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Accelerating beams have attracted considerable research interest due to their peculiar properties and various
applications. Although there have been numerous research on the generation and application of accelerating
light beams, few results have been published on the generation of accelerating acoustic beams. Here we
report on the experimental observation of accelerating acoustic beams along arbitrary convex trajectories.
The desired trajectory is projected to the spatial phase profile on the boundary which is discretized and
sampled spatially. The sound field distribution is formulated with the Green function and the integral
equation method. Both the paraxial and the non-paraxial regimes are examined and observed in the
experiments. The effect of obstacle scattering in the sound field is also investigated and the results
demonstrate that the approach is robust against obstacle scattering. The realization of accelerating acoustic
beams will have an impact on various applications where acoustic information and energy are required to be
delivered along an arbitrary convex trajectory.

S
elf-accelerating beams have attracted considerable research interest in optics since the concept of the Airy
beam was introduced from quantum mechanics1 into optics in 20072,3. As an exact solution of the paraxial
wave equation, the Airy beam propagates along parabolic trajectories without diffraction1,2. In the past few

years, the Airy beam has been studied extensively and possible applications have been proposed and demon-
strated, such as guiding microparticles4, producing curved plasma channels5 and routing dynamically surface
plasmon polaritons6,7. Recently, self-accelerating light beams have been extended from the paraxial limit to a non-
paraxial regime, which are the solutions of the wave equation under different coordinates8–10, and even to
arbitrary trajectories which are based on Caustic theory11,12.

Notwithstanding the recent progress in optics, accelerating acoustic beams and potential applications in
acoustics have not been considered. Actually, accelerating acoustic beam, if realized, will open new design
possibilities for acoustic devices and have deep implications in acoustical applications where special control of
sound waves is needed. In the scope of medical ultrasonics, for instance, acoustic energy can be delivered to kill
cancer cells without affecting healthy tissue in front of the cancer cells. A cylindrically symmetric accelerating
beam such as the ring-Airy beam13 can be utilized to generate an axisymmetric focused wave without using
acoustic gradient index lenses14. Although it has been proposed that the fundamental concept of accelerating
beams can be applied to linear wave systems ranging from electromagnetic and elastic waves to matter waves9, no
experimental realizations in acoustics have been published.

In optics, accelerating optical beams such as the Airy beam3, non-paraxial accelerating beam8 and non-paraxial
Mathieu and Webber beams9 are experimentally generated by manipulating the phase profile in the spatial
Fourier spectrum of the boundary condition. This method cannot be directly applied to acoustics because it is
difficult to conduct the Fourier transformation or to manipulate the phase profile of the sound wave in the
propagation process. A more intuitive way to generate arbitrary accelerating micron-scale beam by adjusting the
spatial phase profile of an incident Gaussian beam with the Spatial Light Modulator (SLM) is proposed and the
arbitrary accelerating light beams are experimentally observed in both two and three dimensions12. This scheme is
also utilized to generate arbitrary bending plasmonic light waves15 which use a binary plasmonic phase mask to
couple the free space light to the surface plasmon. However, the scheme cannot be directly utilized to generate
bending acoustic waves in homogeneous fluid media, which is of interest to researchers in acoustic levitation16,
medical imaging17 as well as therapeutic ultrasound18.

In this report, the experimental observation of accelerating acoustic beams along arbitrary convex trajectories is
reported. Caustic theory12 and geometrical properties are utilized to construct the relationship between an
arbitrary convex trajectory and the spatial phase profile of a continuous line acoustics source on the boundary.
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Both paraxial and non-paraxial regimes are investigated and compared
with the Airy beam3 and non-paraxial accelerating beam8, respectively.
The sound field distribution is formulated with the Green function and
the integral equation method19. The continuous source on the bound-
ary is sampled spatially and generated by loudspeakers which are mod-
elled as point sound sources. The simulation and experimental results
are in good agreement with the theory. The scattering effect of a rigid
sphere in the sound field is also investigated and it is demonstrated that
the approach is robust against scattering caused by obstacles.

Results
Derivation of the spatial phase profile on the boundary. Consider
the coordinate system depicted in Fig. 1, x 5 f(z) denotes an arbitrary
convex trajectory (blue line), and w(x) is the spatial phase profile on
the boundary (the x axis). Suppose that (x0, z0) is a point on the
trajectory and h is the angle between the z-axis and the tangent
line (red line) through the point (x0, z0). The cross point of the
tangent line and the x-axis is denoted as (x, 0).

The trajectory can be viewed as a caustic which is defined as an
envelope to a family of tangents12 that relate each point (x0, z0) on the
curve to the point (x, 0) at the plane z 5 0. According to the geo-
metrical property illustrated in Fig. 1, the slope of the tangent line can
be expressed as,

f ’(z0)~{ tan (h), ð1Þ

where f 9(z) is the first order derivative of f(z). The intercept of the
tangent line on the x axis can be obtained as,

x~x0zz0 tan (h), ð2Þ

where x0 5 f(z0). Combining Equations (1) and (2) to eliminate the
variable z0, one can readily deduce the functional relationship
between the transverse intercept x and the angle h as tan(h) 5 g(x).

The general form of the Fermat’s principle states that the derivative of
the phase accumulated along the actual wave path will be zero with respect
to infinitesimal variations of the path20,21. Therefore, the phase relation as
depicted inside the green line circle in Fig. 1 can be described by,

w(x)zdw(x)zk dx sin (h)~w(x), ð3Þ

where dw(x), dx represent the phase shift and the infinitesimal distance
between two cross points along the x direction respectively, and k is the
wavenumber.

After simplifying Equation (3), the relation between the spatial
phase profile w(x) and the angle h can be deduced as,

dw(x)

dx
~{k sin (h): ð4Þ

When the paraxial limit (i.e. h , 20u) is considered, the approxi-
mation tan(h) , sin(h) is valid as the relative error [tan(h) 2 sin(h)]/
sin(h) is less than 7% for angles where h , 20u. By combining tan(h)
5 g(x) and Equation (4), the derivative of the spatial phase profile on
the boundary could be written as12,

dw(x)

dx
~{kg(x): ð5Þ

Figure 1 | Illustration of an arbitrary convex trajectory x 5 f(z) and the tangent line.
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Figure 2 | Paraxial accelerating acoustic beam (f 5 4 kHz). (a) Spatial phase profile along x direction for a parabolic trajectory with a 5 0.05.

(b) Simulated sound field distribution (dB) for the parabolic trajectory with a 5 0.05. (c) Airy beam (dB) with scale factor x0 5 0.1.
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When it comes to the non-paraxial regime, the property of

the trigonometric function sin (h)~ tan (h)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z tan2 (h)

p
can be

exploited. With the relation tan(h) 5 g(x) applied, Equation (5)
can be modified as12,

dw(x)

dx
~

{kg(x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zg2(x)

p : ð6Þ

Then the spatial phase profile on the x axis can be obtained by
integrating Equations (5) and (6) for paraxial and non-paraxial
regimes, respectively. The boundary condition can be determined
when the spatial phase profile is deduced, and the acoustic beam
along the trajectory x 5 f(z) can be expected.

Generation of the sound field distribution. To compute the sound
field generated by the sound sources with the aforementioned spatial
phase profile, the Green function and the integral equation method is
utilized19,

p(r)~

ð
Aeiw(xs)G(r,xs,zs~0)dxs, ð7Þ

where i is the imaginary unit, A is the constant amplitude and G(r, rs)
is the Green function from the sound source located at rs 5 (xs, zs) to
the field point at r. In the free field condition, the Green function is
represented as,

G(r,r s)~
eik r{r sk k

4p r{r sk k , ð8Þ

where jj jj is the Euclidean norm of the vector.
While there is a rigid sphere in front of the boundary, the scattering

effect must be taken into account. The Green function considering
the scattering effect is modified to be22 (see Supplementary Note 1),

Gs(r,r s)~

ik
X?
n~0

Xn

m~{n

jn(krv){
j0n(kr0)

h0n(kr0)
hn(krv)

� �
hn(krw)Ym

n
�(hs,ws)Y

m
n (h,w),
ð9Þ

where r0 is the radius of the rigid sphere, jn() is the n-th order
spherical Bessel function, hn() is the n-th order spherical Hankel
function of the first kind, j’n() and h’n() is the first derivative of jn()
and hn(), respectively, Ym

n () are the spherical harmonics, r, 5 min(r, rs)
and r. 5 max(r, rs).

When Equations (8) and (9) are substituted into Equation (7), the
sound field distribution in the free field condition and with the
scattering effect of a rigid sphere considered can be obtained,
respectively.

Paraxial and non-paraxial regime. Under the paraxial approximation,
the parabolic trajectory is considered. The parabolic curve can be
represented as f(z) 5 2az2 (a is constant), so one can obtain the
spatial phase profile w(x) 5 24/3a1/2kx3/2 (see Supplementary Note
2). The spatial phase profile is illustrated in Fig. 2 (a). The sound field
distribution in free field condition is presented in Fig. 2 (b) when a 5

0.05. Figure 2 (c) shows the result of the Airy Beam1–3 which
accelerates along a parabolic trajectory. Actually, the Airy function
has the asymptotic form expressed as Equation (10) when x ? x0

1.
The phase obeys the same law with aforementioned spatial phase
profile.
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Figure 3 | Non-paraxial accelerating acoustic beam (f 5 4 kHz). (a) Spatial phase profile along the x direction for a circular trajectory with a radius of

2 m. (b) Simulated sound field distribution (dB) for the circular trajectory with a radius of 2 m. (c) Non-paraxial accelerating beam (dB) with order

b 5 100.

Figure 4 | Experimental setup. (a) The panorama view of the experimental

facility, the rigid sphere is removable for the experiments without obstacle

scattering. (b) The loudspeakers are spaced 4 cm apart.

(Acknowledgements go to Y.H. for taking the photographs.)
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where Ai() is Airy function and x0 is a scale factor.
In the non-paraxial regime, it is more complicated to use Equation

(6) instead of Equation (5), but it is still solvable when the trajectory is
relatively simple. For example, consider a circle situated at (0, 0) with
the radius a. The circle can be described as,

f (z)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{z2
p

: ð11Þ

By applying Equation (11) to Equations (1)–(5), one can obtain the
spatial phase profile w(x) 5 2k[(x2 2 a2)1/2 1 a arcsin(a/x)] (see
Supplementary Note 3). The spatial phase profile is depicted in Fig. 3
(a) and the simulated sound field distribution is illustrated in Fig. 3
(b) when a 5 2 m. Figure 3 (c) presents the result of Non-paraxial
Accelerating Beam (NAB)9,10 with the boundary condition,

p(x,z)jz~0~Jb k(x{a)zb½ �, ð12Þ

where p is sound field pressure and b is the order of Bessel function.

Experimental validations. Experiments were conducted to verify
the simulation results with a 64 channel loudspeaker array. The
phases of the excitation signals fed to the loudspeakers are adjusted
according to the necessary sampled spatial phase profile on the
boundary to generate the corresponding convex trajectory while
the amplitudes are uniform. The experimental setup is depicted in
Fig. 4.

The experimental results of the parabolic trajectory under the
paraxial approximation and the circular trajectory for the non-para-
xial regime are illustrated in Figs. 5 and 6, respectively. The relative
error e1 5 E[jLps 2 Lpej]/E[Lps] 3 100% (E[] represents the expecta-
tion operator) between the experimental sound pressure level Lpe and
the simulated sound pressure level Lps for the parabolic trajectory
and the circular trajectory, are 5.1% and 4.6%, respectively.
Considering the unavoidable scattering of the plexiglass panel, the
metal support structure and the sliding table, the relative error less
than 10% is rather low, which demonstrates that the experimental
results are in good agreement with the simulations.

Scattering of the rigid sphere. For simplicity, the obstacle is
supposed to be a rigid sphere and the trajectory is a circle centred
at (0, a) with the radius a. Such a circle can be represented as,

f (z)~+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{(z{a)2

q
: ð13Þ

By applying Equation (13) to Equations (1)–(5), one can obtain the
spatial phase profile w(x) 5 2k[jxj 22a arctan(jxj/a)] (see
Supplementary Note 4), where j j is the absolute value operator.
The simulation and experimental results with and without
scattering effect are depicted in Fig. 7. Due to the limitation of the
measurement range of the experimental equipment, the radius here
was set to be 0.32 m. The black dashed circles in Fig. 7 (c) and Fig. 7
(d) represent the location of the rigid sphere with a radius of 0.1 m.
Due to the presence of the sphere and the size of the measurement
equipment, the sound field distribution is only measured outside the
white square with side length 0.17 m.
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Figure 5 | Paraxial accelerating acoustic beam (dB) along a parabolic trajectory with a 5 0.15 (f 5 4 kHz). (a) Simulated sound field distribution.

(b) Experimental sound field distribution.
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Figure 6 | Non-paraxial accelerating acoustic beam (dB) along a circular trajectory with a radius of 0.7 m (f 5 4 kHz). (a) Simulated sound field

distribution. (b) Experimental sound field distribution.
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The relative error e1 between the experimental and simulation
results are 6.9% and 6.1%, with and without the scattering caused
by the rigid sphere, respectively, which show the good agreement
between the experimental and simulation results. On the other hand,
the relative error e2 5 E[jLpwo 2 Lpwij]/E[Lpwo] 3 100% (E[] repre-
sents the expectation operator) between the sound pressure level
with the rigid sphere scattering Lpwi and the sound pressure level
without the rigid sphere scattering Lpwo are 2.0% and 5.0%, for the
simulation results and the experimental results, respectively, which
manifest that the approach is robust against scattering effect caused
by the possible obstacle.

Discussion
In principle, the approach proposed in this report is valid for a broad
band signal as well and the higher the frequency is, the better the
result will be. However, when the frequency is higher and the size of
the desired trajectory is larger, more loudspeakers will be needed to
discretize and sample the spatial phase profile. It has been reported23

that in order to avoid spatial aliasing, the distance between the loud-
speakers should not be larger than half the wave length. In this report,
a frequency of 4 kHz is chosen because the half wave length 0.043 m
is larger than the loudspeaker interval of 0.04 m.

The scheme is easily extended to a 3D situation with planar loud-
speaker arrays and volume caustics12. Then the ring-Accelerating
beam like the ring-Airy beam13 can be generated and this can be used
to produce axisymmetric focused wave without using acoustic gra-
dient index lenses14. The proposed method utilizes boundaries
instead of an entire propagation region to manipulate the wavefront,
so the complexity in wavefront engineering is reduced significantly
and the application of wave manipulation is expanded.

In conclusion, an intuitive method to generate accelerating acous-
tic beams by manipulating the spatial phase profile on the boundary
has been investigated. The method is based on the Caustic theory12

and geometrical properties. The convex trajectories are projected to
the spatial phase profile on the boundary which are discretized and
sampled spatially. The discretized phase is generated by a loud-
speaker array and the excitation signals of the loudspeakers are sine

waves whose initial phases are manipulated according to the discre-
tized spatial phase profile to generate the sound field along the con-
vex trajectory. The relative error between the experimental and
simulation results is less than 7% for the parabolic and circular tra-
jectories, which demonstrates good agreement between the experi-
mental and simulation results. The relative error between the sound
field with and without the rigid sphere scattering is 5% for the experi-
mental results, which show good robustness against the scattering
effect caused by obstacles.

Methods
Experimental Setup. The experiments were conducted in an anechoic room. In the
experiments, the excitation signals were generated on a PC and transmitted to the
loudspeakers through PS PXI 3381 multichannel analogue output cards and power
amplifiers. The loudspeakers are mounted on a plexiglass panel for stability and the
sound field distribution is measured by a free field microphone carried by a stepper
motor which is controlled by the PC. 26 and 32 loudspeakers were used to generate
the paraxial parabolic trajectory (Fig. 5) and the non-paraxial circular trajectory
(Fig. 6), respectively. For the experimental validation of the robustness to obstacle
scattering (Fig. 7), 64 loudspeakers were utilized. The loudspeakers were spaced at an
interval 0.04 m and the frequency used for all the above-mentioned experiments was
4 kHz.
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