and potency of
these inhibitors, we calculated their inhibition constant
(Ki) as explained in electronic supplementary material,
Materials and methods (see table 3 for a summary).
This is necessary to have a more accurate comparison
with hit rates in the literature and with the potency
of previously known inhibitors. Our protocols identified
89 inhibitors for M. tuberculosis DHQase and 91 inhibi-
tors for S. coelicolor DHQase with Ki � 250 mM (a total
of 100 new inhibitors with activity against at least one
of the targets). Among the rest of the tested com-
pounds, many showed a small percentage of inhibition
at a higher concentration. Overall, hit rates are un-
usually high, with the confirmed hit rate at the low
micromolar range for S. coelicolor DHQase (27.0% mol-
ecules with Ki � 100 mM; a total of 40 inhibitors) being
noticeably higher than that for M. tuberculosis DHQase
(23.6%; 35 inhibitors). The trend is still observed when
considering a less restrictive activity cut-off (Ki �
250 mM) and in terms of median potency (114 mM for
M. tuberculosis versus 108 mM for S. coelicolor). This
difference might be due to the fact that our protocols are
primarily exploiting crystal structures for S. coelicolor
DHQase. Figure 2 shows examples of these new inhibi-
tors, which are characteristic of the high chemical
diversity of the new core scaffolds. Table 4 shows the
shape and chemical structure of these five new inhibitors
in comparison with the search template used (RP4).

As discussed in §1, the single most important require-
ment for new inhibitors is having different core scaffolds
from those previously known. For our case study, we
retrieved all inhibitors with measured Ki from the
ChEMBL database (ChEMBL target IDs 18038 and
20064 for S. coelicolor and M. tuberculosis DHQase,
respectively) and observed that all but two of these
ChEMBL inhibitors have FA1 (a transition state
analogue shown in figure 1) as the core scaffold. In
order to investigate how different our new inhibitors
are compared with those previously known, we cluster
all these molecules in terms of chemical structure simi-
larity (figures 3 and 4). The clustering dendrogram
evidences the striking diversity of new inhibitors. In
figure 3 (M. tuberculosis), the first cluster at the top
groups all the ChEMBL inhibitors that have the same
core scaffold. By using the clustering as a preliminary
J. R. Soc. Interface (2012)
classification, we manually inspected the clusters and
found 48 new core scaffolds (all inhibitors sharing the
same core scaffold constitute a chemical series by defi-
nition). Representatives from these chemical series
are pictured on the left of the figure. The results for
figure 4 (S. coelicolor) are very similar except that
one of the ChEMBL inhibitors has a very different
chemical structure (chembl438436, which is actually
GAJ; the HTS hit in figure 1) and thus appears separ-
ated from the FA1 derivatives that are clustered at the
top. Five additional chemical series were found for this
target, which adds to a total of 53 new molecular
scaffolds contained in these 100 DHQase inhibitors.
3. DISCUSSION AND CONCLUSIONS

Four virtual screening protocols have been used in this
prospective study. This approach was intended to inves-
tigate the relative performance of ligand-based and
structure-based techniques on the same target and
screening database (these parallel prospective appli-
cations constitute the most rigorous type of virtual
screening method validation, but have not been carried
out until now, as discussed in a recent comprehensive
survey [34]). Protocols 1 and 2 differ only in that each
uses a different re-scoring function to rank docking
poses according to predicted strength of binding
(GOLD-3 and RF-Score, respectively). Unlike protocol
2, protocol 1 was able to rank the three crystal poses
very highly. On the basis of these retrospective results,
one might conclude that GOLD-3 is a much more
appropriate re-scoring procedure for this target. How-
ever, prospectively, RF-Score led to the identification
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Figure 2. Docking pose and chemical structure of two new inhibitors of S. coelicolor DHQase identified with our virtual screening
protocols ((a) ZINC00978022 with Ki ¼ 4 mM; (b) ZINC24469052 with Ki ¼ 21 mM). The new core scaffolds, circled in the struc-
ture, are strikingly different from those previously known (figure 1).
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of an outstanding proportion of new inhibitors, and per-
formed even better than GOLD-3 both in terms of
hit rate and median potency. Interestingly, RF-Score
was ranking different, previously unknown inhibitors
higher than the known inhibitors, with no overlap
with the inhibitors identified by GOLD-3. This is a
reminder of an important limitation of retrospective
studies: many of the highly ranked assumed inactives
used as decoys could actually be active (especially if
their potency is at the level typical of hit identification,
not that of optimized leads or even drugs, and decoys
are chosen to have physico-chemical properties similar
to those of known actives).

Of course, not all the performance can be attributed to
the re-scoring functions, as the initial shape similarity
screen was used to enrich the few thousand docked mol-
ecules with actives. For instance, GOLD-3 ranks the
low nanomolar RP4 ligand fifth of the 3908 similarly
shaped molecules. However, a simple arithmetic rule of
three tells us that this molecule would be expected to
be ranked 11 239th if GOLD::ChemScore . GOLD-3
had been applied directly to the entire database of 8
784 580 molecules. As pointed out by Schneider [35],
the particularly successful application of USR alone to
prospective virtual screening in the past [22] underscores
the utility of coarse-grained models for first-pass com-
pound selection. The present application constitutes
another example. In order to investigate what exactly
J. R. Soc. Interface (2012)
was gained by exploiting structural information via dock-
ing, we look at the results of protocol 4 in table 4 (tested
hits from the USR-RP4 screen). Compared with proto-
cols 1 and 2, which perform docking on the subset
preselected by USR (tables 1 and 2), protocol 4 (USR
alone) obtained a significantly higher hit rate at the
cost of providing a much higher median Ki (lower
potency). These results show that USR leads to a smaller
proportion of false positives, which suggests that shape
similarity alone is more reliable than pose generation
and scoring in docking, at least for this target. By con-
trast, the addition of estimated binding affinity makes
the true positives from docking more potent than those
from USR alone. Motivated by these results and just
like in lead optimization [36], we propose hit identifi-
cation to be regarded as a multi-objective problem
where screening outcomes (potency, hit rate, chemical
diversity, speed and cost of operation) are optimized by
searching for the best protocol (methods, templates,
structures, database composition and size). This will
help us to establish which virtual screening techniques are
more appropriate for the requirements of a particular hit
identification project.

Beyond methodological findings, the most important
contribution of this study is the outstanding diversity in
new molecular scaffolds found (a total of 53 new chemi-
cal series at a nominal cost of £5000). This is
particularly valuable, taking into account that, with



Table 4. Results for the USR screen of the nine-million single-conformer database using the co-crystallized pose of the highly
optimized RP4 as the template, which was the highest ranked molecule as expected. We selected five top-ranking compounds
on the basis of their prompt availability from the supplier and tested them in vitro against both M. tuberculosis DHQase and
S. coelicolor DHQase. All these molecules showed mid-micromolar activity against both targets, but most importantly new
core scaffolds to be used as starting points for optimization were identified. Each core scaffold is circled as predicted by the
corresponding docking pose against S. coelicolor DHQase (2CJF).
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S

O
O

O

OO

0.38 0.07

ZINC18086350 fifth 0.9404
F

F

F

F

O

N

N

O

166 45% at 224

ZINC05657290 13th 0.9356 O–

O

O
O

O

N+

N

N
192 201

ZINC06024496 15th 0.9341

N

S

N

N

O

O

O

N

159 174

(Continued.)
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Table 4. (Continued.)

ZINC ID rank USR score shape two-dimensional structure Ki (Mtb; mM) Ki (Sc; mM)

ZINC15608616 24th 0.9319
Cl

F
O

O
N

N

150 149

ZINC10025084 26th 0.9315

N
O

O

N

167 148
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the exception of GAJ and ChEMBL340769 (S. coelico-
lor), all previously known inhibitors are derivatives
of the transition state. Overall, we have found 100
new DHQase inhibitors comprising a total of 180 bio-
activity endpoints against both targets. These results
contrast with those from an HTS of 150 000 compounds
against the H. pylori version of the enzyme, which
reported a single confirmed inhibitor with Ki ¼ 20 mM
[18]. In calculating hit rates, we have adopted the same
minimum definition of a hit as in industrial HTS cam-
paigns for antibacterial hit identification3. As noticed
in a comprehensive survey of prospective virtual screen-
ing applications [34], low- and mid-micromolar binders
against novel targets are commonly reported in leading
journals if there is limited ligand information available.
This is because after discovery of a new scaffold, its deriva-
tives can be tested to improve potency for that target.
Although this task can be challenging, large potency
improvements have been achieved in antibacterial targets
such as M. tuberculosis adenosine 50-phosphosulfate
reductase [37] (10-fold) and S. coelicolor DHQase [33]
(3000-fold). The latter figure suggest that in principle, a
DHQase hit with Ki ¼ 100 mM (the upper threshold of
our definition for low micromolar) could potentially
reach 30 nM once optimized.

Several factors have contributed to this level of
performance. First, the use of ligand-based shape simi-
larity to enrich the docking library with likely binders
has been shown to be instrumental. Three USR
searches, each using a different instance of shape com-
plementarity as template, account to some extent for
partial shape complementarity between ligand and its
3Hit means a chemically tractable, low micromolar inhibitor of the
target and, where appropriate, at least 10-fold selectivity against
the mammalian version of the target (none in the case of DHQase) [3].

J. R. Soc. Interface (2012)
receptor as well as shape variation in the binding site
due to induced fit effects. Second, while the notion
that a certain degree of shape complementarity is necess-
ary for binding has been recognized and implemented in
drug design tools for decades, it is only now that the effi-
ciency, effectiveness and widespread availability of such
tools are making a large impact in hit identification
[22,38–40]. Third, the exploration of such a large molecu-
lar database, effortlessly enabled by the use of USR,
means that we can quickly search a much larger region
of chemical space than previously possible. Fourth,
the application of RF-Score, the first scoring function
based on non-parametric machine learning, has been
shown to result in more potent inhibitors than shape
similarity alone, while maintaining an excellent hit
rate. It is also encouraging that this initial version of
RF-Score is already very competitive not only with
established scoring functions, but with the consensus
formed by all of them. These results are consistent
with the observed superior performance in estimating
binding affinity of diverse protein–ligand complexes
using RF-Score [30,31] and more recently by other
machine-learning-based scoring functions [41–43].

In practice, virtual screening methodologies are
limited by the quality and availability of relevant exper-
imental data (e.g. known active molecules and X-ray
structures) as well as the degree towhich their underlying
assumptions align with the properties of the screened
molecules and target protein (e.g. the scoring function
performs well for that target). In the context of our
study, there are a number of modifications that are
likely to result in improved virtual screening protocols.
First, research into more suitable intermolecular inter-
action descriptors and the exploitation of higher
volumes of high-quality structural and interaction data
should result in improved RF-Score predictability, as
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Figure 3. Diversity of new inhibitors of M. tuberculosis DHQase. The hierarchical clustering plot at the top includes all the new
inhibitors for this version of the target arising from our study (89 molecules identified by their ZINC codes) as well as all the
previously known confirmed inhibitors for this target in the ChEMBL database (14 molecules identified by their ChEMBL
codes). The dendrogram shows the results of the clustering of these molecules in terms of their chemical structure similarity.
The relative Ki of these molecules is shown as different shades of blue (the darker the shade, the higher the Ki). Ki values for
the 14 ChEMBL inhibitors range from 54 nM to 200 mM (these are mostly optimized hits unlike our new structurally diverse
inhibitors, which come directly from virtual screening). Below the Ki band, representatives from the 48 new core scaffolds are
shown. These are strikingly diverse compared to the previously known core scaffold (first cluster on the left).
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Figure 4. Diversity of new inhibitors of S. coelicolor DHQase. The hierarchical clustering plot at the top includes all the new
inhibitors for this version of the target arising from our study (91 molecules identified by their ZINC codes) as well as all the
previously known confirmed inhibitors for this target in the ChEMBL database (20 molecules identified by their ChEMBL
codes). The dendrogram shows the results of the clustering of these molecules in terms of their chemical structure similarity.
The relative Ki of these molecules is shown as different shades of blue (the darker the shade, the higher the Ki). Ki values for
the 20 ChEMBL inhibitors range from 7.3 to 2000 mM (these are mostly optimized hits unlike our new structurally diverse inhibi-
tors that come directly from virtual screening). Five additional chemical series were found for S. coelicolor DHQase, which adds
to a total of 53 new molecular scaffolds contained in these 100 DHQase inhibitors. These are strikingly diverse compared to most
of the previously known core scaffolds (first cluster on the left).
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discussed in Ballester & Mitchell [30]. Also, because RF-
Score identified different inhibitors than those from
GOLD scoring functions, a consensus score based on all
four scoring functions is likely to provide a better ability
to identify binders, or at the very least a different set
of new inhibitors. Furthermore, shape similarity and
docking exclusively exploiting M. tuberculosis DHQase
structures and inhibitors, instead of our mixed use of
data for S. coelicolor and H. pylori DHQase, should
allow better recognition of inhibitors of this version of
the enzyme. On the other hand, Fischbach & Walsh [5]
J. R. Soc. Interface (2012)
have argued that given current uncertainties as to how
antibiotics get into bacterial cells and the structural
diversity of antibacterial targets (and thus the molecules
that bind them), libraries developed for other therapeutic
areas may be just as likely to harbour hits as compound
libraries developed for antibacterial screening. Conse-
quently, we did not focus on the library design issue,
although quantitative frameworks to design optimal
HTS screening compound collections could be also ben-
eficial for virtual screening performance in the future
[44]. Most importantly, the extreme efficiency of USR
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permits one to exploit the chemical diversity contained in
many billions of molecules in a time- and resource-
efficient manner. Therefore, the use of much larger
databases of molecules, each represented by a compre-
hensive ensemble of energy-accessible conformations,
should lead to an even higher proportion of diverse
inhibitors. Incidentally, we did not generate multiple con-
formers per molecule in our study, partly because the
flexibility of the putative ligand in the binding site was
going to be sampled during the pose generation stage.
However, applying USR on a multi-conformer database
instead would have led to the retrieval of more simi-
larly shaped molecules that otherwise would have been
missed.4 The application of such improvements is
expected to result in additional DHQase inhibitors.

Overall, our results are directly relevant for those
medicinal chemists who are interested in studying the
selectivity of these new inhibitors with a view to using
them as in vivo chemical probes [45]. These compounds
could also be of interest as starting points towards gen-
erating lead compounds for rational drug design. These
new inhibitors can now be evaluated for whole-cell anti-
bacterial activity, and also undesirable properties such
as hitting unwanted enzyme targets, to assess whether
these are likely to be useful for developing leads. The
hit-to-lead process is likely to require testing chemical
modifications around each core scaffold, as none of the
antibacterial hits found in intensive HTS campaigns
were directly a lead [3]. However, both the number,
and especially the variety of scaffolds of the hits maxi-
mizes the chances of at least some of the resulting series
ultimately becoming a lead. We are disclosing the struc-
tures of all these new classes of DHQase inhibitors in
the electronic supplementary material of this article to
make such follow-up studies possible.

Finally, the reported methodology and proposed
improvements can be applied to any other antibacterial
target with resolved protein structures and known bin-
ders. This will be particularly advantageous for those
targets for which no, or only structurally similar,
active molecules are known. Surprisingly, despite the
need for fast and cost-effective tools for hit identifi-
cation, virtual screening is currently underused [46]
and the antibacterial area is not an exception [6]. Vir-
tual screening is, we believe, an excellent strategy for
generating hits, though these may require significant
experimental work to develop into useful leads. We
hope that our study will contribute to encouraging
budget-constrained academic laboratories to collabor-
ate with virtual screening experts to find novel active
scaffolds for the many validated molecular targets
already available. Beyond antibacterials, validated vir-
tual screening tools are also promising to tackle
emerging antimicrobial drug resistance in other infec-
tious diseases such as those caused by viruses and
multicellular parasites (e.g. drug-resistant mutant influ-
enza viruses [47] or resistance to existing antimalarial
drugs [48]). Looking more broadly, the integration of
virtual screening and HTS, which is still
4A conformer registered in a database may be different from the
bioactive conformation and thus multiple conformers per molecule
are usually beneficial.

J. R. Soc. Interface (2012)
underdeveloped in any therapeutic area [34], can be
extremely productive. For a new target with known
substrate and structural model, virtual screening can
be used to quickly identify potential chemical probes
to investigate the target’s druggability and in vivo
response to dose-dependent modulation (both are
often necessary to secure the funding for a full-scale
HTS). For validated targets, virtual screening can
help to greatly reduce the costs, increase the hit rate
and speed up the operation of HTS [49] by enriching
the screening library with a large set of molecules
likely to be active. We believe that this practise would
be very valuable in these targets where HTS perform-
ance has been unsatisfactory, as the latter may simply
be due to the selected screening library containing
few inhibitors in the first place. Lastly, a minority of tar-
gets are not amenable to HTS [50] due to problems
associated with generating sufficient purified protein
or substrate, or because the assay cannot be miniaturi-
zed to a robust HTS format. Such cases provide an
obvious niche for the exclusive application of prospective
virtual screening.
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