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Abstract

Detecting disease-related gene modules by analyzing gene expression data is of great sig-

nificance. It is helpful for exploratory analysis of the interaction mechanisms of genes under

complex disease phenotypes. The multi-label propagation algorithm (MLPA) has been

widely used in module detection for its fast and easy implementation. The accuracy of

MLPA greatly depends on the connections between nodes, and most existing research

focuses on measuring the similarity between nodes. However, MLPA does not perform well

with loose connections between disease-related genes. Moreover, the biological signifi-

cance of modules obtained by MLPA has not been demonstrated. To solve these problems,

we designed a double label propagation clustering algorithm (DLPCA) based on MLPA to

study Huntington’s disease. In DLPCA, in addition to category labels, we introduced patho-

genic labels to supervise the process of multi-label propagation clustering. The pathogenic

labels contain pathogenic information about disease genes and the hierarchical structure of

gene expression data. Experimental results demonstrated the superior performance of

DLPCA compared with other conventional gene-clustering algorithms.

Introduction

High throughput biotechnologies have been routinely used in biological and biomedical

research. As a result, tremendous amounts of large-scale omics data have been generated, pro-

viding not only great opportunities but also challenges for understanding the molecular mech-

anisms of complex diseases [1]. Detecting disease-related gene modules by analyzing gene

expression data represents one of these opportunities and challenges. Genes with similar

expression patterns, as well as those with similar functions, are more likely to be regulated via

the same mechanisms [2]. Therefore, we can extract disease-related molecular mechanisms

through gene co-expression analysis if the genes involved in the mechanism form a significant

co-expression gene module that contains known disease genes [3, 4]. The essence of such co-

expression analysis is a clustering problem.
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Gene expression data usually share characteristics such as small sample size, high dimension-

ality, and large amounts of noise. Generally, dimensionality reduction approaches and genome-

wide biological network analysis methods have been widely studied for analyzing these data.

To understand the interaction mechanisms of genes under complex disease phenotypes, biologi-

cal network analysis is more appropriate [5]. A gene co-expression network (GCN) is usually

constructed by measuring gene expression similarity, which represents the co-expression rela-

tionship between genes [6]. Each node in the network represents a single gene, and an edge con-

necting two genes indicates the co-expression [6].

Label propagation algorithms have been shown to be fast and easy to implement for analyz-

ing large-scale complex networks [7]. Thus, these algorithms have been widely applied in text

information retrieval [8, 9], multimedia annotation [10, 11], and community discovery [12–

15]. A label propagation algorithm is a semi-supervised learning method based on a graph,

which uses labels of some nodes to propagate and mark unlabeled nodes in the network [16].

If the number of label categories for one node exceeds two, the multi-label propagation algo-

rithm (MLPA) is widely used. When the labels of nodes in the network are stable, nodes with

the same label will be grouped into one specific category. MLPA is known to be fast and effi-

cient for clustering [17]. The accuracy of MLPA depends heavily on the similarity measure

between nodes. Most existing methods focus on developing better similarity measures to

improve the performance of MLPA [18]. Cheng [19] measured the similarities between nodes

with a sparsity induced similarity measure and conducted classification based on the label

propagation results. Wang [20] studied label propagation between heterogeneous networks

and proposed a strategy to propagate label information in a disorder-disease gene network.

Tian [21] reconstructed a similarity matrix based on a weighted linear combination method.

These methods improved the accuracy of MLPA from the similarity measure between nodes,

though the biological significance of gene sets obtained by MLPA has not been demonstrated,

and the hierarchical structures of gene expression data have not been fully used. In addition,

the significance of a disease-related gene module performs poorly with loose connections

between disease genes when using conventional gene clustering algorithms [22].

In the past few years, several network-based analysis methods to identify disease-related

genes [23, 24] or disease-related microRNAs [25] have been proposed. A new local enrichment

analysis method for disease-related genes identification has also been proposed [26]. These

methods select the top genes of a ranking list as the most likely disease genes and have

improved the accuracy of disease gene prediction. Disease-related genes are selected one by

one by using these methods. Considering the complex characteristics of complex diseases [27,

28] and the fact that different molecules often work together to play their roles effectively, it is

better to detect disease-related modules, which is helpful for understanding the modular

mechanisms during disease progression.

Because biological experiments are time consuming, only a small amount of labeled data is

present in biological databases. It is particularly urgent to develop efficient and effective

computational methods that make full use of the label information for the small number of

samples. Therefore, we developed a double label propagation clustering algorithm (DLPCA)

for disease-related gene module detection. Compared with MLPA, DLPCA fully uses patho-

genic information for sample genes and the hierarchical structure of biological networks

while maintaining a fast running speed. In DLPCA, we used pathogenic labels, which repre-

sent pathogenic information for genes and the hierarchical structure of the gene co-expression

network to supervise the process of category label propagation clustering. Because the DLPCA

contains a semi-supervised pathogenic label propagation step, the clustering results have a

clear biological meaning. Moreover, to accelerate convergence speed and improve the robust-

ness of the clustering results, we also proposed a seed node selection method based on the local
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topological structure of a gene co-expression network. Experimental results demonstrated the

feasibility and effectiveness of DLPCA as well as the superior performance of DLPCA com-

pared with other conventional gene clustering algorithms.

The rest of this study is organized as follows: Materials used in our study and methods pro-

posed in this paper are presented in Section 2. Experiments that analyze the performance of

DLPCA and the overall discussion of DLPCA are reported in Section 3. Conclusions, along

with some suggestions for future research, are presented in Section 4.

Materials and methods

In this section, first, the gene expression data used in our study are described. Next, the con-

struction of the gene co-expression network is briefly introduced. Then, we present the seed

selection method based on local topological information. Finally, we describe the DLPCA.

Gene expression data

The gene expression data used in our study were RNA-seq data downloaded from http://www.

hdinhd.org. The data were obtained from the striatum tissue of 6-month-old Huntington’s dis-

ease (HD) mice. The gene expression data contain 4 genotypes, including polyQ 92, polyQ

111, polyQ 140, and polyQ 175. Each genotype has 8 replications. Thus, the gene expression

data comprise 32 samples in total. The gene expression data contain 23,351 genes. After

removal of genes with insignificant expression changes, 9578 genes remain for further consid-

eration. The data on modifier genes were from Langfelder [29], which contain 520 genes in the

training set, including 89 disease genes and 431 non-disease genes.

HD is a type of neurodegenerative diseases that is reported to be caused by a triplet repeat

elongation in the Huntington gene (IT15), which leads to neuronal malfunction and degenera-

tion through numerous interactions between genes and a number of different molecular path-

ways. The course of the disease is a constant progression of symptoms lasting 15 to 20 years

after diagnosis and eventually leading to death. Several molecular mechanisms are involved in

HD that lead to neuronal dysfunction. Genes with similar expression patterns are usually regu-

lated via the same mechanism, forming modules in the gene co-expression network. Accord-

ingly, if a module contains a relatively large number of disease genes, the biological function of

the module may be highly relevant to the disease. This explains why we seek to extract disease-

related modules from the gene co-expression network of HD.

Construction of the gene co-expression network

To conduct the multi-label propagation algorithm, we must construct a gene co-expression

network using gene expression data. The gene co-expression network used in our study was

constructed using the WGCNA software package [30, 31]. As a scale-free network largely cor-

responds with biological networks, we used the WGCNA software package in our study to

ensure that the gene co-expression network is scale-free [32]. Let xi denote the expression pro-

file of gene i and xj denote the expression profile of gene j. The weight of the connection

between gene i and gene j is wij, where wij = |cor(xi, xj)|
β. The parameter β is a soft threshold,

which is set as the minimal positive integer that ensures the scale-free topology fit of the gene

co-expression network is no more than 0.8. It should be noted that the stronger the Pearson

correlation, the larger the weight [30, 31]. In the co-expression network G = (V, E), V is the set

of nodes, where one node corresponds to a gene. E is the set of edges, showing the mutual

interactions between genes. W = [wij] is the weight matrix of the gene co-expression network.

The adjacency matrix is A = [aij], where aij represents the interactions between node i and j.

Disease-related gene modules detection based on MLPA
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The calculation of aij is given by

aij ¼
1; if wij 6¼ 0;

0; else:

(

ð1Þ

The transition probability matrix is P = [pij], where pij denotes the probability of transition

from node i to node j. In fact, P is a normalized matrix of W along the row vector. The calcula-

tion of pij is given by

pij ¼

wij
P

j2Ni
wij
; if Ni 6¼ ;;

0; else;

8
<

:
ð2Þ

where Ni is the set of neighboring nodes of node i in the gene co-expression network.

Selection of seed nodes

Gene co-expression networks have been shown to exhibit a modular structure. Good seed

nodes are helpful for module detection [33]. According to the local topological structure of the

gene co-expression network, we selected seed nodes to accelerate the convergence speed and

improve the cluster robustness of MLPA [34]. Since nodes with large clustering coefficients

and large degrees can spread information quickly and easily, we selected seed nodes based on

degree and clustering coefficient. The details for seed nodes selection are shown below.

Step 1. Compute the clustering coefficient of node i, ci ¼
2
P

j;k2Ni
ajk

di�ðdi� 1Þ
, where di represents the

degree of node i. Then, rank all the nodes in descending order according to the clustering

coefficient ci. Rci
represents the ranking of node i in the ranked list.

Step 2. Compute the degree of node i, di = ∑j2Ni
aij. Then, rank all the nodes in descending

order according to their degrees. Rdi
represents the ranking of node i in the rank list.

Step 3. The rank-product strategy [35] yields the comprehensive ranking of node i,

Ri ¼ ðRci � RdiÞ
1
2.

Step 4. Rank Ri, i 2 V, in ascending order and select the first m nodes as seeds. We denote the

seed set as S, while the category label of seed node i is fi, i 2 S.

It should be clarified that the category labels of seeds are used to extract modules from the

gene co-expression network. In the MLPA results nodes with the same category label are con-

sidered a module.

Double label propagation clustering algorithm

To make full use of some genes with pathogenic information and improve the biological mean-

ing of the clusters, we take the pathogenic information of genes into consideration during cate-

gory label propagation. The initial pathogenic label of a gene is given by Eq (3).

l0

i ¼

1; if i is a disease gene;

� 1; if i is a non � disease gene;

0; otherwise:

8
><

>:
ð3Þ
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We conduct semi-supervised pathogenic label propagation using the known pathogenic

information of some genes to supervise the multi-label propagation clustering, thus obtaining

the most likely disease-related modules.

Definition 1 Category label update rule. When multi-label propagation is used to detect

functional modules, the following update rule for the category labels is used during the label

propagation.

The category label of node i is

f ðiÞ ¼ argmax
fn

ðl1

X

j2N fn
i

wij þ l2

X

j2N fn
i

aij þ l3

X

j2N fn
i

lt� 1

j � l
t� 1

i Þ ð4Þ

where Nfn
i represents the neighboring nodes of node i with the category label fn, n 2 S. λ1, λ2, λ3

are parameters. λ1 controls the effects caused by weighted connectivity. λ2 controls the effects

caused by the number of neighboring nodes. λ3 controls the effects caused by the pathogenic

information of the neighboring nodes. We assumed that the weighted connectivity, the degree

and the pathogenic information have equal influence on the category label of a gene.

Definition 2 Pathogenic label update rule. Based on the topological structure of the gene

co-expression network, update the pathogenic label of other nodes in the network by using the

small amounts of genes with known pathogenic information.

The pathogenic label of node i is

lt
i ¼ b1

X

j2Nf ðiÞ
i

pijl
t� 1

j þ b2

X

j2N � f ðiÞ
i

pijl
t� 1

j þ b3lt� 1

i ð5Þ

where lt
i is the pathogenic label of node i at the tth iteration, Nf ðiÞ

i represents the neighboring

nodes of node i whose category label is the same as node i. N � f ðiÞ
i represents the neighboring

nodes of node i whose category label is different from node i. The symbols β1, β2, β3 are param-

eters. The parameter β1 regulates the pathogenic effects caused by the nodes in Nf ðiÞ
i . The

parameter β2 regulates the pathogenic effects caused by the nodes in N � f ðiÞ
i . The b3lt� 1

i ensures

that the pathogenic label of node i is stable during the pathogenic label updating process. In

addition, β1 + β2 + β3 = 1 ensures that the pathogenic label is ultimately convergent [20].

Definition 3 Conditions for termination of iteration. The conditions for termination of

DLPCA are that the category labels of the nodes in the network stop changing or that the

change of the pathogenic information for any node is less than the threshold. In this study, the

threshold is 0.1.

The DLPCA procedure is summarized in Algorithm 1.

Algorithm 1: DLPCA
Input:gene expressiondata, parameters:λ1, λ2, λ3, β1, β2, β3
Input:pathogeniclabelsof some genes
Output:gene categorylabel
1: Constructthe gene co-expressionnetwork.Computethe weightmatrix,the
adjacencymatrix,and the transitionprobabilitymatrix
2: Selectthe seed nodes
3: repeat
4: Updatethe gene categorylabelaccordingto Eq (4)
5: Updatethe gene pathogeniclabelaccordingto Eq (5)
6: untilconditionsfor terminationare satisfied
7: returngene categorylabel

Disease-related gene modules detection based on MLPA
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Results and discussion

In this section, the selection of parameters is first described. Next, we compare the DLPCA

with other conventional methods to demonstrate the superior performance of DLPCA. Sec-

ond, we analyze the time complexity of DLPCA and MLPA. Third, we conduct an enrichment

analysis of the modules obtained using DLPCA. Finally, we present an overall discussion to

clearly illustrate the purpose of this study and demonstrate the key point of the algorithm.

Parameter selection

Topological information of the co-expression network is shown in Table 1. Fig 1 indicates the

biological reasonability of the gene co-expression network. As shown in Fig 2, the degree and

the weighted connectivity exhibit a near-linear correlation. The scatter represents the isolated

node in the gene co-expression network.

Table 1. Topological information of the gene co-expression network.

Node number 9587

Average weight 0.291

Average weighted connectivity 18.97

Average degree 65.23

Scatters 536

https://doi.org/10.1371/journal.pone.0178006.t001

Fig 1. The probability density distribution of weighted connectivity in the co-expression network. The probability density

distribution obeys a power-law distribution, showing the biological reasonability of the co-expression network.

https://doi.org/10.1371/journal.pone.0178006.g001
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According to Table 1 (the average degree and the average weighted connectivity of the

co-expression network) and Fig 2 (the near-linear correlation between the degree and the

weighted connectivity), we know that the correlation coefficient is roughly equal to the ratio of

the average degree to the average weighted connectivity. Considering that the weighted con-

nectivity, degree, and pathogenic information have equal influence on the category label of a

node in the present study, we obtained λ1: λ2 = 65.23: 18.97. Following the semi-supervised

pathogenic label propagation, the average pathogenic information of all nodes is 0.236. We

then obtained λ2: λ3� 1: 0.236 × 0.236. Therefore, we set λ1 = 3.44, λ2 = 1.0, λ3 = 20.0 for

computational convenience. It should be noted that traditional MLPA only considers weighted

connectivity in category label propagation.

For pathogenic label updating, different parameter combinations may yield different clus-

tering results. To analyze the impact of different parameter combinations on the clustering

results, we defined two groups of parameters. Group I is β1 = β2 = 0.15, β3 = 0.7. Group II is

β1 = 0.2, β2 = 0.1, β3 = 0.7.

In addition, to analyze the impact of parameter m on the clustering results, we selected

350, 500, and 750 seed nodes to conduct category label propagation for the traditional MLPA

method and the DLPCA method, respectively.

Performance comparison between DLPCA and MLPA

To evaluate the performance of different clustering algorithms, the following criteria were

used: the coverage, the significance of the disease-related module, and the significance of

Fig 2. The relationship between degree and weighted connectivity. The scatterplot shows a near-linear correlation between the

degree and the weighted connectivity.

https://doi.org/10.1371/journal.pone.0178006.g002
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scatters. The coverage is defined as the ratio of genes in modules to all genes in the network.

The significance of the disease-related module is defined as the ratio of disease genes to genes

in the training set included in the module. The significance of scatters is defined as the ratio of

disease genes to genes in the training set included in the scatters. The clustering results are

improved along with increased significance of disease-related modules and decreased signifi-

cance of scatters. The clustering results of MLPA and DLPCA are shown in Table 2.

Figs 3 and 4 present the clustering results of these methods. As illustrated in Fig 3, with

the same seed numbers, the average significance of disease-related modules obtained using

Table 2. The clustering results of each experiment.

Method Seed num Module num Coverage Avg module

size

Avg module

significance

Scatter

significance

Disease modules

num Avg size Avg significance

DLPCA

β1 = β2

350 30 0.750 239.7 0.4240 0.1067 9 539.2 0.8952

500 31 0.796 246.2 0.4492 0.1218 10 412.5 0.8085

650 40 0.750 179.8 0.3518 0.1053 10 595.7 0.8090

DLPCA

β1 > β2

350 25 0.749 276.3 0.1825 0.1491 6 608.8 0.3949

500 30 0.750 239.7 0.2294 0.1447 8 787.8 0.4015

650 37 0.752 194.8 0.1595 0.1389 7 710.7 0.4191

MLPA 350 39 0.723 177.8 0.1279 0.1791 6 841.9 0.2923

500 41 0.724 169.3 0.1465 0.2246 8 839.8 0.3113

650 116 0.655 80.0 0.1757 0.1803 13 390.5 0.4001

https://doi.org/10.1371/journal.pone.0178006.t002

Fig 3. Comparison of the average significance of disease-related modules obtained by DLPCA with β1 = β2, DLPCA with

β1 > β2, and MLPCA. Each grouped bar chart represents the results of different approaches with the same numbers of seeds.

https://doi.org/10.1371/journal.pone.0178006.g003
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DLPCA with β1 = β2 (the average significances of disease modules is 0.837) is higher than that

of the other experiments. As shown in Fig 4, with the same number of seeds, the significance

of scatters obtained using DLPCA with β1 = β2 (the average significances of scatters is 0.111) is

lower than that of the other experiments. It is also clear that the average significance of dis-

ease-related modules with different numbers of seeds obtained using DLPCA are similar (Fig

3). The significance of scatters obtained using different numbers of seeds in DLPCA are also

similar (Fig 4). These results suggest that the clustering results of DLPCA are insensitive to

seed number.

Figs 3 and 4 also show that the clustering results of DLPCA with β1 = β2 are much better

than that of DLPCA with β1 > β2, indicating that different parameter combinations signifi-

cantly impact the clustering results. When the coefficients of the two category labels are equal,

i.e., β1 = β2 in DLPCA, the average significance of the disease-related modules (the average

significance of the disease modules is 0.837) and the significance of the scatters (the signifi-

cances of the scatters is 0.111) are the best. It demonstrates that DLPCA with β1 = β2 can sepa-

rate disease genes from non-disease genes very well during the clustering process. When the

coefficients of the two category labels are not equal, generally, the neighboring nodes whose

category labels are the same as that of node i have a greater impact on the pathogenic label of

node i, i.e., β1 > β2 in DLPCA. Affected by the interaction of the category label and the patho-

genic label, DLPCA with β1 > β2 may easily fall into local optimization. This situation could

be prevented by setting β1 = β2, ensuring that category label updating is immune to pathogenic

label updating.

Fig 4. Comparison of the significance of scatters obtained by DLPCA with β1 = β2, DLPCA with β1 > β2, and MLPCA. Each

grouped bar chart represents the results of different approaches with the same numbers of seeds.

https://doi.org/10.1371/journal.pone.0178006.g004
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Furthermore, clusters obtained by MLPA have often been shown to contain few genes,

which is also confirmed in this study (the average module size of MLPA is shown in Table 2).

The experimental results also suggest that MLPA fails to effectively separate disease genes from

non-disease genes. However, DLPCA contains a semi-supervised pathogenic label propagation

step, which is very helpful for separating disease genes from non-disease genes. DLPCA greatly

improves the average significance of disease-related modules compared with MLPA. In the

DLPCA results, the sizes of disease-related modules are between 20 and 300 except for two

large modules whose sizes are larger than 1000. In summary, DLPCA can effectively improve

the performance of clustering results by selecting the appropriate parameters as suggested in

our study.

Performance comparison between DLPCA and DCOTCA

To compare the performance of DLPCA with other algorithms, we conducted experiments

using the dynamic cut-off tree clustering algorithm (DCOTCA). The clustering results are

illustrated in Table 3.

Fig 5 shows that the average significance of disease-related modules using DLPCA (0.837)

is much higher than that of DCOTCA (0.275). Fig 6 shows that the average significance of scat-

ters using DLPCA (0.111) is lower than that of DCOTCA (0.150). From Fig 7, we can see that

DLPCA also provides much better coverage than other experiments. To summarize, the clus-

tering results of DLPCA are better than those of DCOTCA (Figs 5, 6 and 7).

Time complexity analysis of DLPCA and MLPA

When the number of nodes in the gene co-expression network is n and the number of seed

nodes is m, the time complexity of MLPA in each iteration is O(m � n2). Approximately 10 iter-

ations in each MLPA experiment are needed to reach convergence (Table 4). Given the inter-

action of the category label and pathogenic label in DLPCA with β1 > β2, fewer iteration times

are needed relative to DLPCA with β1 = β2 to reach convergence. During the category label

propagation process, traditional MLPA only considers the impact of weighted connectivity on

category label according to a static network; thus, the iteration process of MLPA is the fastest.

The time of per iteration varies. Generally, increasing the seed number increases the time.

The average time of each iteration is displayed in Table 5. Note that we used a server with the

Linux operating system, 100 GB memory, and an Intel (R) Xeon (R) E5-2603 v3 @1.60GHZ

CPU for the data analysis. The algorithm was run on Java 1.7.0_17.

Enrichment analysis

In addition, we conducted enrichment analysis using the DAVID [36] to determine the biolog-

ical function of the modules obtained using the DLPCA. The clustering results of DLPCA with

Table 3. The clustering results of dynamic cut-off clustering tree algorithm.

DCOTCA Module num Coverage Avg module size Avg module significance Scatter significance Disease modules

num avg size avg significance

Experiment1 18 0.560 297.4 0.1613 0.1462 14 334.2 0.2064

Experiment2 22 0.568 247.4 0.1572 0.1473 16 286.3 0.2161

Experiment3 34 0.565 159.2 0.1454 0.1521 19 187.6 0.2603

Experiment4 49 0.603 117.9 0.1672 0.1534 26 133.3 0.3030

Experiment5 87 0.606 66.8 0.1950 0.1518 32 82.2 0.3891

https://doi.org/10.1371/journal.pone.0178006.t003
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β1 = β2 and 350 seed genes were used in the enrichment analysis. We listed annotation clusters

with high enrichment scores (ES) for the 9 disease-related modules. We also investigated the

enrichment annotations for another two modules that are not associated with the disease to

analyze the factors that are not effected by or do not contribute to the disease. The detailed

annotations of these modules are shown in Table 6.

For module 1 (disease-related module with 91 genes, including 19 disease genes and 1

non-disease genes), identified annotation clusters include metal-binding (cluster 1 with

enrichment score 2.69), sequence repeat (cluster 2 with enrichment score 2.54), calcium icon

binding (cluster 3 with enrichment score 2.42) and ribosome (cluster 4 with enrichment

score 2.14). The significance of the module is 0.95. The annotations for the module suggest

that HD maybe associated with these functional annotations above. In fact, HD is caused by

the excessive repetition of CAG in the fourth chromosome, which corresponds to the func-

tional annotation, i.e., sequence repeat, of the disease-related module. On the other hand, for

module 10 (the non-disease-related module with 623 genes, including 0 disease genes and

137 non-disease genes), annotation clusters such as lysosome (cluster 1 with enrichment

score 8.04), cilium (cluster 2 with enrichment score 7.36), Glycoprotein (cluster 3 with

enrichment score 5.95) and extracellular matrix (cluster 4 with enrichment score 5.48) were

identified. Since the module contains no disease genes, the above functions are most likely

not affected by the disease.

The pathology of Huntington disease is very complex and many factors are involved in

the disease progression, including inflammation, impaired metabolic pathways, protein mis-

Fig 5. Comparison of the average significance of disease-related modules obtained by DLPCA with β1 = β2, DLPCA with β1

> β2, and MLPCA. Each box shows the average significance of disease-related modules using an approach with different numbers

of seeds.

https://doi.org/10.1371/journal.pone.0178006.g005
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folding [37–39], etc. The enrichment analysis results demonstrate that a disease-related mod-

ule often contains many functional annotations that could reflect complicated pathologies and

also verifies the effectiveness and reasonability of the DLPCA.

An overall discussion

Although tremendous amounts of omics data are being collected along with the rapid develop-

ment of high-throughput technology, only a small amount of data contain clearly biological

annotations, e.g., pathogenic information on genes for specific complex diseases. The chal-

lenge is how to fully utilize the small amounts of labeled data to discover effective knowledge

from the genome-wide data.

The DLPCA designed in this study aims to mine the most likely disease-related modules

from gene expression data by making full use of the pathogenic information of a small number

of genes. In addition, DLPCA also makes full use of the hierarchical structures in the network,

including the structures represented by the category labels and those represented by the patho-

genic labels. This computational method can improve the efficiency and effectiveness of down-

stream biological experimental analysis. To clarify the main idea of this study and the key

point of the DLPCA, we have drawn Fig 8 to clearly demonstrate the properties of DLPCA

compared with MLPA. DLPCA is helpful for classifying genes with similar biological proper-

ties into one module. Compared with MLPA, DLPCA effectively improves the biological sig-

nificance of the gene clusters.

Fig 6. Comparison of the significance for scatters obtained by DLPCA with β1 = β2, DLPCA with β1 > β2, and MLPCA. Each

box shows the significance of scatters using an approach with different numbers of seeds.

https://doi.org/10.1371/journal.pone.0178006.g006
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Conclusions

In this study, we designed a double label propagation clustering algorithm for detecting dis-

ease-related modules. This algorithm takes the pathogenic information of genes as a property

of nodes in the gene co-expression network. During the clustering process of MLPA, DLPCA

not only considers the topological structures of the network but also the biological properties

of the nodes in the network. In addition, to accelerate convergence and improve cluster

robustness, we also proposed a seed selection strategy according to the local topological struc-

ture of the gene co-expression network. Compared with the aforementioned conventional

methods, DLPCA effectively improves the accuracy of disease-related module identification.

Table 4. The iteration times in each experiment.

Method DLPCA, β1 = β2 DLPCA, β1 > β2 MLPA

Seed num 350 500 650 350 500 650 350 500 650

Iteration times 12 10 14 8 10 11 7 11 8

https://doi.org/10.1371/journal.pone.0178006.t004

Fig 7. Comparison of the coverage of DLPCA with β1 = β2, DLPCA with β1 > β2, and MLPCA. Each box shows the coverage

using an approach with different numbers of seeds.

https://doi.org/10.1371/journal.pone.0178006.g007

Table 5. The average time per iteration in each experiment.

Method DLPCA, β1 = β2 DLPCA, β1 > β2 MLPA

Seed num 350 500 650 350 500 650 350 500 650

Time (hours) 3.1 5.8 6.3 2.9 4.9 6.4 2.6 3.9 5.6

https://doi.org/10.1371/journal.pone.0178006.t005

Disease-related gene modules detection based on MLPA

PLOS ONE | https://doi.org/10.1371/journal.pone.0178006 May 19, 2017 13 / 17

https://doi.org/10.1371/journal.pone.0178006.t004
https://doi.org/10.1371/journal.pone.0178006.g007
https://doi.org/10.1371/journal.pone.0178006.t005
https://doi.org/10.1371/journal.pone.0178006


Table 6. Functional annotation clustering for the modules obtained using DLPCA with β1 = β2 and 350 seed nodes.

DLPCA Module size Disease genes num Non-disease genes num Module sig Functional annotation clustering

Annotation cluster ES

Module1 91 19 1 0.95 Metal-binding 2.69

Sequence repeat 2.54

Calcium icon binding 2.42

Ribosome 2.14

Module2 109 12 0 1.0 Cytoskeleton 4.05

Cell junction 3.67

Calcium icon transport 2.57

Oxytocin signaling pathway 2.04

Module3 81 9 0 1.0 Golgi apparatus 1.99

Module4 28 2 0 1.0 Ubl conjugation pathway 2.12

Module5 31 2 0 1.0 Nucleotide-binding 3.67

Module6 104 3 0 1.0 Postsynaptic density 3.07

Endoplasmic reticulum 2.04

Module7 71 5 0 1.0 Retrograde endocannabinoid signaling 3.67

Membrane 3.01

Module8 1907 18 1 0.95 Nucleotide-binding 9.75

Chaperone 6.58

DnaJ domain 6.04

F-box domain 5.69

Microtubule 4.94

Module9 2431 15 79 0.16 Zinc, metal-binding 41.41

Protein transport 10.1

Ligase 9.87

Transcription regulation 9.52

Zinc figure 9.13

Module10 623 0 137 – Lysosome 8.04

Cilium 7.36

Glycoprotein 5.95

Extracellular matrix 5.48

Module11 1524 0 256 – Synapse 28.21

Ion transport 10.12

Glycoprotein 6.83

Fatty acid 5.74

https://doi.org/10.1371/journal.pone.0178006.t006

Fig 8. Illustration of DLPCA compared with MLPA. (A) The modules in the gene co-expression network obtained using MLPA. (B) Introduction of

the pathogenic information of some genes. Here, red nodes represent disease genes and black nodes represent non-disease genes. (C) The new

modular structures in the gene co-expression network obtained using DLPCA.

https://doi.org/10.1371/journal.pone.0178006.g008
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However, it should be stated that DLPCA could be applied equally well to other biological net-

works and genomic data.

Recently, new module detection methods integrating different network structures have

been proposed [40]. Generally, the accuracy of disease module detection may be further

improved by integrating other biological data as well as gene expression data, especially for

gene expression data characterized by large amounts of noise. Therefore, our future efforts will

focus on integrating multi-source biological data to further improve the accuracy of disease-

related modules.
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